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Abstract—In this paper, we consider the problem of user rate
balancing in the downlink of multi-cell multi-user (MU) Multiple-
Input-Multiple-Output (MIMO) systems with imperfect Channel
State Information at the Transmitter (CSIT). We linearize the
problem by introducing a rate minorizer and by formulating
the balancing operation as constraints leading to a Lagrangian,
allowing to transform rate balancing into weighted sum Mean
Squared Error (MSE) or Interference Plus Noise (IPN) power
minimization with Perron Frobenius theory. We introduce two
imperfect CSIT formulations. One is based on the expected rate
vs. Expected MSE (EMSE) relation, the other involves an original
rate minorizer in terms of the received IPN covariance matrix,
in the imperfect CSIT case applied to the Expected Signal and
Interference Power (ESIP) rate. The main contribution here is
another minorization step via an extended Rayleigh quotient
which leads to a principled approach for introducing power
method iterations replacing explicit generalized eigenvector com-
putations. This allows to bring down the complexity per iteration
of the better ESIP approaches to that of the EMSE based
approaches. But we further reduce complexity by introducing
also a (large) matrix inverse free power method.

Index Terms—Multi-User MIMO, Rate Balancing, Imperfect
CSIT, Power Method, Matrix-Inverse Free

I. INTRODUCTION

Multi-user multiple-input multiple-output (MIMO) systems
are considered as a promising technique for next generation
cellular networks for their great potential to achieve high
throughput [1]. In downlink communications, when a cer-
tain knowledge of the Channel State Information (CSI) at
the transmitter is available, the system throughput can be
maximized. Obtaining CSI at the receiver is easily possible
via training, whereas CSI at the transmitter (CSIT) acquires
reciprocity or feedback from the receiver. Therefore, many
works address the problem of optimizing the performance
of MIMO systems with the presence of CSIT uncertainties,
better known as partial CSIT. Among the different optimiza-
tion criteria, we distinguish the transmit power minimization,
and the max-min/min-max problems w.r.t. either signal-to-
interference-plus-noise ratio (SINR) [2]–[6], Mean Square
Error (MSE) [7]–[9] or user rate. The latter is the focus of
this work. In particular, we study Multi-Cell MIMO User Rate
Balancing with Partial CSIT.

In this work, we focus on ergodic user rate balancing, which
corresponds to maximizing the minimum (weighted) per user
expected rate in the network. We consider a multi-cell multi-
user MIMO system with imperfect CSIT, which combines both
channel estimates and channel (error) covariance information.
In particular, we introduce a novel [10] extension of [11] to

imperfect CSIT, maximizing an expected rate lower bound in
terms of expected MSE. Furthermore, we introduce a second
algorithm by exploiting a better approximation of the expected
rate as the Expected Signal and Interference Power (ESIP) rate.
Whereas we have considered the ESIP approach in previous
sum utility optimization work, the algorithm here is based on
an original minorizer for every individual rate term, different
from existing DC programming approaches in sum utility
optimization. Both algorithms are based on a Lagrangian
formulation introduced in [11] for perfect CSIT, in which
utility balancing gets transformed into a weighted sum utility
with known optimal beamformers.

A. Contributions

The main contribution then is another minorization step via
an extended Rayleigh quotient which leads to a principled
approach for introducing power method iterations replacing
explicit generalized eigenvector computations. This allows to
bring down the complexity per iteration of the better ESIP
approaches to that of the EMSE based approaches. Namely,
the updated generalized eigenvector(s) are obtained by solving
a linear system of equations, i.e. as a matrix inverse times a
(block) vector. In the case of perfect CSIT, the power method
iterations for the transmit (Tx) beamformers (BF) lead to
an algorithm that is very related to the approach in which
receivers (Rx) are introduced and the algorithm alternates
between updating transmitters and receivers. In the (ESIP)
imperfect CSIT case however, the introduction of receivers
and alternating optimization does not allow to reach something
closely related to the proposed power method iterations on
the transmitters (only). Although the power method replaces
eigenvectors with LMMSE (Linear Minimum MSE) type
filters, these still require the inversion of large matrices.
Hence we also introduce matrix-inverse free methods that
are related to polynomial expansion or Jacobi methods, but
with combination coefficients optimizing the desired utility
function.

B. Related Work

The large matrix inversions for LMMSE in Massive MIMO
are the main motivation behind searching for low com-
plexity solutions with close to optimal performance. [12]
proposes truncated polynomial expansion (PE) for reducing



precoder complexity. [13] uses the Approximate Message
Passing (AMP) algorithm for LMMSE and introduces a non-
parametric algorithm called NOPE that does not require any
knowledge of the signal and noise powers. The authors also
prove that in the large system limit, NOPE achieves the same
performance as that of the LMMSE equalizer. [14] showed that
the design of all variants of linear precoder/combiners for the
downlink (DL) and uplink (UL) can be posed as the solution
of a set of linear equations. Furthermore, this is solved using
Kaczmarz method, which is essentially the Normalized LMS
algorithm from adaptive filtering, applied to a randomized
selection of the normal equations to be satisfied. In [15] we
propose variational Bayesian learning (VBL) techniques to
acquire it assuming TDD channel reciprocity. In particular a
Space Alternating version of Variational Estimation (SAVE)
allows a well founded alternative to AMP based techniques
while being of similar complexity. Furthermore the resulting
posterior parameter distributions allow to express covariance
CSIT imprecision. The SAVE techniques can also be applied to
obtain reduced complexity iterative techniques for determining
the transmit/receive signals or beamformers themselves. The
SAVE recursions are similar to PE. However, PE (Jacobi)
only converges in case of sufficient diagonal dominance of
the matrix to be inverted, whereas SAVE (Gauss-Seidel) is
guaranteed to converge, since it corresponds to alternating
minimization of a quadratic cost function. Other related work
appears in [16], [17] that is more of the PE nature.

II. SYSTEM MODEL

We consider a MIMO system with C cells. Each cell c
has one base station (BS) of Mc transmit antennas serving
Kc users, with total number of users

∑
cKc = K. We refer

to the BS of user k ∈ {1, . . . ,K} by bk. Each user has Nk
antennas. The channel between the kth user and the BS in cell
c is denoted by Hk,c ∈ CNk×Mc . We consider zero-mean white
Gaussian noise nk ∈ CNk×1 with distribution CN (0, σ2

nI) at
the kth user.

We assume independent unity-power transmit symbols sc =
[sTK1:c−1+1 . . . s

T
K1:c

]T, i.e., E
[
scs

H
c

]
= I, where sk ∈ Cdk×1

is the data vector to be transmitted to the kth user, with
dk being the number of streams allowed by user k and
K1:c =

∑c
i=1Ki. The latter is transmitted using the transmit

filtering matrix Gc = [GK1:c−1+1 . . .GK1:c
] ∈ CMc×Nc , with

Gk = p
1/2
k Gk, Gk being the (unit Frobenius norm) beamform-

ing matrix, pk is non-negative downlink power allocation of
user k and Nc =

∑
k:bk=c dk is the total number of streams

in cell c. Each cell is constrained with Pmax,c, i.e., the total
transmit power in c is limitted such that

∑
k:bk=c pk ≤ Pmax,c.

The received signal at user k in cell bk is

yk = Hk,bkGksk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bkGisi

︸ ︷︷ ︸
intracel interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,jGisi︸ ︷︷ ︸
intercell interf.

+nk

(1)

Similarly, the receive filtering matrix for each user k is defined
as FH

k = p
−1/2
k FH

k ∈ Cdk×Nk , composed of beamforming ma-
trix FH

k ∈ Cdk×Nk . The received filter output is ŝk = FH
k yk.

For details about the (prior) separable channel correlation
model and it’s impact on the posterior channel model, please
see [10]. It leads to e.g. (for arbitrary P , Q)

E
H|Ĥd

HHQH = ĤHQĤ + tr{CrQ}Cp (2)

and E
H|Ĥd

HPHH = ĤPĤH + tr{CpP }Cr . (3)

Note that ρP = tr{ĤHĤ}
tr{Cr}tr{Cp} is a form of Ricean factor

that represents posterior channel estimation quality. It depends
on the deterministic channel estimation quality ρD = 1/σ2

H̃
,

which results from the training. Below we consider Cr = I
(to keep the posterior covariance separable), and the only
covariance C we shall need is the Tx side posterior Cp,
hence we drop the subscript p. Perfect CSIT algorithms can be
obtained by setting σ2

H̃
= 0, leading to Ĥ = H and Cp = 0.

III. EXPECTED RATE BALANCING PROBLEM
In this work, we aim to solve the weighted user-rate max-

min optimization problem under per cell total transmit power
constraint, i.e., the user rate balancing problem expressed as
follows

max
G,p

min
k

rk/r
◦
k

s.t.
∑

k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (4)

where rk is the kth user-rate

rk = lndet
(
I+R−1

k
Hk,bkGkGH

kH
H
k,bk

)
= ln det

(
R−1

k
Rk

)
, (5)

Rk = σ2
nI+

∑
l 6=k

Hk,blGlGH
l H

H
k,bl , (6)

Rk = Rk+Hk,bkGkGH
kH

H
k,bk , (7)

Rk and Rk are the interference plus noise and total received
signal covariances, and r◦k is the rate priority (weight) for
user k. Actually, in the presence of partial CSIT, we shall
be interested in balancing the expected (or ergodic) rates

max
G,p

min
k

rk/r
◦
k

s.t.
∑

k:bk=c

pk ≤ Pmax,c, c = 1, . . . , C (8)

where rk = E
H|Ĥ rk. We shall need

Sk,i =Ĥk,biGiG
H
i Ĥ

H
k,bi +tr{GH

i Ck,biGi}I, Sk = Sk,k (9)

Rk = EH|ĤRk =σ2
nI+

∑
i 6=k

piSk,i , Rk = Rk + pkSk (10)

However, the problem presented in (8) is complex and can
not be solved directly.

IV. WEIGHTED USER EMSE BALANCING
Lemma 1. The user k rate in (5) is lower bounded as [18]
rk = EH|Ĥ max

Wk,Fk

[
ln det

(
Wk

)
− tr

(
WkEk

)
+ dk

]
(11)

≥ rlk = max
Wk,Fk

f l

k
, f l

k
= ln det

(
Wk

)
− tr

(
WkEk

)
+ dk (12)

where f l

k
= f l

k
(Wk,Fk) , Ek = E

[
(ŝk − sk)(ŝk − sk)H

]
= I −FH

k Ĥk,bkGk − GH
k Ĥ

H
k,bkFk + σ2

nFH
k Fk

+

K∑
l=1

FH
k

(
Ĥk,blGlGH

l Ĥ
H
k,bl + tr{GH

l Ck,blGl}I
)
Fk (13)



is the kth user downlink Expected MSE (EMSE) matrix
between the decision variable ŝk and the transmit signal sk,
and {Wk}1≤k≤K are auxiliary weight matrix variables with
optimal solution W opt

k = E
−1
k and the optimal receivers are

Fk = R
−1
k Ĥk,bkGk. (14)

with rate lower bound

rlk = − ln det(I − GH
k Ĥ

H
k,bkR

−1
k Ĥk,bkGk) . (15)

The rest of this EMSE based approach is elaborated in [10].
The main issue that interests us here is that the Lagrangian of
the expected rate balancing leads to a Weighted Sum EMSE
minimization for the Tx filters with solution

G′k =
( K∑
l=1

(
ĤH

l,bkF lW
′
l FH

l Ĥl,bk+tr{F lW
′
l FH

l }Cl,bk

)
+ µbkI

)−1

× ĤH
k,bkFkW

′
k , Gk =

√
pkGk , Gk =

1√
tr{G′Hk G′k}

G′k (16)

where W ′
k = λk/ξkWk. This is a Linear MMSE filter in a

dual uplink, and the imperfect CSIT aspect has no effect on
this nature of the solution. But WSEMSE corresponds to an
ergodic rate lower bound. Better ergodic rate approximations
are based on rate minorizers leading to generalized eigenvector
beamformers. Note that when one substitutes the Rx Fk

from (14) in (16), then one can identify a power method
iteration for Gk, which is fine in the perfect CSIT case, but
suboptimal in the imperfect CSIT case, because in the (direct
link) signal power, the channel estimation error covariance
matrix is missing.

V. ESIP RATE BALANCING

Now we follow another approximation of the expected rate
expression The following approach will use a rate minorizer
for every rk, similar but not identical to what is used as in
the DC programming approach which for the optimization
of Gk keeps rk and linearizes the rk. The approach does
not require the introduction of Rxs. We consider again the
(ergodic) rate balancing problem (8) where rk = E

H|Ĥ rk
is now approximated by the Expected Signal and Interference
Power (ESIP) rate

rk = EH|Ĥ lndet
(
I+pkG

H
k H

H
k,bkR

−1

k
Hk,bkGk

)
≈ lndet

(
I+pkG

H
k EH|Ĥ{H

H
k,bk ( EH|ĤRk)−1Hk,bk}Gk

)
= rsk = fs

k(
1

pk
Rk) = lndet

(
I+GH

k Bk(
1

pk
Rk) Gk

)
, (17)

Bk(T k) = ĤH
k,bkT

−1
k Ĥk,bk + tr{T−1

k }Ck,bk (18)

where the rk approximation rsk in (17) in general is neither
an upper nor lower bound but in the Massive MIMO limit
becomes a tight upper bound.

Lemma 2. The approximate rk, rsk, can be obtained as
fsk( 1

pk
Rk) = minT k

fs
k
(T k,

1
pk
Rk), with fs

k
(T k,

1
pk
Rk) :

fs
k

= lndet
(
I+GH

kBk(T k)Gk

)
+tr{W̆k(T k−

1

pk
Rk)} (19)

where

W̆k = T
−1

k

(
Ĥk,bkXk Ĥ

H
k,bk

+ tr{XkCk,bk}I
)
T
−1

k (20)

with Xk = Gk

(
I+GH

kBk(T k)Gk

)−1

GH
k (21)

The optimizer is T k = 1
pk
Rk. Also, fs

k
is a minorizer for

fsk( 1
pk
Rk) as a function of 1

pk
Rk.

Indeed, since fsk(.) is a convex function, it gets minorized
by its tangent at any point:

fsk(
1

pk
Rk) ≥ fs

k
= fsk(T k)+tr{∂f

s
k(T k)

∂T k

(
1

pk
Rk−T k)}

(22)
and W̆k = −∂f

s
k(T k)

∂T k
. Note that for the Perron-Frobenius

theory, we need a function that is linear in pk

pk
, hence we need

to work with 1
pk
Rk instead of Rk.

The Lagrangian formulation in [10] now leads to∑
k

λ̆
′

k(t rok − f
s

k
)

= −
∑
k

λ̆
′

k

(
lndet

(
I+GH

kBkGk

)
− 1

pk
tr{W̆kRk} (23)

+ tr{W̆kT k}−t rok
)

=
∑
k

λ̆k(
1

pk ξ̆k
tr{W̆kRk}−1) (24)

where ξ̆k = tr{W̆kT k}+ lndet
(
I+GH

kBkGk

)
− t rok

(25)

and λ̆
′

k = λ̆k/ξ̆k, Bk = Bk(T k). The balancing of the rates in
(8) or equivalently the weighted interference plus noise powers
in (23) now finds the user powers as the Perron-Frobenius
eigenvector of the matrix (see [10])

Λ̆ = ξ̆−1Ψ̆ +
1

θTpmax
ξ̆−1σ̆θTCT

C with (26)

[Ψ̆]ij =

{
tr{W̆i(Ĥi,bjGjG

H
j Ĥ

H
i,bj

+tr{GH
j Ci,bjGj}I)}, i 6= j

0, i = j
(27)

σi = σ2
n tr{W̆i}, ξ̆ = diag(ξ̆1, . . . , ξ̆K) . (28)

The Tx BF and stream power optimization will be based on∑
i
λ̆i

ξ̆i
fs
i
, which from (23) becomes (apart from noise terms)

∑
k

λ̆k

ξ̆k
fs

k
=
∑
k

λ̆k

ξ̆k
lndet

(
I+GH

kBkGk

)
−
∑
k

tr{pkGH
k AkGk}

(29)
with Ak =

∑
i 6=k

λ̆i

pi ξ̆i

(̂
HH

i,bkW̆iĤi,bk +tr{W̆i}Ci,bk

)
. (30)

For the optimal Tx BF Gk, the gradient of
∑
i
λ̆i

ξ̆i
fs
i
−

µbk
∑
i:bi=bk

pitr{GH
i Gi} with (29) (or (17)) yields

λ̆k

pk ξ̆k
BkGk (I +GH

k BkGk)−1−(Ak + µbkI)Gk = 0 . (31)

The solution is the dk maximal generalized eigen vectors

G
′

k = V1:dk(Bk,Ak + µbkI),Gk=G
′

kP
1/2

k ,Gk=Gk
√
pk
(32)



where the P k = diag(pk,1, . . . , pk,dk), tr{P k} = 1, are the
relative stream powers. Indeed, (31) represents the definition
of generalized eigen vectors. Consider

Σ
(1)
k =G

′H
k BkG

′

k, Σ
(2)
k =G

′H
k AkG

′

k (33)

then the generalized eigen vectors G
′

k of Bk,Ak +µbkI lead
to diagonal matrices Σ

(1)
k , Σ

(2)
k + µbkG

′H
k G

′

k. Note that the
normalized G

′

k are not orthogonal. Then (31) represents the
generalized eigen vector condition with associated general-
ized eigen values in the diagonal matrix pk ξ̆k

λ̆k
(I + Σ

(1)
k P k).

Also, plugging in generalized eigen vectors into (29) reveals
that one should choose the eigen vectors associated to dk
maximal eigen values to maximize (29). Now, premultiply-
ing both sides of (31) by pkG

H
k , summing over all users

k : bk = c, taking trace and identifying the last term with∑
k:bk=c pktr{GH

kGk} = Pmax,c allows to solve for

µc =
1

Pmax,c

 ∑
k:bk=c

tr{ λ̆k

ξ̆k
Σ

(1)
k P k(I+Σ

(1)
k P k)−1−pkΣ

(2)
k P k}


+

.

(34)
The P k are themselves found from an interference leakage

aware water filling (ILAWF) operation. Substituting G
′

k into
term k of (29), dividing by pk, and accounting for the
constraint tr{P k} = 1 by Lagrange multiplier νk, we get
the Lagrangian

λ̆k

pk ξ̆k
ln det

(
I+Σ

(1)
k P k

)
− tr{(Σ(2)

k + νkI)P k} = (35)

λ̆k

pk ξ̆k
ln det

(
I+Σ

(1)
k P k

)
− tr{(diag(Σ

(2)
k )+νkI)P k}.

Maximizing w.r.t. P k leads to the ILAWF solution

P k =

⌊
λ̆k

pk ξ̆k
(diag(Σ

(2)
k ) + νkI)−1 − Σ

−(1)
k

⌋
+

(36)

where the Lagrange multiplier νk is adjusted (e.g. by bisection)
to satisfy tr{P k} = 1. Elements in P k corresponding to zeros
in Σ

(1)
k should also be zero. This completes the ESIP rate

balancing algorithm derivation (Table I).

VI. INTRODUCING POWER METHOD ITERATIONS

Consider first a single stream scenario. A max generalized
eigenvector optimizes a Rayleigh quotient:

arg max
g

gHBg

gHAg
= Vmax(B,A) (37)

where Vmax(B,A) denotes the generalized eigenvector of
matrices B, A corresponding to their maximum generalized
eigenvalue. We observe that power method iterations for a gen-
eralized eigenvector BF can actually be found by optimizing
an extended Rayleigh quotient:

max
g

gHBg

gHAg
= max

g
max

g̃

|gHBg̃|2

g̃HBg̃ gHAg
(38)

TABLE I: ESIPrate based User Rate Balancing

1. initialize: G(0,0)
k = (Idk : 0)T, p(0,0)

k = q
(0,0)
k =

Pmax,c

K
, m =

n = 0 and fix nmax,mmax, r◦k , and W̆
(0)
k from (20)

2. compute r
s (0)
k = lndet

(
I +GH

k Bk( 1
pk

Rk) Gk

)
, determine

t = mink
r
s (0)
k
r◦
k

, r◦(0)k = t r◦k , and ξ̆(0)k from (25)
3. repeat

3.1. m← m+ 1
3.2. repeat

n← n+ 1
i update Ak from (30)

ii update µc and G
′
k from (32),(34)

iii update P k from (36)
iv update p and q as maximal eigen vectors of Λ̆ in (26)

3.3 until required accuracy is reached or n ≥ nmax

3.4 compute Bk(T k) and update W̆k from (20)
3.5 compute r

s (m)
k = lndet

(
I +GH

k Bk( 1
pk

Rk) Gk

)
and

determine t = mink
r
s (m)
k

r
◦(m−1)
k

, r◦(m)
k = t r

◦(m−1)
k ,

and update ξ̆k from (25)
3.6 set n ← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to

re-enter the inner loop
4. until required accuracy is reached or m ≥ mmax

which involves a Cauchy-Schwartz inequality. The alternating
optimization of (38) leads to

g = A−1B g̃ , g̃ = g (39)

where scale factors in g, g̃ can be adjusted. The alternating
updates in (39) are called the power method, here for finding
the maximal generalized eigenvector.

Now let’s consider the multi-stream case. If we isolate the
BF matrix optimization problem for a generic user, we get

maxG{ln det(I + GHBG)− tr{GH(A + µI)G}} =
maxG{maxG̃ ln det(I + X)− tr{GH(A + µI)G}}
where X = GHBG̃(G̃HBG̃)−1G̃HBG

(40)
The gradient w.r.t. G∗ yields:

BG̃(G̃HBG̃)−1G̃HBG(I + X)−1 − (A + µI)G = 0

⇒ G = (A + µI)−1BG̃(G̃HBG̃)−1G̃HBG(I + X)−1

⇒ G
′

= (A + µI)−1BG̃Y , G = G
′
P

1/2

(41)
for some d×d unitary Y and diagonal P . Before simplifying
G, consider the solution for G̃:

GHBG̃(G̃HBG̃)−1G̃HBG ≤ GHBG (42)

which reaches equality iff PG̃G = G where PG̃ is the
projection matrix onto the column space of G̃. In other words,
G̃ should have the same column space as G. (42) is the
Schur complement’s lemma, which is the matrix version of the
Cauchy-Schwartz inequality. Now, since G̃ is only determined
up to square mixture, we can require G̃ to satisfy G̃HBG̃ = I ,
which leads to the solution

G̃ = G (GHBG)−1/2 (43)



in which the lowest complexity computation of the matrix
square-root would be via a Cholesky decomposition. With
G̃HBG̃ = I , and G as in (41), the crucial terms in (40)
become

X = P
1/2

Y H(G̃HB(A + µI)−1BG̃)2Y P
1/2

GH(A + µI)G = P
1/2

Y HG̃HB(A + µI)−1BG̃Y P
1/2

(44)
which hence get diagonalized simultaneously. Introduce now
the eigendecomposition

G̃HB(A + µI)−1BG̃ = UΣUH (45)

which leads us to choose Y = U , which in turn transforms
(40) to

max
P
{ln det(I + Σ(1) P )− tr{P (diag(Σ(2)) + νI)}} (46)

where Σ(1) = Σ2, Σ(2) = Σ − µG
′HG

′
, from which the

usual ILAWF solution follows. So in summary, the general-
ized eigenvector computations are replaced by the alternating
updates (40), (43), which possibly could be iterated separately
more than once, if multiple power method iterations per overal
update are desired.

A. Inverse-Free Generalized Power Method

The power method update in (41) for the generalized
eigenvector problem is still complex due to the matrix inverse.
Since the whole beamformer design is iterative, we may as
well do this matrix inversion iteratively also, as in polynomial
expansion or the Multi-Stage Wiener Filter. In fact, (41) means
that G

′
is found from a linear system of equations (in which

we shall adjust right multiplying factors later)

(A + µI)G
′

= B G̃ , A + µI = D + D (47)

where the additive decomposition of A + µI is into its
diagonal part D and offdiagonal part D (more sophisticated
preconditioning D could be considered, trading complexity for
per iteration convergence speed; e.g. taking D to be triangular,
which leads to the Gauss-Seidel method, or diagonal plus low
rank). Then we get the polynomial expansion (Jacobi) iteration

G
′

= −D−1 DG
′
+D−1 B G̃ ≈ −D−1 DG̃+D−1 B G̃ .

(48)
Now, to guarantee and accelerate convergence, we can throw
in dk × dk scale factors Q1, Q2, Q3 that we shall optimize
with the same utility function. So we end up with

G
′

=
[
G̃ −D−1DG̃ D−1BG̃

] Q1

Q2

Q3

 = T Q . (49)

where Q, of size 3dk × dk, is to be optimized and G̃ is the
G of the previous iteration. By substituting G in (40) by the
G
′

expression in (49), the optimization w.r.t. Q leads to

Q = V1:dk(THBT ,TH(A + µI)T ) (50)

where both matrices again get diagonalized by the small
dimension generalized eigenvectors, and the optimization of
the stream powers proceeds as usual. Though the complexity
of (50) is now small, it could still be reduced by the power
method discussed above, where now the matrix inverse should
be of acceptable complexity.

VII. SIMULATION RESULTS

We have evaluated numerically the performance of the pro-
posed algorithms by following [10]. At convergence, the same
results are reproduced by replacing generalized eigenvalue
computations by power method iterations and inverse-free
variations proposed here.
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