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Goal-Oriented Communications for the IoT and
Application to Data Compression

Chao Zhang, Hang Zou, Samson Lasaulce, Walid Saad, Marios Kountouris, and
Mehdi Bennis

Abstract—Internet of Things (IoT) devices will play
an important role in emerging applications, since their
sensing, actuation, processing, and wireless communication
capabilities stimulate data collection, transmission and
decision processes of smart applications. However, new
challenges arise from the widespread popularity of IoT
devices, including the need for processing more compli-
cated data structures and high dimensional data/signals.
The unprecedented volume, heterogeneity, and velocity of
IoT data calls for a communication paradigm shift from a
search for accuracy or fidelity to semantics extraction and
goal accomplishment. In this paper, we provide a partial
but insightful overview of recent research efforts in this
newly formed area of goal-oriented (GO) and semantic
communications, focusing on the problem of GO data
compression for IoT applications.

Index Terms—Goal-oriented communications, semantic
communications, data compression, IoT, machine learning,
clustering

I. INTRODUCTION

The term Internet of Things (IoT) generally refers
to scenarios where network connectivity and com-
puting capability extend to any physical objects
and sensors, allowing these devices to generate,
exchange, and consume data with minimal human
intervention. For the engineer, and in particular the
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communication and signal processing engineer for
which the present article is destined for, IoT raises
new technical challenges due to its special nature
compared to conventional communication networks.
The requirements in terms of quality of service
may be stringent e.g., in terms of latency and
reliability. IoT communications may involve devices
having markedly different natures (humans and ma-
chines), devices with very different communication
and computation capabilities. IoT communications
may also involve exchanging massive data which
could be multimodal and of large dimension. To
address these challenges, the conventional com-
munication engineering methodology, partly inher-
ited from Shannon communication model, needs to
be augmented. Goal-oriented (GO) communication
paradigm, which is presented next, precisely cor-
responds to one of the novel communication ap-
proaches aiming to solve the aforementioned tech-
nical challenges posed by the deployment of the IoT.

While the design of conventional communication
systems generally targets accuracy, fidelity, or reli-
ability, independently of the content, the rationale
behind GO communications is to adapt the encoded
signal according to the specific, application-driven
needs of the destination(s). For instance, under
the conventional communication paradigm, an IoT
sensor may transmit an image of 1 Mbyte to a
receiver whose goal/task is to decide about the
absence/presence of a given feature in the image.
This could be highly inefficient since the receiver
only needs one bit of information and this bit could
be directly sent by the transmitter. This toy example
gives a rough idea about the potential benefits in
terms of compression efficiency, spectral efficiency,
or interference management in IoT networks. In
a wireless sensor network, it is of high practical
relevance to have sensors that send the minimum
amount of information required from the fusion
center so as to take its decision properly and
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timely, avoiding unnecessary redundancies, which
are potentially associated with computational and
storage wastage, spectral efficiency losses, and net-
work congestion. Similarly, for machine-to-machine
(M2M) communications [1], the machine at the
reception side might only need a given amount of
information to execute a given task properly. These
IoT applications clearly highlight the importance of
tailoring the measured, encoded, and/or transmitted
signal(s) to the final use(s) of it at the receiver(s).

The embryonic form of GO communications
was first discussed in [2], where the semantic
and effectiveness levels were introduced, and it
was further developed in a more formal man-
ner in [3] by proposing a mathematical model to
mainly address the communication misunderstand-
ing problem caused by imperfect knowledge of the
protocol/language agreement. However, this formal
model is not suited to engineering problems, such
as those encountered at the lowest layers of a com-
munication system, the physical layer in particular.
In contrast, the model we describe in this survey
is based on a synthesis of recent research works
[4]–[10], which focus on the lowest layers of a
communication system, including key signal pro-
cessing operations such as coding and estimation. In
these works, both GO and semantic communications
are considered. Semantic communication typically
corresponds to scenarios in which the receiver is
interested in the semantics, defined as either the
meaning or the importance of the source message.
The semantic aspect can be quantified through a
measure of the message significance with respect
to the final goal of the receiver, hence a natural
connection between GO and semantic communica-
tions and the possibility to unify both approaches.
In this respect, semantic communications in which
efficiency/effectiveness of semantic transmission is
explicitly defined and targeted can be qualified as
goal-oriented communications in which the seman-
tic nature of the information content or message is
exploited.

In this survey, we show how key signal processing
problems in IoT networks such as data compression,
data clustering, data estimation, or machine learning
are naturally related to the GO communication
paradigm. For this purpose, the present survey is
structured as follows. In Sec. II, the approach of GO
communications is described and its connections
with semantic communications are discussed. In

Sec. III, the focus is on one case study, namely
GO data compression. It is clearly explained how
some fundamental compression operations in IoT
networks (signal preprocessing, quantization, and
clustering) are revisited when tackled from the GO
communication perspective. Open problems are dis-
cussed in Sec. IV. The survey is concluded by Sec.
V.

II. GO COMMUNICATION AND ITS CONNECTIONS
WITH SEMANTIC COMMUNICATION

To assess the potential of GO communications
for IoT and understand how the GO paradigm is
exploited in the IoT for data compression (Sec.
III), it is essential to describe in detail in what
GO and semantic communications consist in. The
foundation of GO communication is the unification
of data generation and transmission with the sub-
sequent usage of the received information. Specifi-
cally, extracting the relevant to the goal features of
the transmit messages, characterizing the deviation
of decision-making process induced by transmis-
sion noise and exploring the ultimate performance
degradation brought by corrupted decisions, GO
communication aims to build a new paradigm that
could mitigate the adverse effect of transmission
errors on the given goal.Broadly speaking, semantic
communication is the transmission of complex data
structures (e.g., patterns, features, data lying on
manifolds) or more generally of abstract concepts.
As such, semantic communication is a broader
concept than GO communication, since information
semantics is not necessarily linked to an overarching
system goal (letting aside a teleological explanation
of physical processes). Under this view, GO com-
munications is a subset that provides a pragmatic
view of semantic communications, in which the
receiver is interested in the significance and the
effectiveness (semantics) of the transported source
message to achieve a certain task or goal.

One of the purposes of the present section is to
have a unified view of a set of recent works on
GO and semantic communications which are very
relevant for IoT networks. For this purpose, we use
a generic model or structure for this type of commu-
nications. The model is represented by Fig. 1. This
figure is explained in details in the next subsections.
To better grasp the practical implications behind
these explanations, we will refer several times to the
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running example of GO data clustering for schedul-
ing flexible power consumption in IoT networks
where the sensors have: to monitor the non-flexible
power consumption of some consumption devices
or appliances (e.g., a network of smart meters); to
cluster the measurements; to report the represen-
tatives of the clusters to a decision-making entity
that controls flexible consumption (e.g., charging an
electric vehicle). Several observations from Fig. 1
are in order.

First, a key observation is that the same terminol-
ogy as [2] is used, in which communications can be
categorized into three levels: the technical level, the
semantic level, and the effectiveness (or efficiency)
level. The conventional communication paradigm
mainly focuses on the technical level to manage
the communication reliability, whereas the meaning
of the messages and their impact upon receipt is
considered at the semantic and effectiveness levels,
respectively.

Second, the message generation and compression
is presented at the source side. When agents are
equipped with intelligence, an initial but important
step consists in forming meaningful messages to
serve its intended entity for reaching the goal. For
this, the event occurred at the source needs to be
observed, interpreted represented and transmitted by
symbols.

Third, the decision-making process concerning
the effectiveness level is presented at the receiver
side. It could be seen as an intermediate process to
formulate the goal that depends on both states of
source and the decision or actuation performed at
the destination. Owing to the presence of decision-
making process, the intent of the communication
system is not only for bit and semantic reconstruc-
tion, but also for task accomplishment. In addition,
it is worth mentioning that the presence of these
effectiveness level modules have an impact on the
design of other levels modules since the information
transmission techniques should be tailored to better
serve the goal.

A. A generic model for GO communications
In what follows, we comment on each module of

Fig. 1.
Message generation/conceptualization: Unlike

traditional communication systems, the information
source for GO communication systems is not re-
stricted to be an electronic device. Now agents
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Fig. 1: A model that encompasses goal-oriented and
semantic communications

with computing and intelligence capabilities (e.g.,
humans or AI-powered machines) may be typical
sources, which leads to a more complex information
generation step. Before the transmission process
takes place, the prerequisite is to form the intended
message to be sent. When the entity/event of in-
terest at the source cannot be made identified or
observed, mapping methods or probabilistic models
[5] are often used to generate symbols. Symbol
representation can be seen as an interpretation of the
entity/event and treated as the input of the following
communication process. In the example of data clus-
tering for the power consumption scheduling, the
message generation corresponds to the knowledge
of a database of non-flexible power consumption
measurements that have collected by the sensors.

Semantic encoding/decoding: In contrast to con-
ventional communication systems, a semantic en-
coder is included in GO communication systems for
efficient information representation. One common
way in semantic encoding is to filter out irrelevant
parts of the data to avoid unnecessary redundancy.
By solely transmitting useful information that could
impact the goal accomplishment, the censored data
could achieve the same (or approximately) perfor-
mance as with the original data requiring lower rate.
Another typical technique in semantic encoding is
to design a semantic-aware transformation scheme,
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which enables a GO sparse representation by map-
ping the data from a high dimensional space into a
low dimensional space (e.g., information manifold)
often subject to a distortion. Instead of completely
removing some elements from the data, feature
extraction approaches are applied here to obtain
important attributes. Due to the success of deep
learning methods in feature extraction functionality
of several computer science tasks (e.g., nature lan-
guage processing, computer vision), neural network
based semantic encoders [11] are envisioned to be-
come widely implemented. In the above-mentioned
power consumption scheduling problems, the se-
mantic encoder is to extract features (e.g., the peak
power occurrence time-slot) of the consumption
profiles which are relevant for the peak power mini-
mization. The semantic encoder determines how the
consumption profile will be divided.

Furthermore, we notice that a semantic encoder
can be jointly designed with the source encoder.
Classical source encoders typically exploit some
knowledge of the probability distribution of the
signal/symbols to be encoded. For instance, one typ-
ically allocates more bits to events/symbols having
higher probabilities of occurrence. This approach
is used for lossy source coding (see e.g., the case
of scalar quantization in the high resolution regime
[12]). However, when the signal reconstruction in
its entirety is not the ultimate purpose, a much
more efficient semantic-aware source encoder can
be used. New quantities stemming from an appro-
priate combination of these key factors could be a
solution, where a weighted distribution encompass-
ing the original distribution and the derivatives of
the final utility function has shown its optimality in
asymptotic cases [9].

Knowledge bases: In GO communication sys-
tems, the amount of information conveyed by a
message is determined by both the message itself
and also the level of knowledge available at the
transmitter and the receiver. The encoding process
can exploit the knowledge base system to maximize
the information conveyed by the message (where
the semantics/meaning could be recovered from the
receiver knowledge base) and minimize the amount
of data to be transmitted. Information with higher
inference difficulty should be encoded more pre-
cisely while information that is simple to interpret
can be encoded coarsely.

Decision-making: A salient feature of GO

communications stems from the combination of
decision-making and transmission processes. For
the example of GO clustering performed by the
sensors, the decision is taken by a central entity and
consists in choosing flexible power consumption
profiles based on the knowledge of the represen-
tatives reported by the sensors. In the example of
a wireless communication network, the monitored
information may be the channel state information
and the decision may be the radio resource al-
location policy (e.g., a beamforming vector or a
precoding matrix). In general, most decision making
processes could be divided into two groups. First,
when the decision making process can be modeled
as an optimization problem (OP) where the form
of the objective function and constraints could be
explicitly expressed. Second, when the mapping cor-
responding to the decision making process cannot
be directly interpreted, but one still has access to
the output for a given input. This scenario occurs
often in computer science problems, such as object
recognition. Deep learning architectures are often
implemented to explore the mapping under the
supervision of given decision results.

B. Performance metrics

Under the GO paradigm, what matters is the
degree of goal fulfillment. This means that the
retained performance metric should be semantic-
aware and goal-oriented. To understand the differ-
ence between the conventional metrics and metrics
used for GO communications, we discuss below
three types of performance metrics used to evaluate
the performance of a GO communication.

Conventional distance metrics: Conventional
metrics mainly aim to evaluate the similarity be-
tween the transmitted symbols and received sym-
bols. Distance metrics such as the Euclidean dis-
tance or Hamming distance are used to measure
the difference between the original and the re-
constructed information. However, these distances
measure the transmission accuracy regardless of the
subsequent processes and the ultimate goal of the
communication and could lead to an inefficient use
of communication resources.

Semantic metrics: In the semantic level, the used
metrics have to ensure the transmission accuracy
and logical truth of the semantic information. Even
though errors could be observed in the physical
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channel transmission, the information retrieved by
the semantic decoder could be lossless. As shown
in Fig. 1, the semantic metric can measure the
semantic similarity between input symbols of the se-
mantic encoder and output symbols of the semantic
decoder. For text transmission, the semantic metric
could be word similarity or sentence similarity. For
instance, cross entropy between the word proba-
bility distribution in real sentences and the word
probability distribution in reconstructed sentences is
used as the loss function in DeepSC [11]. In other
type of applications, the peak signal-to-noise ratio
(PSNR) and signal-to-distortion ratio (SDR) can be
seen as semantic metrics in the image transmission
and speech transmission, respectively.

GO metrics: In the GO paradigm, the task to
be executed is usually modeled by an optimization
problem (OP). The function to be optimized is
assumed to have two types of variables: the decision
variables associated with the task to be performed;
the function parameters that precisely correspond to
the information which is encoded. A natural and
fundamental question is then: How to compress the
function parameter information to achieve a given
performance loss w.r.t. the ideal case of perfect
information? Answering this key question falls into
the problem of GO compression. In the case of
data clustering for power consumption scheduling,
the goal/task may be typically to minimize the
peak power of the total consumption profile. The
semantic/feature extraction associated with cluster-
ing should not be chosen from exogenous indices
or criteria but tailored to this objective. The goal
function may typically have decision variables and
source-dependent variables. Another simple exam-
ple of source-dependent variables in wireless com-
munications is given by the CSI. For instance, the
final metric may correspond to spectrum efficiency
maximization, which is dependent of the channel
state. Rather than solely consider the transmission
accuracy of transmitted messages or consider the
quality of key features (or semantics) in reception,
GO metrics could be seen as combined metrics that
jointly evaluate the transmission errors in physical
channels, the extracted features transmission accu-
racy, and the ambiguity in communication processes
to the goal. Ideally, when the system goal could
be explicitly represented by a utility function, the
GO metric could be the utility function itself or
one of its variants. If the goal cannot be formu-

lated by a given utility function, metrics could be
quantities representing the degree of goal accom-
plishment. Even though the mathematical form of
the utility function is unknown, providing the goal
accomplishment results could stimulate the message
shaping to better serve the goal. Supervised learn-
ing could enhance the performance of interest in
an offline manner by using goal-dependent labels,
and reinforcement learning could further improve
the performance in an online manner with goal-
dependent rewards.

III. GOAL-ORIENTED DATA COMPRESSION IN
THE IOT

To deal with the massive presence of sensing
devices in IoT networks and also to manage the
available resources such as the radio spectrum, com-
putation, and storage capabilities efficiently, data
compression constitutes a key signal processing op-
eration for the IoT. As explained in the previous sec-
tions, considering distortion-like or distance-based
performance metrics at the technical level gener-
ally induces an inefficient use of communication
resources because they are chosen independently
of the final use of the information. By contrast, if
only the semantic of the compressed data has to be
recovered at the receiver or if the receiver has only
a precise task to execute, the usage of resources
may be dramatically improved. Accounting for the
presence of a goal through a given utility function
requires to revisit the classical compression opera-
tions. These operations include for instance, signal
preprocessing , signal quantization, lossless source
coding (e.g., entropy coding), segmentation, block
matching, object tracking, flow detection, feature
extraction, or data clustering. In what follows, the
focus is made on four types of operations, namely
signal preprocessing, quantization, clustering, and
causal reasoning based compression, and for each
of them, the impact and benefits of the GO com-
munication paradigm are discussed.

A. Goal-oriented signal preprocessing
Signal preprocessing is common in data compres-

sion systems. It typically serves as a preparation
for the compression operations that take place just
after the preprocessing block. Preprocessing may
e.g., consist in filtering to de-noise the input signal,
in applying a transform to change the working
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signal domain or in reducing the complexity of the
subsequent operations. An interesting GO compres-
sion approach is proposed in [7] which combines
linear processing and uniform quantization. The
input signal first undergoes a linear pre-processing
module (a matrix) and is transformed into a lower
dimensionality signal. What is interesting is that
the choice of the linear transformation is tailored
to the final utility (or task efficiency) function. For
instance, for a given distortion level, the best linear
transformation in terms of rank reduction is known
to be the Karhuenen-Loeve transform (KLT) but
this result does nor hold anymore in the presence
of a general utility function. Also, it is known
that a linear transformation is optimal for Gaussian
inputs, but again this result is no longer valid in
the presence of a general goal function, which mo-
tivates the use of non-linear transformation. For this
purpose, the authors of [14] propose to learn such
a non-linear transformation by using a deep neural
network (DNN). In IoT networks such as those in-
volving sensors to monitor the energy consumption
of the consuming devices, a typical task for the
whole system would typically be to minimize the
total peak power. For this purpose, in [15], the linear
and non-linear transformation (applied to the non-
flexible power vector) that minimize the Lp-norm
of the sum of the non-flexible power consumption
vector and the flexible power consumption vector is
determined. Compared to the KLT in the presence of
real smart grid data from the Ausgrid database, very
significant gains are obtained in terms of optimality
loss induced by the rank reduction when using these
transformations.

B. Goal-oriented quantization

Quantization is often a fundamental element of a
data compression system. Indeed, at least under the
classical communication paradigm, it necessarily
induces an information loss and constitutes a natural
degree of freedom to tune the compression rate of
the source coder. Just as for the signal preprocessing
stage, known results have to be revisited to avoid
potentially large efficiency losses. To be specific, it
is known that a good quantizer (in the sense of the
distortion) needs to be adapted to the quantizer input
signal. In some cases, like high-resolution scalar
quantization, the formal link between the quantiza-
tion function and the input distribution can be fully

determined. However, for a general goal function,
the quantization rule has to take into account the
smoothness and regularity properties of the goal
function and the decision function associated with
the task. This has been formally proved for vector
quantizers in the high resolution regime [9]. In
particular, it is shown that it is no longer optimal
to allocate more bits to the most likely signal
realizations or input symbols but rather according
to a law which results from the effect of the input
distribution and the decision function properties.
Additionally, the impact of the goal on the compres-
sion rate is studied, which allows one to constitute
classes of functions for which GO compression
yields very large gains or moderate gains. In contrast
with conventional distortion-based quantization and
hardware limited task-based (HLTB) quantization
presented in [7], Fig. 2 shows the potential of GO
quantization in saving communication resources for
a given quadratic utility function.

C. Goal-oriented data clustering

Here, we consider scenarios in which a database
of signal samples is available; for instance, in net-
works with sensors monitoring power consumption
(e.g., smart meters), a sequence of power levels
recorded over one day would typically constitute a
sample. From this database, groups of data or clus-
ters has to be formed and possibly represented by a
representative sample. The idea of GO clustering is
to adapt these groups and possible representatives to
the final task that has only access to the clustered
data (say a representative) and not to the original
data. In the example of power consumption, the
sensor would only report to the decision-making
entity the closest representative consumption vec-
tor and not the actual measurements. Here also,
classical results known for data clustering are no
longer valid in the presence of a general goal
function. Using “Voronoi-type” data clusters (as the
k-means clustering technique would provide) may
be very inefficient as well. This has been shown
in [8] where the authors consider the L8-norm for
the goal function and derive the optimal clusters
given some representative choices, and vice versa.
To illustrate the gain brought by GO clustering
for this application, GO clustering [8] has been
compared to known clustering schemes such as
the conventional k-means algorithm and hierarchical
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clustering. Fig. 4 illustrates the dramatic reduction
in terms of required number of clusters to achieve
a given optimality loss (w.r.t. the case where the
data would be perfectly known to optimize the goal
function) for the goal function.
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D. Intent-based semantic communications

Intent-based networks are autonomous systems
that define the behavior they expect from their
network, e.g., “improving network quality,” for the
system to then automatically translate it into real-
time network action. In such a context, integrating
the semantic and effectiveness aspects is quite apro-
pos. This requires the transmit and receive nodes
to move away from being just blind devices (that
transfer data back and forth) towards brain-like de-
vices capable to understand and reason over the data
and how it gets generated. Reasoning here implies
enabling the nodes to make logical conclusions and
generalizations out of the data. Motivated by this
approach, the framework of neuro-symbolic (NeSy)
artificial intelligence was proposed in [4] to learn
the causal structure behind the observed data and,
then, use it to enhance semantic communications.
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This approach leads to significant gains in terms of
transmission efficiency as shown in Fig. 4.

IV. CHALLENGES AND OPEN PROBLEMS

In this section, we discuss several open issues and
technical challenges associated with GO communi-
cation.

GO communication with time-evolving goals:
In systems with smart devices, it is common that
one task is followed by another task(s). Once the
ongoing task is completed, a new task need to
be executed seamlessly. However, redesigning or
retraining from scratch is not only time-consuming,
but also wasteful in terms of resources (e.g., en-
ergy). In this respect, a unified GO communica-
tion framework that accounts for multiple - often
causally related - goals and maximizes the expected
goal accomplishment could be a first solution when
these intermediate goals are known in advance.
Moreover, an adaptive approach or transfer learning
based approach based on previous model could be
embedded in the framework when future goals are
unknown.

GO coding and control: To characterize the
goal-oriented compression, source coding or joint
source channel coding models could be imple-
mented to study its limiting performance. When
the goal depends not only on the state and the
decision taken in the current timeslot, but also on
previous timeslots, dynamic system models could
be a better formulation. In this case, using a simple
objective function or learning a mapping method
through neural networks might turn out to be in-
sufficient. One possible solution is to resort to
differential equations and explore the connections
and the evolution between transmitted messages and
the goal. Another aspect that has to be revisited
is the sampling process. There already exist many
technical contributions dedicated to event-triggered
sampling, which the objective being to attain dy-
namical system stability. It seems very relevant to
tailor the sampling problem to a general utility
function just as it has been done for the quantization
problem.

V. CONCLUSION

A highly promising technical solution to face
challenges stemming from the deployment of IoT
devices, such as high device density, stringent qual-
ity of service requirements, and massive, multi-

modal, and heterogeneous data, is to resort to goal-
oriented and semantic communications. This paper
provides a comprehensive overview of goal-oriented
and semantic communications. When communica-
tion is not an end but a means to achieve an ultimate
goal, data semantics should be taken into account
in the design of future communication systems,
in particular when the goal deviates from entire
signal reconstruction. Exploring a data compression
case study, which is a foundational problem in IoT
systems, we have discussed the potential benefits
from deploying GO compressors and GO signal
processors in general. Our conclusions hold for
the signal processing part, quantization, and data
clustering, but the mentioned insights may have a
much wider applicability that concerns many other
signal processing operations in IoT communication
networks.
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