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ABSTRACT

Data systems often actively present examples and solicit la-
bels from users to learn a target concept, i.e., active learning.
Current systems assume that users always provide correct
labeling with potentially a fixed and small chance of mistake.
Nevertheless, users may have to learn about and explore the
underlying data to label examples correctly, particularly for
complex target concepts and models. For example, to provide
accurate labeling for a model of detecting noisy or abnormal
values, users might need to investigate the underlying data
to understand typical and clean values in the data. As users
gradually learn about the target concept and data, they may
revise their labeling strategies. Due to the significance and
non-stationarity of errors in this setting, current systems
may use incorrect labels and learn inaccurate models from
the users. We report the preliminary results of our user stud-
ies over real-world datasets on modeling human learning
during training the system and layout the next steps in this
investigation.
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1 INTRODUCTION

Data & Al Systems often present training examples and so-
licit labels from humans to learn a model, i.e., active learning
[1, 4,7, 12, 13]. For instance, data systems often learn data
quality constraints and models by presenting chosen exam-
ples to the human experts [7]. In each interaction, the system
can select an example for labeling based on the training data
already given by the user and the effectiveness of the current
model. This approach improves the flexibility of choosing
examples and may significantly reduce the training data [1].

Due to the sheer volume and complexity of data, data
labeling and model training over large datasets may be in-
teractive and exploratory. Users interactively inspect the

data to improve their knowledge, refine their inputs, and
revise their hypotheses about the target insight based on
the results of preceding interactions. Thus, to label examples
correctly, users often have to learn about the underlying data,
particularly for complex models. Consider an epidemiologist
who investigates a new dataset of numerous recent case
reports and relevant context information, e.g., locations and
environments, about patients to build a model that checks
whether a virus is airborne. They may use a labeling system
to provide training information for building the ML model.
They may initially inform the system that the case report of
a certain patient being infected in a movie theater is strong
evidence of a virus being airborne. The system may use
this information to build a model to predict or find similar
cases. But, after some interactions, the epidemiologist may
find out that theaters in the patient’s region often show
movies in open spaces and usually serve food. This new
information may make the label for the original case report
a false positive. Similarly, to provide accurate labeling for a
model of detecting noisy or abnormal values, users may need
to explore the data to understand typical and clean values. It
is often vital for users to train accurate models fast. It may
save many lives if an epidemiologist predicts whether a new
virus is airborne soon.

As users explore and interact with the data, their knowl-
edge about the data and the target concept evolves. Thus,
they may modify their labeling and training strategies. It is


https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SIGMOD, 2022, USA

known that human learning in interactive settings is highly
non-stationary [3, 5, 10, 11, 14, 15]. For example, they may
have a prior belief (distribution) about the properties of pos-
itive or negative examples for the target concept based on
their background information and expertise. They may con-
tinually and gradually revise their belief and in turn labeling
strategies after observing new data items, and settle on a
relatively fixed strategy after gaining sufficient knowledge
about their actions and environment [3, 5, 9, 11, 14]. Due to
the huge volume of the data and complexity of the target
insight, this learning process may take a relatively long time.
Thus, it is challenging for the system to understand or find
reliable users’ inputs in the interaction to learn an effective
model for their target concepts.

Nonetheless, current systems often assume that users have
perfect knowledge about the target insight and underlying
data. They usually assume that users provide reliable feed-
back or training data for target insights with potentially
a very small and fixed amount of noise [1, 4, 6]. However,
as users’ knowledge about the data and insight may signifi-
cantly change during the analysis, it is not clear which inputs
are sufficiently reliable for predicting the target insights. Due
to the significance and non-stationarity of errors, current
systems will use incorrect labels and learn inaccurate mod-
els. Moreover, current systems use fixed, stationary, and/or
pretrained models of users’ exploration and training process
to build a model for the target concept [1, 8, 16]. Stationary
learners are unduly biased to the initial observations and fail
to adapt subsequently.

As the first step to realize the vision of fast and effective
exploratory training, we report our user studies on modeling
human learning over real-world datasets. Such a model will
enable designing algorithms that learn the target concepts
effectively and quickly in exploratory training. We show
that human learning in this context accurately follow the
well-known Bayesian learning model, which has also been
observed to effectively model human learning in other do-
mains, such as economics and image classification [14, 15].

2 USER LEARNING SCHEMES

Human learning is generally categorized as model-free, i.e.,
reinforcement based, and model-based learning, i.e., belief
learning [5, 14, 15]. In model-free learning, users modify
their strategies by directly reinforcing actions. In model-
based one, they form hypotheses about the data and actions
of the system and update their strategies given the success
of their preceding predictions [14, 15].
In the type of interaction we investigate, the system presents

a set of unlabeled examples to the user. It is reasonable to
assume that the user has some initial hypotheses about the
target concept, which they may repeatedly revise after view-
ing the presented examples in each interaction. Also, in our
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setting, systems usually interact with domain experts who
often have some initial models of the domain. Thus, model-
based learning schemes are natural choices for the cases
where users are training a system interactively [5, 14, 15].

We focus on mainly the two prominent model-based learn-
ing methods and their variations: hypothesis testing and
Bayesian learning [14, 15].

In hypothesis testing, the user randomly selects a hy-
pothesis according to how well it explains the observed data
and uses it to label examples. For instance, if they view suffi-
ciently many examples with value "NaN" in the interaction,
they conclude that "NaN" is not noise and is used by the
database designer to represent unknown values. The user
frequently evaluates the performance of her hypotheses, re-
jects the current one if it does not explain sufficient amount
of recent data with some tolerance, and picks another hy-
pothesis randomly based on its relative performance [15].

In Bayesian learning, the user starts with a prior about
different models for the target concept [15]. They then per-
forms Bayesian updating on the probability of choosing each
hypothesis given the examples presented to them in each
interaction. They picks a hypothesis according to these prob-
abilities and labels examples accordingly.

3 EMPIRICAL STUDY
3.1 Task: Detecting FD Violations

In this paper, we focus on modeling human learning in the
context of data quality constraints and discovering viola-
tions of those rules. Our work is focused towards modeling
the learning process of humans in rule discovery with two
primary models: Bayesian learning and Learning based on
hypothesis testing. We address our research questions by an-
alyzing how the user iteratively navigates the space of appli-
cable FDs in several scenarios. In addition to evaluating our
models’ ability to recreate the participants’ thinking process
as they hypothesize functional dependencies throughout the
interaction, we also evaluate the user’s process of identifying
and marking FD violations in the data.

We first define functional dependencies and their viola-
tions, setup, and the process of interactively labeling data.

3.1.1  Functional Dependency. A functional dependency
(FD) is a pattern that explains how attributes in a dataset
relate to and are dependent on one another. For example,
in datasets containing addresses or other location data, an
address’s city and ZIP code determine the state that loca-
tion is in. Another example is a person’s SSN determin-
ing a range of personally identifiable information, such as
the person’s name, date of birth, and address. These exam-
ples can be represented as (city, zip) = state and SSN =
(name, dob, address), respectively.
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3.1.2  Violation of an FD. If a tuple has one or more cell(s)
with values that do not align with the rest of the dataset with
respect to an FD, then the tuple is said to violate the FD or
referred to as an exception to the FD.

3.2 Experimental Setting

Our empirical study involved a participant group of 20 stu-
dents at Oregon State University with different background
in Computer Science and Data Science. We implemented a
user interface that refreshes user on the definition of FDs and
their violations, tests their knowledge and presents samples
iteratively for interaction and rule specification.

3.2.1 Datasets. We used synthetic variations of two real-
world datasets in our experiments: AIRPORT and OMDB.
AIRPORT describes various airports, heliports, and seaplane
bases throughout the U.S. state of Alaska whereas OMDB
(Open Movie Database) contains information about various
English-language movies and TV shows. The exact attributes
present in each dataset vary slightly by scenario, but each
scenario has around 200 tuples. We utilized 5 total configu-
rations of these two datasets which are shown in table 1.

# | Domain | Attributes FD

1 | Airport | facilityname | Target: (facilityname, type) =
type manager
manager Alternative: facilityname =

(type, manager)

2 | Airport | sitenumber Target: sitenumber = (facility-
facilityname name, owner, manager)
owner Alternative: facilityname =
manager (sitenumber, owner, manager)

3 | Airport | facilityname | Target: manager = owner
owner Alternative: facilityname =
manager (owner, manager)

4 | OMDB | title Target: (title, year) = (type,
year genre)
genre Alternative: title = (year, type,
type genre)

5| OMDB | title Target: rating = type

rating Alternative: title = (rating,
type type)

Table 1: Scenarios used in the empirical study

3.2.2 Introducing Violations. The BART error generation
tool [2] is used to introduce violations to datasets by scram-
bling values with respect to the target FD as shown in table 1.
This type of introduction of target FD violations may further
induce violations to other FDs too.

An m:n violation ratio is referred to as the proportion of
m target hypothesis violations and n alternative hypothesis
violations. This ratio help to reveal if the learning process
depends on the quantity of violations present in the samples
and determine the FDs associated with violations.
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3.2.3 Interactions. In the beginning, the user is presented
with schema and asked what they believe is the FD that holds
over the entire dataset with the fewest exceptions. In each
iteration, a random sample of data is served allowing the user
to mark any violations of their hypothesized FD within that
sample. After marking violations, they confirm or modify
their hypothesized FD. The user must interact for at least
9 such iterations for completion and can continue up to at
most 15 iterations.

In order to avoid an high cognitive load on our participants,
we focused on simple datasets with few attributes. However,
at the same time, they were complex enough to avoid the
case of being able to immediately figure out the underlying
rule without having to interact with the data.

3.3 Model Configuration

We evaluate both our Bayesian model and our hypothesis
testing model in terms of Mean Reciprocal Rank (MRR)
for an exact match with the participant’s submitted hypoth-
esis in the model’s top-k suggestions in each iteration. MRR
is used to evaluate a process which produces a list of results
and it is the average of the reciprocal of the rank of true
value. We use the reciprocal of the position of user specified
hypothesis in the ranks provided by the models.

In order to evaluate which window for top suggestions
better models user behavior, we compare each model’s per-
formance with different values of k: k=1, k=3 and k =5,
which corresponds with how many FDs are output by the
model in each iteration. We therefore refer to our Bayesian
and hypothesis testing (HP) model configurations as BAYES-
k and HP-k. We also compare each of these models to their
respective variants that consider subset and superset rela-
tionships in the model’s top suggestions rather than only a
perfect FD match. In our results, models with this configura-
tion include a “+” in their names.

3.4 Experimental Results

3.4.1 Measuring Learning. To quantify learning, we first re-
view the extent to which the fi-score of the user’s hypothesis
changes between iterations. Finally, we look for any positive
trends in user performance.

Scenario # | Average change in fi-score
1 0.1144
2 0.3280
3 0.2301
4 0.2843
5 0.1767

Table 2: Average f;-score change between any two
rounds of user labeling, grouped by scenario

The average change in fj-score is positive and relatively
large as shown in table 2. This suggests that changes in the
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Figure 1: Each participant’s change in labeling performance, measured by f1-score. Blue lines represent interactions
with a 3:1 violation ratio. Green lines represent interactions with a 3:2 violation ratio

user’s hypothesis from iteration to iteration are likely not
due to simple noise and error, but is rather due to the user
actually learning and updating their hypothesis.

Next, we analyze the users’ labeling activity across each
interaction to evaluate how their hypothesis-forming pro-
cess evolves as they are exposed to more data and continue
interacting with them. The result in Figure 1 reveals the
user’s ability, to detect and mark violations of the target FD,
improving as the interaction proceeds.

3.4.2 Evaluating Learning Models. Now that we can see user
performance improve over time, we turn to our models to
measure their ability to replicate the users” hypotheses over
the course of the interaction. We use reward based on MRR
metric, specifically on n (the ranking of the FD in the output),
to evaluate the models.

1
—, if the model’s output includes user’s FD
rewardygrr = 1

0, otherwise

In comparison to the hypothesis testing model, our Bayesian
model acquires better modeling performance with higher
reward per iteration on average, in almost all the scenarios
and value of k (Figure 2). As the value of k increases, the per-
formance of all model configurations improve as expected,
as this gives the model more opportunities to return an FD
that matches a user’s hypothesis.

Our empirical results show that as humans interact with
more data, their ability to accurately label violations in the
data and specify qualitative hypothesis of data rule increases.
This is due to the user iteratively learning and refining their
understanding of the data. Furthermore, the user’s learn-
ing process follows a probabilistic Bayesian learning model
when the model’s measure of success is its ability to perfectly
match the user’s hypothesis. However, when the measure
of success is loosened to accept variations of the user’s hy-
pothesis as viable matches, the hypothesis testing model also
mimics user behavior fairly well.

4 LIMITATIONS & CHALLENGES

Generalizable Modeling of Human Learning. To vali-
date further our assumptions on the process and model of
human learning, we plan to perform additional user studies
on other tasks. We also plan to investigate the character-
istics of the target concept, e.g., difficulty of the concept,
that may cause users to prefer certain learning method(s) or
hyper-parameters, e.g., tolerance in hypothesis testing.

Collaborate With Learning Humans. We plan to design
algorithms to accurately learn the target concept from a
learning trainer. This approach views exploratory training
as the interactive collaboration user and data/Al system,
for achieving the common goal of learning users’ desired
concept using the fewest possible interactions.
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Average Model Reward Per Iteration: Top-1 Output
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Figure 2: Average reward per iteration for each learning model with k
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