
Scalable slice orchestration with DQN agents in
beyond 5G networks

Pavlos Doanis1, and Thrasyvoulos Spyropoulos1, 2

1 EURECOM, France, first.last@eurecom.fr
2 Technical University of Crete, Greece

Abstract—Beyond 5G systems are envisioned to host widely
diverse services, with high Quality of Service requirements,
over a common physical network infrastructure. Network slicing
enables this vision by providing customized virtual networks
on top of the physical one. These can be flexibly managed
to fulfill stringent slice-specific service level agreements (SLAs)
and ensure the efficient use of network resources, under time-
varying resource demands. In this work, we examine the use
of Reinforcement Learning (RL) for dynamic slice orchestration
over a multi-domain setup, hosting multiple slices with end-to-
end SLAs. Tabular RL algorithms can theoretically solve this
problem optimally, even when the resource demand dynamics of
slices are unknown. However, due to the combinatorial nature of
the problem, the state and action complexity of these algorithms
is prohibitive for realistic setups. To this end, we employ a Deep
Q Network (DQN) to approximate the action-value function and
therefore reduce complexity. However, since DQN is not suitable
for problems with large action spaces, we propose a multi-agent
DQN scheme to decompose the action into smaller components.
We finally validate the proposed algorithm using realistic data,
and show its scalability as well as the better performance of the
derived policies compared to static baseline heuristics.

EXTENDED ABSTRACT

Introduction

One of the key enablers for beyond 5G systems is network
slicing, as it allows for flexible management of services, by
creating customized virtual networks (”slices”) on top of the
physical infrastructure. There is a twofold goal in optimal
slicing: (i) to ensure some minimum performance requirements
for each slice, specified by a corresponding SLA; (ii) to ensure
efficient utilization of the limited network resources . The
former is crucial, especially for services that cannot afford
any performance degradation. The latter is also very important,
since the more efficient utilization of the network resources,
the more slices can be hosted with high reliability, and the
higher the revenue for the network operator. From a different
perspective, the less resources employed to reliably host a
given number of services, the less the operating costs. [1]

A large part of the related literature focuses on solving the
”one shot” slice embedding optimization problem (i.e., based
on average and/or static demands, without reconfiguration),
by formulating it as a variant of the well studied virtual
network embedding problem and using appropriate objectives
and constraints [2]. Slices are commonly represented by graphs
where the sets of nodes and links correspond to virtual network
functions (VNFs) and virtual links (VLs) respectively. These

must be mapped to physical nodes and links, while satis-
fying/optimizing the considered constraints/objectives. Many
efforts have been made to tackle such problems [3], but a
number of challenges still remain (both from modeling and
algorithmic perspective). First, slices in beyond 5G networks
span multiple technological domains, complicating the mod-
eling of end-to-end KPIs (Key Performance Indicators) and
increasing the problem’s complexity (due to the combinatorial
nature of mapping VNFs and VLs to physical nodes and links).
Second, the parameters that affect the performance of slices
are often unknown and dynamically changing, which makes
the use of ’learning’ algorithms imperative. [4], [5]

System Model

The system model consists of two main entities, the Physical
Network and the slices on top of it.
Physical Network: it is represented by a weighted undirected
graph comprising multiple domains. The nodes are servers
or routers connected by physical links (all of which are
characterized by some specified capacity).
Slices: they are represented by directed graphs, where the
nodes are VNFs (processing tasks required by the slice) and
the links dictate the order in which these VNFs must be
traversed by a flow to receive the corresponding service. Each
VNF and VL poses some demand for resources on the host
server or physical link that is time-dependent according to the
user generated traffic.
Configuration: it is the placement of VNFs to servers (control
variables).

RL formulation

For the RL problem formulation, we consider that time is
slotted and at each time-slot a central agent has to select an
action based on the state of the system (the state summarizes
all the important information needed for the agent to take an
action). This action leads to a reward that is revealed when
the system transitions to the next state (in the next time-slot).
So, to formulate the RL problem of dynamic slice embedding
we define the states, the actions, and the reward function of
the system.
State: consists of the system configuration and the resource
demands of all slices at time t.
Action: the configuration to be applied in the next time-slot.
Reward: it is the negative weighted sum of three different



costs corresponding to: (i) reconfiguration (each VNF migra-
tion causes overhead and delays); (ii) node utilization (each
active server has some operating cost); (iii) SLA violations
(e.g. when the end-to-end delay for a slice exceeds the SLA).

RL algorithms

The combinatorial nature of placing VNFs to network
servers leads to an exponential increase of the number of
possible states and actions with the number of slices and avail-
able servers. Consequently, tabular algorithms like Q-learning,
which maintain a table with the Q-values of all possible state-
action pairs and learn each of them by explicitly visiting the
corresponding state and taking the particular action multiple
times, cannot be applied to realistically sized problems. For
example, even in a toy scenario of a single domain network
with 5 servers and 5 slices (consisting of only 1 VNF each
with 5 possible discrete resource demand levels), would result
to 510 possible states and 55 possible actions (per state). The
curse of dimensionality in our problem can be partially tackled
by using a deep neural network (DNN) to approximate the Q
function, instead of a table. This could decrease the number of
the parameters to be learned by the agent and also exploit the
DNN’s generalization ability to learn the Q function without
visiting all possible state-action pairs.
DQN is a widely used Q-learning algorithm that uses a DNN
instead of the Q-table [6]. It is also equipped with some
important additional features, like experience replay memory
and a target network, for stability reasons. The input to the
DNN is the state of the system and the output is the Q-values
of all possible actions. However, DQN is suitable only for
problems with a small action space, since the number of output
neurons is equal to the number of possible actions, and an
argmax operation over all these actions is needed at each
time-slot to choose the best of them.
Multi-agent DQN: the use of multiple DQN agents instead
of one, where each agent is responsible for choosing the
configuration of one slice or even the placement of a single
VNF, is proposed to reduce both the state and the action
complexity. So, considering one agent per VNF, the number
of output neurons increases linearly with the number of nodes
and the algorithm can be applied to large scale scenarios.

Simulation Results

We validate the multi-agent DQN algorithm by simulations
using a physical network setup comprising 2 domains, with
6 and 3 servers respectively. We consider 10 slices on top
of the physical network with various SLAs (e2e queuing
delay constraints). Each slice consists of 2 VNFs, while the
corresponding resource demands are imported from the Milano
dataset [7] (each VNF maps to the traffic of a different base
station). We use half of the 8926 available data points from the
imported timeseries for the training of the DQN agents and the
rest for testing. We compare the multi-agent DQN algorithm
with two static baseline heuristics, called ”group VNFs” and
”split VNFs, as well as with a random actions policy. The
”group VNFs” policy minimizes the node utilization cost, the

”split VNFs” policy minimizes the SLA violation cost, while
both of them have zero reconfiguration cost. Note that the
tabular Q-learning and the single-agent DQN algorithms are
not applicable to a scenario of that size (the number of possible
actions is ∼ 4 × 1012). The results are given in table I and
demonstrate 42% lower cost for the multi-agent DQN policy
compared to the best of the static baselines (split VNFs).

TABLE I
AVERAGE COST PER TIME-SLOT IN THE TESTING DATASET

multi-agent DQN split VNFs group VNFs random
2.9 4.99 25.49 17.36

Conclusion and Future Work

In this work we discussed the scalability issues of central-
ized Q-learning algorithms for slice orchestration and pro-
posed a multi-agent DQN scheme to reduce the state and
action complexity of the problem. The results showcased both
the scalability of the algorithm, compared to vanilla DQN and
tabular Q-learning, as well as a significant cost improvement
compared to static baseline policies.

Plans for future work include the examination of agent
coordination as well as rollout Deep RL schemes in the fashion
of the well known AlphaZero algorithm, which are known
for their robust performance [8]. This type of algorithms can
exploit a model of the system dynamics, as well as a given base
policy that is known to perform decently, and further improve
on that policy online using rollout. Another possible line of
work could be to examine a fully distributed RL scheme to
reduce the communication overhead in the system. Finally, it
would be interesting to enhance the system model and include
routing as one more control variable in the slice orchestration
problem.

ACKNOWLEDGMENT

This work was supported by the SEMANTIC project, which
has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 861165.

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technologies,
and solutions,” IEEE Comms. Surveys Tutorials, 2018.

[2] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
of network slicing,” IEEE Comms. Magazine, 2017.

[3] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “Nfv resource allocation:
a systematic review and taxonomy of vnf forwarding graph embedding,”
Computer Networks, vol. 185, p. 107726, 2021.

[4] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Aztec:
Anticipatory capacity allocation for zero-touch network slicing,” in IEEE
INFOCOM, 2020.

[5] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Deepcog: Cognitive network management in sliced 5g networks with
deep learning,” in IEEE INFOCOM, 2019.

[6] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[7] Telecom Italia, “Milano Grid,” 2015.
[8] D. Bertsekas, “Lessons from alphazero for optimal, model

predictive, and adaptive control,” 2021. [Online]. Available:
https://arxiv.org/abs/2108.10315


