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ABSTRACT

HMM systems exhibit a large amount of redundancy. To this
end, a technique called Eigenvoices was found to be very
effective for speaker adaptation. The correlation between
HMM parameters is exploited via a linear constraint called
eigenspace. This constraint is obtained through a PCA analy-
sis of the training speakers.

In this paper, we show how PCA can be linked to the
maximum-likelihood criterion. Then, we extend the method
to LDA transformations and piecewise linear constraints.
On the Wall Street Journal (WSJ) dictation task, we obtain
1.7% WER improvement (15% relative) when using self-
adaptation.

1. OPTIMAL ESTIMATION OF THE EIGENSPACE

In this section, we show that the expected log-likelihood of
the data is related to a sum of squared euclidean distances in
the model space. This justifies using the SVD to compute the
eigenspace.

First, we will show that the log-likelihood of rows of
MLLR matrices defines a quadratic form. Then, we define
proper normalization to reduce the ML problem to a standard
least-squares problem, that can be solved by SVD.

1.1. Gaussianity of MLLR rows

Speaker dependent models are needed to build the eigenspace.
However, for large vocabulary applications, building these
models is difficult because of data sparsity and memory re-
quirements. In practice, most systems use MLLR-adapted
models [1]. MLLR transforms model means�m by a matrix
W = [w1; :::; wN ]T :
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The feature space has dimensionN . Each rowwk has dimen-
sionN + 1.

We are concerned with the adaptation of mean vectors, with
diagonal covariance matrices. The expected log-likelihood
after E-step of the Baum-Welch algorithm is
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whereC is a constant independent of the transformation. The
indexm refers to a Gaussian distribution. Without loss of
generality, we only explore the case of a global transforma-
tion matrix. By hypothesisC�1

m
is a diagonal matrix with

elementsrk . The ML estimate [2] for the MLLR rowyk has
precisionGk:
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Rearranging the terms of eq(2) as in [3], we obtain:
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whereC 0 completes the quadratic form. The sum is over all
rowsk of the transformation matrix. Eq. (6) states that MLLR
rows are Gaussian with meanyk and precisionGk.

1.2. Eigenvoices with MLLR-adapted models

To be effective in fast speaker adaptation, we choose to re-
duce the dimensionality of the problem [4]. We define the set
of speaker transformation parameters by stacking all rows to
form a supervectorw:
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The dimension of the supervector isN(N +1). We postulate
that speaker supervectorsw lie in a low-dimensional space of



dimensionE < N(N + 1). We stack ML estimates of rows
yk to form the supervectory, and we approximate it by:

w � P
T
Py; (8)

whereP is a projection matrix of dimensionE �N(N +1).
The matrixP is called the eigenspace and is estimated as fol-
lows. We observe a collection ofT training speakers.They
form an observation matrixY = [y (1):::y(T )]. Then we
chooseP to be theE first eigenvectors of the matrixY Y T .
This will minimize the squared error of the approximation:

P̂ = argmax
P

�
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P
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Unfortunately, this is not guaranteed to maximize the likeli-
hood. We propose a normalization that ensures optimality of
the dimensionality reduction under the maximum likelihood
criterion.

1.3. Root modulation

The quadratic form corroborates the fact that the ML row es-
timatesyk are Gaussian. MaximizingQ can also be seen
as minimizing a distortion of observations with covariances
G
�1
k

:

max
w
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The yk are the ML estimates for the rowk. We want to
optimize the supervectorsw = [w1; :::wN ] subject to the
eigenspace constraint. By assuming the precision matrix to
be constant after the E-step, we can modulate the variables by
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We may chooseG
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k
to be symmetric. The likelihood be-

comes:
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We call this normalization theroot modulation because the
observationzk is multiplied by the square root of the preci-
sion.

1.4. ML dimensionality reduction

Now it becomes clear that theQ function is related to the
least-squares problem in the root modulated space. If~w (q)

corresponds to the modulated estimate of the speakerq, the
observation matrix ofT speakers is~Y = [~y(1):::~y(T )]. We

maximize the likelihood by maximizing the correlation be-
tween speakers:

max
P
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Also, we may shift by the bias to get the covariance rather
than the correlation. The optimalP is well-known to be a
truncation of the eigenvectors decomposition of~Y ~Y T . Thus,
the dimensionality reduction step is optimal with respect to
the likelihood in the root modulated space. The precision ma-
trix Gk is proportional to the number of frames

P
t

m(t).

Therefore, our estimate is robust to uneven distribution of
data. However, we assume the existence of the inverse of
Gk, which does not exist when classes are not seen. Unseen
classes are tied with the closest seen class.

This is to be contrasted with the original eigenvoice ap-
proach, which reduces the dimensionality based ony

(q). The
criterion function was distinct from the likelihood:
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and thus suboptimal under ML. We will call this method the
inverse space transformation.

1.5. Estimation of the speaker model in the root space

Once we have obtained the optimal eigenspace, we can esti-
mate the constrained MLLR transformation corresponding to
a speaker. LetPk be the matrixP corresponding to rowk.
The columns ofPk are the eigenvoicesp(k)

j
; j = 1::E.

The models for root and inverse modulations constrain the
transformation rows to be:

Inverse space:wj = Pj�; 8j; (16)

Root space:wj = G
�
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where� is called theeigenvalues decomposition.
For the case of the inverse space transformation, the solu-

tion can be obtained by direct differentiation ofQ in equa-
tion 2. This leads to an inefficient implementation. As noted
in [5], one can follow the Markov chain of sufficient statistics
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The inverse space and root space transformation have respec-
tively:
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From these equations, the successive projections and mean-
square estimation steps become apparent. In the root space,
the inverse correlation may be computed offline.

1.6. Reestimation of the eigenspace

As with CAT [1] and MLES [6], we can reestimate the
eigenspace in the Baum-Welch algorithm. If we reestimate
the eigenspace the solution may not retain orthogonality of
the eigenvectors. We embed the eigen decompositions of
speaker location into the hidden data of the EM algorithm.
The resulting optimal eigenspace is:
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where for each speakerq, we estimate the eigen decomposi-
tion
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The sufficient statistics are accumulators forPj and the auto-
correlation Eq��T .

2. DISCRIMINATIVE PROJECTION

2.1. Objective functions

The supremacy of PCA schemes has been contested by dis-
criminative projection. Among them, the most popular is
LDA, which aims at maximizing the Fisher discriminantJ :

max
P
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P

jP
T
SBP j

jP TSWP j
) P = �E

�
S
�1
W
SB

�
; (23)

where�E(�) are theE first eigenvectors of the matrix. The
matricesSB andSW are called the between-class and with-
class scatter matrices. Another popular discriminant objective
function is the traceH :

max
P

H = max
P

tr (SB � �SW )) P = �+
E
(SB � �SW );

(24)
where� is a tuning parameter. We take the most positive
eigenvectors. In particular when� = 1,

H = EO log p(OjW )p(W ) � EOE� log p(Oj�); (25)

whereW is the correct word sequence and� is a competing
word sequence. In our frameworkJ is understood to be the
log-likelihood ratio andH the cross-entropy.

2.2. Definition of Scatter Matrices

The most decisive choice left to the designer of an LDA sys-
tem is the proper definition of classes. The choice of classes

affects the homoscedastic assumption (SW is global), the re-
liability of estimates, and fitness to the HMM classification
design. We have many criteria to choose from: speaker adap-
tation gain, intra speaker acoustic variability, and linguistic
variability. One has to distinguish between the speakerregres-
sion problem and the linguisticclassification problem. LDA
is best suited for classification, but may also be used for re-
gression. We define three scatter matrices:

Inter-speaker variability:SB � Between speakers

Intra-speaker regression:SI � Average within speaker

Linguistic classification:SX � Within speaker, using

competing candidates

Our final objective is to perform speaker linear regression to
minimize linguistic variability.

2.3. Experiments

To extractSX , we decoded the training set with a unigram
decoder. The decoder ran at about 2 times real-time. We re-
tained only the first best solution. We weighted scatter ma-
trices by unigram probabilities. For regression (SW = SI ),
we observed no enhancement. The intra-speaker variancesS I

are measured by deviation from the true speaker model, on a
sentence per sentence basis. The parameter� was set empir-
ically. Best results were obtained forH andSW = SX on
Table 1.

3. PIECEWISE LINEAR DECOMPOSITION

Because of its simplicity and the presence of closed-form so-
lutions, the linear assumption has proven very effective in
many pattern regression problems. However, the linearity
constraint has no legitimacy. In this section, we investigate
a simple non-linear model. Our model is rooted on the equa-
tion

w = P1�1 + P2(�1)�2: (26)

We have a linear model involving�1 andP1. Then, we set

P2(�1) =

�
P
+
2 if �T1 v > 0;

P
�

2 elsewhere.
(27)

The vectorv is called the discriminant. The residual space is
modelled by eitherP +

2 or P�

2 according to the discriminant.
The method is generalized to multiple discriminants by taking
all possibilities of the signs, as shown on figure 1. For each
regionRk we grow a different residual eigenspace. Not all
dichotomies have a a populated intersection. For our experi-
ments, we chose canonicalvk = [0T

k�1; 1; 0
T

E1�k
]T . For the

particular case ofv1, it is equivalent to splitting according to
the gender. The dimensionality of�1 is E1. The vector0j is
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Fig. 1. Discriminants and regions

a zero vector of length j. The regions are the quadrants of the
eigenspace.

The MLED location is a linear programming problem. The
standard MLED formulae may be used. If the best point falls
out of region, then the search resumes on the boundary re-
gion. In our experiments, such a case happened very seldom.
It is possible to move the region assignment in the EM al-
gorithm. We obtain a soft-weighting comparable to a multi-
mixture eigenspace.

We reestimate of the eigenspace the same way we would
optimize the linear eigenspace. We can also optimize the
discriminative functions. Since the dimensionality of the pa-
rameter space is very high in comparison with the number of
speakers, speaker points will always be linearly separable. In
addition, since the optimal location almost always coincides
with its ML region, discriminants are redundant and conver-
gence of the discriminative functions is very quick. The per-
ceptron algorithm [7] can be used to update the discriminant
vectors v.

4. EXPERIMENTAL CONDITIONS

For our experiments we chose the Wall Street Journal (WSJ1)
Nov92 evaluation test. The training database, called SI-284
consists of 37k sentences produced by 284 speakers. The
acoustic frontend uses 39 MFCC coefficients and sentence-
based cepstral mean subtraction (CMS). We train a total of
64k Gaussians with diagonal covariances, pooled in 1500
mixtures. The language model (LM) for this task is the stan-
dard trigram model provided by MIT. There are about 20k
words for decoding.

Our recognizer, called EWAVES [8], is a lexical-tree based,
gender-independent, word-internal context-dependent, one-
pass trigram Viterbi decoder with bigram LM lookahead. The
systems runs at about 3 times real-time, with a search effort
of about 9k states (on a Pentium IV at 1.5 GHz).

For all experiments, we used an eigenspace of dimension
E = 40. There was one full MLLR regression matrix for each
of the following classes: silence, vowels, and consonants.
For all experiments, we operated in self-adaptation mode: a
first pass produces the most likely hypothesis. The second
pass exploits adapted models. Five iterations of within-word
Viterbi alignments are performed between passes. Table 1
summarizes the results for MLLR only (MLLR), eigenspace-

constrained MLLR (MLED-MLLR), eigenvoice estimated on
MLLR models with MAP smoothing (MLED-MAP/MLLR).
Also, we report the piecewise linear extension applied on
MLED-MLLR models in the inverse space, Root space and
LDA space results. LDA space provided the best results.

WER
SI 10.8%
MLLR 10.5%
MLED - MLLR 9.8%
MLED - MAP/MLLR 9.6%
Piecewise-linear 9.6%
Root space 9.5%
LDA space 9.1%

Table 1. Results

5. CONCLUSION

In this paper, we show how to perform the dimensionality re-
duction under the ML criterion. This is obtained by normal-
izing the ML speaker estimates by their corresponding preci-
sion. Then, we employ a linear discriminant approach to im-
prove classification. Lastly, we relax the linearity constraint
by introducing piecewise linear eigenspaces. Results attest
the effectiveness of the approaches: the baseline WER is im-
proved by 1.7% (15% relative).
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