
A Software Platform for Distributed Multimedia Applications

Christian Blum and Refik Molva
Institut Eurécom

2229, route des Crêtes
F-06904 Sophia-Antipolis

{blum,molva}@eurecom.fr

Abstract

The paper discusses the functionality that a platform for
distributed multimedia applications should provide. Five
platforms - Touring Machine, Beteus, Lakes, Medusa and
IMA - are presented and evaluated. The paper then intro-
duces a new platform that is geared towards service provi-
sion in larger networks. In this platform, application and
media processing are logically and per default geographi-
cally separated. Applications reside in application pools
inside the network and control sets of multimedia termi-
nals in the periphery. The platform is built on top of
CORBA, and is thus defined as a set of IDL interfaces. The
platform supports application development with high level
programming interfaces, and can be further enhanced with
tool-kits for special application classes. A tool-kit for tele-
conferencing applications is presented at the end of the
paper.

1. Introduction

 Now that distributed multimedia applications are start-
ing to be offered as services in enterprise and residential
cable networks, there is a growing interest in platforms
that support development and deployment of these applica-
tions. Platforms have to be seen as opposed to standalone
applications that are found for instance in research envi-
ronments. Such applications implement media processing
from scratch and are highly dependent on hardware and
operating system. They are built for a special purpose and
require skilled personal for setup and usage because they
are not integrated into a general runtime environment.
While this is the normal approach to build research proto-
types, it is clear that applications that are offered as ser-
vices have to be integrated into the network in which they
are to be offered, i.e., they have to be built on top of runt-
ime platforms.

Multimedia data processing is as modular as it is com-
plex. Media streams lend themselves to pipeline process-
ing by sharply defined building blocks like coders, mixers
or network transmission units. An application will profit
from such building blocks in that more time can be spent
on design and implementation of higher-order features.
This paves the way to true multimedia applications whose
originality is not the single medium, but the way different
media or media building blocks are assembled to form
increased value. The granularity with which building
blocks are defined determines the range of applications a
platform supports, and it determines also the complexity
with which application development is faced. The benefit
of fine building block granularity is application diversity,
but application programming is likely to be complex.

 Platforms for distributed multimedia applications give
access to reusable media processing building blocks via
high-level programming interfaces. They impose an appli-
cation model, a way an application is organized and imple-
mented. A good application model guides application
design without confining it. Programming interfaces and
application model support rapid prototyping and incremen-
tal improvement of applications and move the application
itself rather than its components into the center of atten-
tion.

Platforms allow multiple applications to run in parallel.
They integrate applications in a standard, application-inde-
pendent way. Applications are launched, joined or deleted
via procedures that are built into the platform rather than
into the application itself. Platforms will also give applica-
tions access to an extensible set of network services like
network management, directory and billing.

This paper shall provide a general overview of multi-
media platform issues. It starts off with a discussion of the
major features a platform should provide (Section 2). It
then presents five platforms, the Touring Machine of
Bellcore, the Beteus platform developed at Eurécom,
Lakes by IBM, Medusa by Olivetti and the multimedia
system services architecture by IMA (Section 3). The

Proceedings of the 1st Workshop on Multimedia Software Development, Berlin, March 1996

paper continues with the detailed description of a multime-
dia service platform that is developed at our institute (Sec-
tion 4-6). Our platform separates application and media
processing not only logically, but also geographically.
Applications reside in the network within so called appli-
cation pools from where they control a set of participating
multimedia terminals. The architecture is geared to service
provision because it provides a terminal with a clearly
defined and extensible interface that can be remotely con-
trolled by a wide variety of applications. Toolkits can be
added to the application pool that provide high-level inter-
faces for application development. An example for such a
toolkit, a toolkit for the development of teleconferencing
applications, is described at the end of the paper (Section
8).

2. Platform Evaluation Criteria

Before we move to the description of the example plat-
forms we want to introduce the criteria according to which
we classify these platforms. The list of criteria that is pre-
sented here is certainly far from being complete, but it cov-
ers the most important aspects of the platforms that we
present.

Target applications -platforms are designed and built
with certain applications in mind, and no platform can
claim that it supports every single distributed multimedia
application.

Target network - platforms are built for certain classes of
networks, e.g., local area networks, ISDN networks, or res-
idential cable networks. There are also platforms that run
on heterogeneous networks.

Application model - every platform imposes its personal
application model on the design of the application. As an
example, some platforms will require the application to be
centralized, whereas others require it to be completely dis-
tributed. Distributed applications will use the communica-
tion features provided by the platform as basis for
application-specific protocols.

Abstractions - every platform will try to define abstrac-
tions and use them as basic concepts of programming
interfaces or protocol procedures. Abstractions are funda-
mental for the design process of a platform, and they con-
sequently mirror the internal architecture of the platform.
Abstractions are defined with a limited set of applications
in mind they must support. Well chosen abstractions will
survive more than one application generation, whereas
poorly chosen abstractions will quickly tear both the pro-
gramming interface and the platform into obsoleteness.

Configurability - platforms generally offer their media
related functionality in form of building blocks. These
building blocks can have varying granularity. As an
example, one platform may offer video sender and video
receiver as the smallest video related building blocks,
whereas another one will decompose these blocks further,
for instance into coder, transmitter, receiver and decoder.
The finer the granularity of the building blocks is, the
higher is the freedom with which an application can con-
figure its media processing part. The drawback of fine
granularity is increased application complexity. A plat-
form should therefore ideally offer both, fine and coarse
building block granularity.

Extensibility - a platform that is not explicitly designed
for extensibility will soon be overrun by technological
progress. A platform does not only have to be able to
accommodate new media processing devices, but it must
also have an extensible service interface towards its
applications.

Scalability - does the performance of the platform
decrease when the number of potential users, actual
users, offered applications and running applications
increases?

Synchronization -every platform must address the prob-
lem of inter-stream, intra-stream and event-driven syn-
chronization [2]. Intra-stream synchronization will not be
visible at the platform interface, but there will be abstrac-
tions for inter-stream and event-driven synchronization in
the programming interface of the platform.

Resource management -a platform must interface to
the operating system and possibly to the network in order
to reserve resources for media processing and transmis-
sion. Important resources are transmission bandwidth and
processing time. Resource management is visible at the
platform interface level as soon as the application itself is
the endpoint of a medium stream. In this case an applica-
tion must request a certain quality of service for the
media stream that it transmits or receives via the plat-
form.

Security - security is an upcoming issue for multimedia
communication in general. Platforms for distributed mul-
timedia applications will have to integrate security ser-
vices like authentication and access control.

3. Example Platforms

The platforms that are presented here are evaluated
according to the criteria developed in the last section. For

further information about these platforms there are point-
ers given at the end of the paper.

3.1. Touring Machine

No overview of multimedia platforms can overlook the
Touring Machine developed at Bellcore [3]. While anti-
quated with respect to today’s standards, it was the first
platform for distributed multimedia applications having a
real application programming interface (API) [4]. The tar-
get applications of the Touring Machine are teleconfer-
ences with collaboration support. The Touring Machine
was developed for a hybrid network with analog switches
and analog endpoint equipment for audio and video.
Applications are distributed with a typed platformclient
running for every participant. The programming interface
offers an interclient messaging service for the development
of application-specific protocols. Applications run within
the framework of asession, with a session being able to
support more than one application, in which case it con-
tains as session members clients representing different
applications. Further major abstractions areconnector,
endpoint and port. A connector is a medium bridge that
can be of type audio, video or data and that has source and
sink endpoints from participating clients attached to it.
Connectors can represent point-to-point as well as
multipoint connections. Clients access connector end-
points via ports. The port abstraction allows clients to
switch locally between different sources or sinks for the
same connector endpoint.

Audio and video presentation at sinks is uniform due to
the underlying analog network. The only degree of free-
dom in medium transmission is therefore the connection
structure. Since audio and video is live, and since there is
no remarkable delay introduced on the transmission path,
there is no need for synchronization between audio and
video. Resource management is mainly concerned with
analog connection establishment and routing within the
network.

The API of the Touring Machine is monolithic and not
designed for extension. It has functions for: client registra-
tion, session management, connection control, name server
query and message passing.

3.2. Beteus

The Beteus platform was developed in the course of a
tele-teaching project on the European ATM pilot network
with project partners in France, Switzerland and Germany
[5]. Beteus applications shall provide a wide range of sup-
port for the education of a group of students scattered over
a small number ofsites. Possible applications are distrib-
uted lecture, tele-seminar, tele-tutoring and tele-meeting.

The decision to implement a platform instead of standal-
one applications was due to the uncertainty at the begin-
ning of the project about which applications would finally
be needed or would best promote the underlying broad-
band network.

Connection control and resource management are dis-
tributed inbetween Beteus sites, but centralized on site
level because Beteus applications require in general the
combination of equipment beyond that offered by a single
multimedia workstation. The notion of a site exhibited by
the platform is not visible to applications. A Beteus Appli-
cation is composed of multiple processes calledsession
vertices that are arbitrarily distributed over the sites. An
application is implemented as a single executable that will
take one or moreroles within a session. The behavior of a
session vertex within a session and the user interface that it
generates depends on its momentary roles. There is one
session vertex holding themaster role; the session master
is the sole session vertex being allowed to change session
membership or connection structure. Note that this func-
tionality is not necessarily visible at the user interface that
the session master generates.

An application defines the connection structure it gener-
ates in form of multipoint audio, video and application
sharingbridges.The endpoints of a bridge are given as
role names, and bridges are bundled intobridge sets. The
session master configures the platform on session startup
with the roles, bridges and bridge sets that the application
defines. Connection management during the session is then
limited to role transfer and bridge set swapping. The plat-
form resolves role names to session vertex addresses and
rebuilds automatically connection structures when role
assignment changes.

Application development on top of the Beteus API [6]
is mostly user interface development. Communication
between session vertices and the platform is based on Tcl-
DP [7], the network programming package for Tcl [8].
This allows applications to be completely implemented in
Tcl scripts, which is ideal for rapid prototyping. The
Beteus API has functions for: registration, media endpoint
control, directory service, session control, role/bridge/
bridge set handling, message passing and application shar-
ing. It offers a more sharply defined application model
than the Touring Machine, and much more control over
media transmission and presentation. The Beteus API is,
similar to the one of the Touring Machine, monolithic and
not designed for extensibility. The platform does not scale
to a large number of sites.

3.3. Lakes

IBM Lakes is, as a commercial product, the most com-
plete platform among the ones presented here. Lakes is

designed for collaborative applications that may optionally
employ multimedia communication. Target network is the
enterprise network, whereby Lakes supports analog as well
as digital links amongnodes. The platform is distributed
with one instance of it running for every user. Applications
are realized as independent processes that may temporarily
come together in asharing set. Applications within the
same sharing set may establishchannels among each other,
whereby channels represent connections among applica-
tion ports with explicit quality of service attributes.

Channels can be combined tochannel sets of typestan-
dard, merged, serialized or synchronized. Merged channels
are channels that terminate in the same port, supporting
multicast within a sharing set. Serialized channels serialize
data from different sources, so that every sink sees the
same ordered sequence of data packets. Synchronized
channels finally deliver packets with the same timing rela-
tionship with which they received them. Channels are ter-
minated by application ports orlogical device ports.
Applications realize audio or video connections with chan-
nels between audio and video logical devices.

Lakes has a rich set of interfaces: a programming inter-
face, a command level interface, a resources interface, a
device support interface, and a logical device interface.
The command level interface is a high-level interface to
the call manager furnished by IBM and allows to develop
custom call managers. The resources interface allows to
customize resource management, and the device support
interface to port the platform. The logical device interface
supports platform extension with user-written logical
devices.

Lakes supports theoretically, and probably unintention-
ally, the chaining of logical devices, which is a key feature
for configurability.

The Lakes API consists of more than 50 function calls
and about the same number of events. The strength of
Lakes is certainly the richness of its interfaces, but Lakes
remains a proprietary solution that will have a hard time to
be accepted by a large base of developers. Also, its func-
tion based API is outmoded given the actual tendency to
object-oriented interfaces.

3.4. Medusa

Medusa [10] is the first platform presented here that is
explicitly designed for extensibility. It is built for an ATM
network that supports the direct connection of media pro-
cessing hardware. Medusa workstations consist of a stan-
dard workstation plus multimedia devices that are grouped
around a small ATM switch which is itself connected to an
ATM backbone. The so-called desk area network (DAN)
architecture allows to add an arbitrary number of direct
ATM peripherals to the workstation switch without run-

ning into performance problems.
The main abstraction of Medusa aremodules. Every

active object, including the application itself, is a module.
Modules usually represent some clearly defined function
like video compression or audio source and are intended
to be chained together to form pipelines from source to
sink. Modules haveports, and the ports of different mod-
ules are linked via onewayconnections. Connections are
untyped, but carry datasegments that can be of type
audio, video, command, reply, event and so on. Connec-
tions are thus used for both control and media data.

A Medusa application will askfactory modules at dif-
ferent locations in the network to create modules and will
interconnect them. The Medusa developers have written
an extension to Tcl/Tk that allows to put together module
pipelines within Tcl scripts, which in turn supports appli-
cations that are completely implemented in Tcl. There is
also a special application, a graphical programming tool,
that allows to assemble and configure pipelines in real-
time.

Simple Medusa modules can be implemented with a
few lines of C++ code. Every application developed for
Medusa will enrich the platform by increasing the num-
ber of modules available to factories. Second generation
applications will then have access to a rich library of
modules that they can assemble in many different ways.
A problem with the Tcl based application programming
interface of Medusa is that programming becomes
tedious when a large number of modules is used [11].

The Medusa platform addresses security by providing
access restrictions to factories and instantiated modules.
Unlike the platforms presented until now, Medusa does
not offer any session abstractions, but note that such
abstractions can be easily layered on top of it. The plat-
form and platform abstractions will support multicast
only in a future version.

3.5. IMA

The multimedia systems services architecture defined
by the Interactive Multimedia Association [12][13] is a
layer of abstraction constructed above the multimedia rel-
evant hardware and software resources of a distributed
system. As such it constitutes a framework of middle-
ware rather than a platform. It is thought to be used as the
media control part of platforms that include in addition
functionality that IMA does not address, namely security,
toolkits, scripting, user interfaces and application shar-
ing.

The IMA architecture is defined on top of the Com-
mon Object Request Broker Architecture (CORBA) [14]
and is given as a set of IDL (Interface Definition Lan-
guage) interfaces. It is natural for a platform for distrib-

uted multimedia applications to be built on top of another
platform that supports distributed applications in general.
The IMA architecture profits from present and future
developments in CORBA like the event service and can
directly employ them. The architecture employs both inter-
face inheritance and inclusion: inclusion to reduce com-
plexity, and inheritance to provide for extensibility. IMA
will only define interfaces within a basic inheritance tree;
the richness of the architecture is then to be provided by
third-party architecture extensions.

IMA decomposes media stream processing intovirtual
devices. A virtual device contains a device-specific inter-
face, a genericstreaminterface and one or moreformat
interfaces per deviceport. The stream interface allows to
control a medium stream (pause, resume, fast forward and
so on) and is an interface found also in other objects. The
format interface allows to set the medium format generated
by a port. Two device ports are connected via avirtual
connection, an object that has again a stream interface. A
virtual connection can be unicast or multicast.

An application can combine the objects that it generated
into a group. A group applies operations on its stream
interface to all the stream interfaces that it controls, simpli-
fying application action for stream control on device net-
works to single operations.

In line with CORBA, objects in IMA are created byfac-
tories. An application specifies constraints for the objects
that it generates, with the location of the object being one
prominent constraint. The factory matches constraints
against object properties and creates an appropriate object
if possible.

Other features of the IMA architecture are: support for
synchronization, support for both stored and live media,
and a refined event service. A key feature certainly is the
variable degree of application involvement in device net-
work assembly and configuration. An application specifies
the object attributes it is interested in as a set of con-
straints, and leaves the remaining attributes to the discre-
tion of the infrastructure. Looking at the current draft of
the standard, it is hard to see how this will be done for a
complex multipoint connection including many endpoints
and many devices per endpoint, resulting in a proliferation
of negotiating virtual connection objects. The IMA archi-
tecture generally neglects the cost of a remote procedure
call, and will certainly stress most of today’s commercially
available object request brokers. One might cite other
problems with the architecture, but it is generally agreed
upon that future platforms for distributed multimedia will
be at least similar in spirit to IMA, if not compatible with
it.

4. Application Pool and Multimedia Terminal

The platform architecture that is presented in the rest of
the paper addresses the problem of how to provide
multipoint multimedia services to a large community of
users, with these users being for instance private house-
holds or the employees of an international enterprise. The
design decisions taken for our platform were based on the
following three assumptions about future multimedia ser-
vices:

• there are many services offered in parallel
• most of the services have short life-cycles
• there are many service providers

The amount of services offered on the Internet today
gives a hint about the service diversity that tomorrow’s
multimedia networks will have to support. This does not
only concern the retrieval and other man-machine services
that will be offered in first generation residential networks,
but also the multipoint communication services that will
come up as soon as the subscriber lines become symmet-
ric. The number of services will be enormous, and services
will have short life-cycles. They will be rapidly developed
and deployed, and once deployed they will be constantly
improved up to the point where they become obsolete. The
lifetime of a service will be governed, among other things,
by commercial interest, by fashion, and by technological
progress. Service diversity can only be attained in a com-
petitive environment where service provision is open to
everybody. The first service providers in residential cable
networks will be the network providers themselves, but it
can be foreseen that they open their networks to third par-
ties in order to offer a richer variety of services to their
customers. A good example for a functioning community
network is the French Minitel. The success of Minitel is
largely due to its service diversity, which in turn is a result
of France Telecom’s politics of opening the network for
service providers. Today, around 24600 services can be
accessed via a Minitel terminal [15].

Service provision in a network requires the existence of
standard terminal equipment at the user’s premises. While
this is also the case with multimedia service provision, it is
clear that the terminal equipment there will need to be
more intelligent than for instance the Minitel terminal. A
crucial problem is the distribution of application intelli-
gence. One might be tempted to think that multi-point
applications like tele-conferences will reside and run on
end-systems, and that the only service required from the
network is connectivity. The problem with this approach is
that it limits diversity simply because people would need
to install on their endsystem every application they possi-
bly want to use. Another possibility would be to have
application servers in the network from which user endsys-

tems can download the executables they need to run a cer-
tain application. This approach has the problem that the
application, once developed, has to be ported to every pos-
sible endsystem architecture, and that the application
server would need to store all of these executables.

The approach we chose is to distribute application intel-
ligence between the network and the endsystems. Applica-
tions reside onapplication pools inside the network and
are accessed by means ofmultimedia terminals[1]. An
application will download scripts into the terminals that
serve as intelligent sensors for the application and that deal
with every issue that is local to the terminal. Connections
among the terminals that participate in a multipoint appli-
cation are established by a central connection manager
within the application pool that acts on behalf of the appli-
cation. The application pool must be considered as a center
of control, and will rarely be the source or sink of media
data. Media acquisition, transmission, processing and pre-
sentation is performed by standard hardware and software
devices within the terminals. The application controls the
devices and receives the events that they generate. A ter-
minal can activate a certain application only if it has the
devices that the application requires. The architecture of
both the application pool and the multimedia terminal is
device independent, i.e., new devices can be introduced
without any modification of the major building blocks of
the architecture.

The complete architecture is based on CORBA, and is
thus defined as a set of IDL interfaces. There are roughly

Stream
 Agent

Interface
 Handler

Stream Graph

Te
rm

in
al

 C
on

tr
ol

A
pp

lic
at

io
n

P
oo

l M
an

ag
er

Application

Connection
 Manager

Multimedia
Terminal

Application Pool

 Misc.
Services

Figure 1. The APMT architecture.

two kinds of interfaces: interfaces that define the interac-
tion between terminal and application pool, and inter-
faces that are internal to application pool or terminal. The
internal interfaces of the application pool must be known
by application developers, the ones in the terminal by
device developers, and the interfaces between terminal
and application pool by both application and device
developers. Internal interfaces may need to reflect hard-
ware and operating system particularities and are there-
fore system dependent. It is evident that external
interfaces must be unique.

Fig. 1 shows the major components of the application
pool and multimedia terminal along with control and
media flows. For convenience, we will refer to our archi-
tecture as the APMT (Application Pool - Multimedia Ter-
minal) architecture. The following subsections give an
overview of APMT.

4.1. Overview of the multimedia terminal

The brain of the multimedia terminal is theterminal
control. The terminal control manages the application
life-cycle on the terminal side: it starts and joins applica-
tions in the application pool on behalf of the user, and
processes invitations to applications. It grants applica-
tions access to the major terminal interfaces and super-
vises application actions within the terminal. Every major
object created by the application has a hidden interface to
the terminal control which allows it to be queried, moni-
tored, and deleted.

The operations defined for the terminal control inter-
face constitute together with equivalent interface opera-
tions in the application pool an application control
protocol. Since this protocol is application independent,
it can be expected to remain stable over an extended
period of time. Protocol extensions, and the eventual
existence of different protocols for different terminal
types, can be handled via interface inheritance.

The two principal servers an application accesses are
the interface handler and thestream agent. An interface
handler executes a script downloaded from the applica-
tion. This script generates the graphical user interface of
the application and controls the locally generated device
networks. As a result of user action it will call operations
in application interfaces, and will itself respond to appli-
cation calls. An adequate scripting language for simple
tasks is Tcl/Tk. If the downloaded script is to perform
more advanced tasks than the user interface, strongly
typed languages like Java [16] or ScriptX [17] must be
used. Java and ScriptX perform better than Tcl/Tk
because they are precompiled. The major requirement on
the scripting language to be used is the existence of a
respective CORBA language mapping. The multimedia

terminal will have separate interface handlers for every
scripting language that it supports.

A stream agent assembles, controls and modifiesstream
graphs. A stream graph is an arbitrarily structured network
of media processing devices similar to the module pipe-
lines of Medusa or the virtual device graphs of IMA.
Stream graphs are generated in single operations that
return a list of device object references. An application
may forward some of these references to the interface han-
dler for local control, as is indicated in Fig. 1. A straight-
forward example for this would be the reference to an
audio device that allows the terminal user to control audio
volume via the graphical interface generated by the down-
loaded script.

A terminal will have other components with interfaces
hidden from the outside, among them for instance a
resource manager. Interfaces like the resource manage-
ment interface have to be taken into account by the device
developer.

4.2. Terminal interfaces and stream formats

The terminal interfaces are the low-level programming
interfaces in the APMT architecture: the terminal control,
the interface handlers, the stream agent, the graph, and the
graph components. In addition to these control interfaces,
there is a format to be specified for every kind of medium
that is communicated between terminals. Such stream for-
mats are also foreseen in the IMA architecture. In APMT,
we specify stream formats and header formats. Headers
serve inter-device communication and can be arbitrarily
added to a stream. This allows to use the medium stream
itself for oneway in-band control, relieving the application
or other architecture components from information transfer
inbetween source and sink graphs.

4.3. Overview of the application pool

The counterpart to the terminal control in the applica-
tion pool is the application pool manager (ApMgr). The
ApMgr launches applications on behalf of terminals, and
invites terminals on behalf of applications. The ApMgr
grants applications access to the application pool objects
and monitors them. Like in the case of the terminal, there
will be hidden resource managers within the application
pool from which applications will request, among other
things, storage place and computation resources.

Applications can access the terminal interfaces directly
or via intermediate modules that reduce the complexity of
multi-user scenarios. One such module is theconnection
manager. The connection manager (CxMgr) provides sup-
port for the establishment of complex connection struc-
tures among groups of terminals. An application will

usually prefer to deal with one connection manager rather
than n stream agents. Multiple connection managers can be
imagined that provide application support at different lev-
els. The CxMgr interface is internal to the application pool,
and therefore not canonical, but it must be a visible part of
the architecture because it is fundamental to application
portability.

Similar to the CxMgr, a module can be imagined that
handles multiple user interfaces, maybe even in coordina-
tion with the CxMgr. An application that represents a ser-
vice will certainly access additional services like video
server control, billing or network management. Such ser-
vices fall into the category miscellaneous services, which
is indicated in Fig. 1. The application pool is, like the ter-
minal, open for any kind of extension.

4.4. Additional architecture components

The APMT architecture provides a basic framework for
multimedia service provision. Depending on the actual
deployment of the architecture, there will be additional
architecture elements within the network. One such com-
ponent would be for instance a service gateway that trans-
parently routes service requests to application pools. This
allows for load balancing on application pool level.
Another important component is a directory service. A
directory service would be accessed by both terminals and
applications.

4.5. Deployment

The APMT architecture addresses multimedia service
provision in a wide sense. An application pool can be
located somewhere in a network on a cluster of dedicated
machines. It can equally be found together with terminal
software on a personal computer in a private household.
An application pool is visible in a network via the name or
object reference of its ApMgr interface. Whoever wants to
export an application may do so by running application
pool software and promoting the ApMgr object reference.

An application is not necessarily a single process. The
only restriction on the way an application organizes itself
into processes is that one of these processes implements a
control interface towards the ApMgr.

A terminal is represented by the object reference of its
terminal control. A multimedia terminal is not necessarily
a personal computer. It can equally be a whole range of
equipment forming a classroom for distributed lectures.

5. Terminal Building Blocks

This section and the following one discuss the building

blocks of the platform prototype we are currently imple-
menting at Eurécom.

5.1. Terminal control

The terminal control is a process that implements four
interfaces. First of all there is an internal interface that is
used by terminal processes to make themselves known to
the terminal control and to convey activity events. There is
another internal interface meant to be accessed by a control
panel process that generates a service control menu
towards the user. Part of the same functionality is offered
in a third interface that can be accessed via locally active
application scripts. This allows for instance a user inter-
face script of a service yellow page application to directly
launch a chosen service. The user of the terminal is noti-
fied of such application script actions via events or call-
backs sent to the control panel. Since this interface is
visible to application scripts it belongs to the category of
external interfaces. The fourth interface is the one to the
application pool that was already introduced.

5.2. Graphs, devices and connector boxes

The media processing related abstractions of APMT are
influenced by IMA, but differ from them in important
points. Fig. 2 shows the branches of the APMT interface
inheritance diagram that define the terminal. The elemen-
tary unit of processing functionality is thedevice. Devices
have ports, and device ports are interconnected via
untypedconnectors. Connectors can be unicast or multi-
cast, i.e. they can connect one output port with various
input ports. They do not exist in an isolated fashion, but
are contained byconnector boxes. A connector box
(CoBox in Fig. 2) can connect the input and output ports of
attached devices in variable ways by activating or deacti-

Object APMTObject

Graph

StrAgent

Terminal

InfHandler

Terminal

Device

CoBox

Transport

InterDevice

EndpointDevice

TkInfhan

Resource
Source

Sink

Device

Device

Device

Control

UDP

TCP

UDPMcast

VideoCoder
AudioMixer
VideoDecoder

Figure 2. Terminal interface inheritance diagram.

vating connectors or sets of connectors. Stream graphs
are assembled out of connector boxes and devices. Both
the connector box and the device interface are derived
from theterminal resource interface which reflects their
property of requiring resources for instantiation. A device
may require many resources, among them hardware and
computation time; a connector box may require inter-pro-
cess communication resources. The terminal resource
interface defines two important operations: activate() and
deactivate(). Deactivating a connector box is equivalent
to the temporary disconnection of all attached devices. A
deactivated device releases all of its resources and halts
operation. The terminal resource interface is finally
derived from the general APMTObject interface.

There are three different kinds of devices. InterDe-
vices have at least one input and output port and do per-
form some intermediate processing on a medium stream.
EndpointDevices are media stream sources and sinks.
They differ from InterDevices in that they have only
input or only output ports, and that they have alogical
device name. Endpoint devices can only be addressed if
they have names. Video windows will be named with
their window identifier, whereas external hardware
devices will be named by standard functionality descrip-
tions: PersonalCamera, RoomCamera, ObjectCamera. It
is the visibility of EndpointDevices at the user interface
that requires them to be addressable. TransportDevices
perform media transmission over the network to which
the terminal is attached. They are visible because it is
assumed that a central connection manager will need to
manage transmission compatibility among various termi-
nals. If terminals negotiated network transmission among
themselves, network connections could be represented by
untyped connectors, i.e., without differentiating them
from connections among terminal devices.

Devices and connector boxes are put together to form
streams graphs. Fig. 3 shows as an example a video

Camera cWindow nFile x.y

Video
Codec

JPEG
Compr.

 Video
Transport

 UDP/IP
Multicast

EndpointDevice

InterDevice

TransportDevice

Figure 3. Example device graph.

ConnectorBox

Device

sender graph. The source of the video stream is a camera c
that connects to the input port of a video codec. The video
codec has an output port for digitized video and one for the
unprocessed camera image that is shown in window n. The
digitized video is compressed in a JPEG compression
device and simultaneously transmitted and stored in a file
x.y. This is achieved via a multicast connector in the con-
nector box left to the JPEG compression. This connector
box could contain another connector that would only con-
nect the video transport device. Switching between these
two connectors allows to control the recording of the com-
pressed video stream. The graph interface allows to start,
park and restart graph action. Graphs can also be modified
by adding or removing branches. The stream agent inter-
face offers the create_graph() and remove_graph() opera-
tions. Graphs are described as a sequence of device and
connector box descriptions. The graph generated with a
single create_graph() call can be arbitrarily complex.

A major difference between IMA and APMT is the way
processing functionality is mapped onto devices. IMA off-
loads much of the device functionality into format objects.
The IMA virtual device supports different formats on its
ports and has thus an unlimited, but undefined range of
functionality. An APMT device on the other hand has
clearly defined functionality, and is thus predictable for a
programmer. As an example, video stream compression in
IMA is modelled as a format, whereas in APMT it is mod-
elled as a separate device. IMA object instantiation is
based on trading - an application requests an object by
specifying the properties it is interested in. One and the
same device may have very different properties on differ-
ent systems. APMT on the other hand models properties in
interface hierarchies as is indicated in Fig. 2 with extensi-
bility dots to the right of InterDevices and EndpointDe-
vices. The result of such a proceeding is that hardware/
software device developers have to stick to standard device
specifications, i.e., they have to implement the complete

Embedded

UI

TCL/TK Interpreter Supervisor

ORB System
Services

TerminalTerminal

Application

Interface Handler

Application

ORB

 ControlObjects

Objects

Tcl/Tk Script

 DII

ORB: Object Request Broker
DII: Dynamic Invocation Interface
UI: User Interface

Figure 4. User interface handler

interface of a standard device, which in turn makes the
device predictable to the application programmer. The
benefit of this is application compatibility among termi-
nals, a drawback maybe that new processing features have
to be packed into devices by a light-weight standardization
process before they can be employed by applications.

5.3. User interface handler

Fig. 4 depicts the Tcl/Tk user interface handler that was
implemented for the terminal. It is based on a pseudo lan-
guage mapping for Tcl and an equivalent extension of the
Tcl interpreter [18]. Applications download a Tcl/Tk script
into the user interface handler where it is evaluated. The
script generates a Tk user interface and may be fed by the
application with object references, or discover object refer-
ences via the CORBA name service. Button clicks by the
user will then result in operation invocations either to local
terminal objects or to distant application specific objects.
The interface of the user interface handler exports a part of
the Tcl/Tk C library and allows for instance to download
icons and photos, set or get variable values and to call
script procedures. Security is a major concern: the script
accesses system services like file I/O via a set of Tcl proce-
dures provided by the interface handler, rather than
directly and unchecked.

6. Connection Manager

The CxMgr is the most important auxiliary component
that can be envisaged for the application pool. It has to be
considered as a special application offering services to real
user applications running on top of it. Its usefulness grows
with the number of terminals participating in an applica-
tion - teleconference applications and any other multi-user
application will depend on its connection management ser-
vices. The CxMgr found in an application pool within a
public network will deal with the network infrastructure in
addition to managing the terminals. Even simple applica-
tions like a video-phone or a video on-demand service will
have to be built on top of a connection manager. As was
already discussed, there can be different connection man-
agers covering different application classes.

The CxMgr being implemented for our platform pro-
vides support for the establishment of simplex, duplex,
multicast, all-to-all and all-to-one connection structures
called bridges. Applications registergraph models with
the CxMgr. A graph model describes an arbitrary graph the
CxMgr has to instantiate within the terminals at the verti-
ces of a bridge. Graph models do not contain transport
devices. The CxMgr adds transport devices automatically
to the graphs it instantiates so as to reach compatibility

among the connected terminals. Transport devices are the
only devices that are known to the CxMgr, i.e., the CxMgr
does not have the notion of audio and video, and the com-
ponents of a graph model are transparent to it. This is nec-
essary to keep the platform open for the introduction of
new media processing devices.

The application creates bridges on terminalsubsets. On
a create_bridge() operation invocation, the CxMgr instan-
tiates the graph models named for the bridge in the con-
cerned terminals and interconnects them. On a
destroy_bridge() invocation, the CxMgr will disconnect
the various graphs it generated, but it will park rather than
destroy them. The parked graphs can then be reused by
other bridges in a later create_bridge() call with the pri-
mary advantage of accelerating connection setup. This
way the application can rapidly switch between fundamen-
tally different connection structures.

Complex IDL types are necessary to describe graph
models, with the result that the interface of the CxMgr is
too complex to be used directly by application program-
mers. The interface provided to application programmers
must be a convenience library that allows to construct
graph models with multiple function calls; another idea
would again be a Tcl extension for graph model construc-
tion.

7. A Tele-Conferencing Toolkit

The functionality of the platform can be further aug-
mented by specialized tool-kits and authoring environ-
ments. The teleconferencing toolkit we present here is a
mind game is an adaptation of the Beteus API [6] to the
APMT platform and demonstrates how the monolithic
programming interfaces known from platforms like Beteus
or the Touring Machine can be built on top of an extensible
platform. The toolkit supports user interface handling and
audio, video and application sharing among a set of termi-
nals. It is adequate for the prototyping of simple coopera-
tive teleconferencing applications as was seen in the
Beteus project [5]. The toolkit is realized as a server in the
application pool which itself uses the services of the con-
nection manager. It completely hides the platform from the
application: neither the ApMgr, the CxMgr nor the termi-
nals are visible to it.

7.1. Abstractions and interfaces

The toolkit resumes the abstractions role, bridge and
bridge set that were described in Section 3.2. Roles can
either be static or transient. A terminal can hold one static
role and multiple transient roles at a time. Static roles are
linked with a certain user interface and will be rarely

swapped. Transient roles can be dynamically created,
assigned, transferred, taken away and deleted. Bridges
are connection structures of type audio, video and appli-
cation sharing whose endpoints are defined with role
names, or more exactly, both bridge source and sink ter-
minals are given as a list of role names. Depending on the
cardinality of a role within the application session a
bridge can represent a point-to-point, point-to-multipoint,
multipoint-to-point and multipoint-to-multipoint connec-
tion. Since the toolkit is aware of audio and video devices
it knows that it has to realize a sink for multiple audio
streams with a mixer, whereas it realizes a multistream
video sink with one video receiver graph per stream.
Bridges are active CORBA objects: the interfaces Audio-
Bridge, VideoBridge and SharingBridge are derived from
a general Bridge interface. The interfaces AudioBridge
and VideoBridge allow to adjust a certain amount of set-
tings like frame rate, window size and position, and audio
encoding and represent a simplified interface to what will
be realized as a graph of media processing devices.
Bridges can further be grouped into bridge sets. An appli-
cation defines multiple bridge sets corresponding to fun-
damentally different connection structures. During the
lifetime of the session, the application switches from one
bridge set to another, changing the connection structure
with a single call. The bridge set abstraction is maybe
more an application design paradigm than a program-
ming aid: since a bridge set corresponds to an application
state it helps to structure a teleconferencing application
on the time scale.

The SharingBridge controls the interconnection of
application sharing agents on terminals. A SharingBridge
is defined with a single and uniquely assigned source role
and possibly multiple sink roles. The user at the source
terminal has control over the application of which the
user interface is replicated at the sink terminals of the
bridge.

The application furnishes one Tcl/Tk user interface
script for every static role it defines. This script must
have a standard interface that can be called by the toolkit,
with functions for role assignment and others for the
assignment of object references for callbacks to the appli-
cation. The application must also furnish an interface for
the standardparticipant role that is automatically
assigned to every terminal in the application. This allows
joining users to identify themselves and to take their
static role if the application does not assign it automati-
cally.

When the application is started up it will first launch a
toolkit server and configure it via its main interface. The
main interface of the toolkit offers operations for role
name registration, bridge and bridge set creation and
script transfer, called in the order as they are mentioned

here. Bridge and bridge sets are objects with interfaces and
can therefore be manipulated at any time during the life-
time of the application. The application transfers one user
interface script per static role to the toolkit. As new termi-
nals join the application, they automatically get the partici-
pant user interface and later, when the application assigns a
static role to them, the respective application specific user
interface. The toolkit demands for every new user a call-
back object reference from the application that it then
hands over to the user interface script.

Once the toolkit server is configured, the application
will call the toolkit operation session_start() - from then on
the application will only react to callbacks from terminals,
accept new terminals, reassign roles and change the active
bridge set. The toolkit will map role names to terminal
names and create the respective bridges via the CxMgr.

7.2. Example scenario

An example shall serve to illustrate how application sce-
narios are translated into role, bridge and bridge set defini-
tions. Imagine a virtual school with professors and
students all geographically dispersed. The school is an
application pool somewhere in the network to which both
professors and students connect via multimedia terminals.
Professors have application scenarios for all kinds of
teaching purposes at hand, among them a scenario that
supports translation work on stage-plays written in a for-
eign language. The scenario has five states or phases:

• phase one: introduction
• phase two: students work, professor visits
• phase three: students present their results
• phase four: recitation of the stage-play
• phase five = phase one: conclusion

In a first phase, the professor gives an introduction into
the translation assignment that was previously distributed
by E-mail. Students see and hear the professor, and they
hear each other, which allows them to hear questions asked

No. Type Source Roles Sink Roles

1 audio participant participant

2 audio professor,studentSpeaker professor,studentSpeaker

3 audio studentSpeaker participant

4 video professor student

5 video student professor

6 video professor,studentSpeaker professor,studentSpeaker

7 video studentSpeaker participant

8 sharedApp. studentSpeaker professor

9 sharedApp. studentSpeaker participant

Table 1. Example bridge definitions.

to the professor by fellow students. In a second phase, the
students start to work on the translation of the stage-play.
The professor goes from student to student and answers
their questions. The editor of the current student is auto-
matically shared with the professor. The professor may
return to phase one if one of the questions is of general
interest. Once students have finished the translation, phase
three begins where students present their results. The pro-
fessor and the presently presenting student are visible to all
other students and to each other. The editor of the student
is automatically shared with all others, and audio is like in
phase one. In phase four, students take roles in the stage-
play and recite them. Their image and voice is distributed
to the professor and to the other students. The professor
finishes the course with some remarks, with the application
being again in phase one. During the whole session the
professor has as the replacement of a classroom-view an
icon-sized video image with low frame rate from every
student.

The roles that can be identified in this scenario are:

• professor: static professor role
• student: static student role
• studentSpeaker: visible students in phase two, three,

four
• participant : professor and students

The transient role studentSpeaker is assigned to the vis-
ited student in phase two, to the presenting student of
phase three, and to the reciting students in phase four.

The bridges that need to be defined are shown in
Table 1. The first audio bridge is the all-to-all audio of
phase one and three. Audio bridge 2 and video bridge 6
form a bidirectional audiovisual connection for phase two.
Audio bridge 3 and video bridge 7 form the virtual stage of
phase 4. The multipoint-to-point bridge 5 represents the
icon-sized classroom view.

Four bridge sets are defined according to the four differ-
ent phases of the application scenario:

• bridge set one: audio bridge 1, video bridges 4+5
• bridge set two: audio bridge 2, video bridge 5+6,

application sharing bridge 8
• bridge set three: audio bridge 1, video bridges 5+7,

application sharing bridge 9
• bridge set four: audio bridge 3, video bridge 5+7

 During the session the application switches between
bridge sets and assigns the transient role studentSpeaker.
Both kinds of actions are triggered by callbacks from the
professor’s user interface.

8. Discussion

The objective of our prototype implementation is to
evaluate the suitability of CORBA for our platform. The
CORBA implementation we are using is OrbixTM from
Iona Technologies. We expect to have a first running ver-
sion of the prototype at the end of February 1996.

Work on design and platform will continue in various
directions. As for now our architecture does not address
media synchronization and resource management. An
important study issue will be connection management for
terminals that are attached to different networks. The prob-
lem here is that a connection manager that is not aware of
devices and device parameters has to configure an inter-
terminal device network in a way that generated media
streams do not exceed the bandwidth capacities of network
links, or the computation capacities of terminals. In short,
there has to be a quality of service framework for APMT.

We will also have to study how we can incorporate
intelligent network and open distributed processing con-
cepts into our architecture.

Pointers

Touring Machine: ftp://thumper.bellcore.com/pub/tm/
Beteus: http://www.cica.fr/~beteus
Lakes: http://cspcvwe1.leeds.ac.uk/WWW/lakes.html
Medusa: http://www.cam-orl.co.uk/medusa.html
IMA: http://www.ima.org:80/forums/imf/mss/

References

[1] C. Blum, R. Molva and E. Ruetsche,"A Terminal-Based
Approach to Multimedia Service Provision", inProceed-
ings of the 1st International Workshop on Community Net-
working, San Francisco, July 1994.

[2] C. J. Screenan,"Synchronisation Services for Digital Con-
tinuous Media", Ph.D. thesis at the University of Cam-
bridge, October 1992.

[3] M. Arango et al.,"The Touring Machine System",Commu-
nications of the ACM, vol. 36, no. 1, pp. 68-77, January
1993.

[4] V. Mak, M. Arango and T. Hickey,"The Application Pro-
gramming Interface to the Touring Machine", Bellcore
Technical Report, February 1993.

[5] C. Blum, Ph. Dubois, R. Molva and O. Schaller,"A Devel-
opment and Runtime Platform for Teleconferencing Appli-
cations", submitted to theIEEE Journal on Selected Areas
in Communications, special issue: Network Support for
Multipoint Communication.

[6] C. Blum and O. Schaller,"The Beteus Application Pro-
gramming Interface", Eurécom Technical Report, Decem-
ber 1995.

[7] L. A. Rowe, B. Smith, and S. Yenftp:" Tcl Distributed Pro-
gramming (Tcl-DP)", University of Berkely Computer Sci-
ence Division,ftp://mm-ftp.cs.berkeley.edu/pub/
multimedia/Tcl-DP/tcl-dp-v1.0ak, March 1993.

[8] J. K. Ousterhout, "TCL and TK Toolkit", Addison-Wesley
Publishing,1994.

[9] IBM Lakes Team,"IBM Lakes: An Architecture for Col-
laborative Networking", R. Morgan Publishing, Chisle-
hurst, 1994.

[10] S. Wray, T. Glauert and A. Hopper,"The Medusa Applica-
tions Environment",IEEE Multimedia, vol.1, no. 4, Winter
1994.

[11] F. Stajano and R. Walker,"Taming the Complexity of Dis-
tributed multimedia Applications", inProceedings of the
1995 Tcl/Tk Workshop, Toronto, July 1995.

[12] Interactive Multimedia Association,"Multimedia System
Services",IMA Recommended Practice Draft, Sep. 1994.

[13] J. F. Koegel Buford,"Multimedia Systems", pp221-244,
Addison-Wesley Publishing Company, New York, 1994.

[14] Object Management Group,"The Common Object Request
Broker: Architecture and Specification", John Wiley &
Sons, Inc., 1992.

[15] H. C. Lucas, H. Levecq, R. Kraut and L. Streeter,"France’s
Grass-Roots Data Net,"IEEE Spectrum, November 1995.

[16] J. Gosling and H. McGilton,"The Java Language Environ-
ment", Sun Microsystems White Paper, May 1995.

[17] Kaleida Labs,"ScriptX Technical Overview", Kaleida Labs
Technical Report, http://www.kaleida.com, 1995.

[18] G. Almasi et al.,"TclDii: A TCL interface to the Orbix
Dynamic Invocation Interface", Technical Report at the
West Virginia University, http://www.cerc.wvu.edu/dice/
iss/TclDii/TclDii.html, 1995.

