
On the Optimality of Coded Caching With
Heterogeneous User Profiles

Federico Brunero and Petros Elia
Communication Systems Department, EURECOM, Sophia Antipolis, France

Email: {brunero, elia}@eurecom.fr

Abstract—In this paper, we consider a coded caching sce-
nario where users have heterogeneous interests. Taking into
consideration the system model originally proposed by Wang
and Peleato, for which the end-receiving users are divided into
groups according to their file preferences, we develop a novel
information-theoretic converse on the worst-case communication
load under uncoded cache placement. Interestingly, the developed
converse bound, jointly with one of the coded schemes proposed
by Wang and Peleato, allows us to characterize the optimal worst-
case communication load under uncoded prefetching within a
constant multiplicative gap of 2. Although we restrict the caching
policy to be uncoded, our work improves the previously known
order optimality results for the considered caching problem.

Index Terms—Coded caching, file popularity, heterogeneous
profiles, information-theoretic converse, user preferences.

I. INTRODUCTION

With the introduction of video streaming platforms and
cloud computing services, such as Netflix, Amazon Prime and
AWS, we witnessed in the recent years a significant rise in
the network traffic. On the one hand, the appearance of data-
intensive network applications clearly entails more services at
disposal of the users, with consequent benefits for the latter. On
the other, communication networks are constantly put under
pressure to deliver increasingly larger volumes of data in a
timely and efficient manner. As a consequence, the explosion
of network traffic has sparked much interest in developing new
communication techniques and, to this end, much research
focused on the pivotal role that caching will play in the future.

The idea of caching simply consists of exploiting low-cost
memories at end-receiving users to diminish significantly the
network load from a centralized server to its cache-aided
receiving users. The real challenge is to intelligently design the
placement phase so as to minimize the volume of data that the
server has to deliver during the delivery phase. The seminal
work in [1] tackled this problem introducing the clever concept
of coded caching, a major breakthrough which pushed even
further the benefits of caching. More specifically, the Maddah-
Ali and Niesen (MAN) coded scheme in [1] shed light on the
actual information-theoretic gains that caching can provide if
the placement phase is carefully designed so that, during the
delivery phase, coding techniques can be employed to align the
interference patterns. Current research on coded caching spans
several topics such as the interplay between multiple antennas

This work was supported by the European Research Council (ERC) through
the EU Horizon 2020 Research and Innovation Program under Grant 725929
(Project DUALITY).

and caching [2]–[5], the construction of converse bounds [6],
[7] and a variety of other scenarios [8]–[11].

A. Coded Caching With Hetereogeneous User Profiles

Since the introduction of coded caching, many works studied
several variations of the original information-theoretic system
model. In particular, much research aimed at understanding
how caching policies should reflect the possibility that, in real
scenarios, contents may have different degrees of popularity
and users may have diverging interests.

On the one hand, considering that traditional caching
techniques heavily rely on the fact that some contents might
be more popular than others, the works in [12], [13] focused
on the interplay between coded caching and file popularities.

On the other hand, some other works sought to explore the
scenario where each user is not necessarily interested in the
entire library of contents at the main server — as instead was
implicitly assumed in [1]. For instance, the works in [14], [15]
explored, for the case of K = 2 users, the performance of
selfish coded caching in the presence of heterogeneous user
profiles or, equivalently, heterogeneous file demand sets (FDSs),
proving that, for the instances proposed therein, unselfish
caching policies can do better than selfish ones. Later, the work
in [16] analyzed for a unified setting the interplay between
selfish caching policies and coded caching, providing the
meaningful conclusion that unselfish coded caching can be
unboundedly better the selfish caching. Subsequently, the recent
work in [17] characterized the optimal memory-load tradeoff
for a scenario where users are interested in a limited set of
contents which depends on the location of the users themselves.

Recently, the authors in [18]–[20] considered coded caching
with a very well-defined structure for the user profiles. As-
suming that the files in the main library can be classified as
either common files (files that can be requested by any user)
or unique files (files that can be requested by groups of users
only), the work in [18] proposed three different coded schemes
for such scenario, providing a related analysis for their peak
load performance. Then, these three schemes were studied also
in [19] in terms of their average load performance, whereas the
work in [20] provided, by means of a converse bound based
on cut-set arguments, some order optimality results.

B. Main Contribution

Our work further explores the system model proposed in [18].
In particular, taking advantage of the genie-aided converse

bound idea from [7], our main result is a lower bound on
the optimal worst-case communication load under uncoded
prefetching. Interestingly, the derived converse, together with
an already existing achievable scheme from [18], allows
us to characterize the memory-load tradeoff under uncoded
placement within a constant multiplicative factor of 2.

C. Paper Outline

The system model and related results are presented in
Section II. Section III presents the information-theoretic
converse and the order optimality result, whose proofs are
provided in Section IV and Section V, respectively. Section VI
concludes the paper.

D. Notation

We denote by Z+ the set of positive integers. For n ∈ Z+, we
define [n] := {1, 2, . . . , n}. If a, b ∈ Z+ such that a < b, then
[a : b] := {a, a+ 1, . . . , b− 1, b}. For sets we use calligraphic
symbols, whereas for vectors we use bold symbols. Given a
finite set A, we denote by |A| its cardinality. We denote by

(
n
k

)
the binomial coefficient and we let

(
n
k

)
= 0 whenever n < 0,

k < 0 or n < k. For n ∈ Z+, we denote by Sn the symmetric
group defined over the set [n].

II. SYSTEM MODEL AND RELATED RESULTS

We consider the coded caching setting where there is a single
server connected to K users through an error-free broadcast
channel. The server has access to a central library that contains
N files of B bits each. Each user in the system is equipped with
a cache of size MB bits (or, equivalently, M files). According
to the system model in [18], the K users are split in G groups,
where each group consists of K/G users sharing the same
interests. Furthermore, the files in the library are divided in
two categories, i.e., common files and unique files. There are
Nc common files {W c

n : n ∈ [Nc]}, where each of them is
of interest to every user in the system. Then, for each group
g ∈ [G], there are Nu files {W u,g

n : n ∈ [Nu]}, where each of
them is of interest to the users belonging to the group g ∈ [G]
only. Assuming that {W c

n : n ∈ [Nc]}∩{W u,g
n : n ∈ [Nu]} = ∅

for each g ∈ [G], and that {W u,g1
n : n ∈ [Nu]} ∩ {W u,g2

n : n ∈
[Nu]} = ∅ for each g1, g2 ∈ [G] with g1 ̸= g2, we have
N = Nc +GNu files in total. Deviating from standard notation
practices, we will use W

fk,g(k)
dk

to denote the file requested by
user k ∈ [K], where fk ∈ {c, u}, dk ∈ [Nfk] and g(k) is an
abuse of notation to denote the group which user k belongs
to, i.e., g(k) ∈ [G] for each k ∈ [K]. We further assume
that W c,g(k)

dk
= W c

dk
, since common files do not depend on the

group g ∈ [G]. In addition, we let d = ((d1, f1), . . . , (dK , fK))
be the demand vector and we denote by D the set of all possible
demand vectors with distinct requested files, i.e., W fk1

,g(k1)

dk1
̸=

W
fk2

,g(k2)

dk2
for each k1, k2 ∈ [K] with k1 ̸= k2. Finally, we

assume Nc ≥ K and Nu ≥ K/G.
The caching problem consists of two phases. During the

placement phase, users have access to the main library, and so
each user fills their cache using the library. Here, we focus on
uncoded caching policies according to the following definition.

Definition 1 (Uncoded Prefetching). A cache placement is
uncoded if each user k ∈ [K] simply copies in their cache a
total of (at most) MB bits from the library. Consequently, the
files are partitioned as

W c
n = {W c

n,T : T ⊆ [K]}, ∀n ∈ [Nc] (1)

W u,g
n = {W u,g

n,T : T ⊆ [K]}, ∀n ∈ [Nu], ∀g ∈ [G] (2)

where W c
n,T and W u,g

n,T represent the bits of W c
n and W u,g

n ,
respectively, which are cached only by the users in T .

During the delivery phase, the demand vector d =
((d1, f1), . . . , (dK , fK)) is revealed to the server. Denoting
by X the set of caching schemes with uncoded placement, the
server transmits a message X of R(d, χ,M)B bits for a given
demand d ∈ D, a given uncoded cache placement χ ∈ X and
some given memory M . The quantity R(d, χ,M) is called
load and our goal is to characterize the optimal worst-case
communication load under uncoded cache placement, namely,
we aim to characterize the quantity given by

R⋆(M) = min
χ∈X

max
d∈D

R(d, χ,M). (3)

In the following, the dependency on M will be implied for
the sake of simplicity.

A. An Existing Achievable Scheme
The authors in [18] proposed for the aforementioned setting

a coded scheme — referred to as Scheme 2 in [18] — which
treats separately the caching and the delivery of common and
unique files.

1) Placement Phase: First, the cache of each user is split
in two parts for some 0 ≤ β ≤ 1, so that βM is the part of
cache that is devoted to store common files and (1− β)M is
the part of cache that is devoted to store unique files. Then,
common files {W c

n : n ∈ [Nc]} are stored across the K users
using the MAN cache placement with memory βM . Similarly,
unique files {W u,g

n : n ∈ [Nu]} are stored across the K/G
users in group g ∈ [G] using the MAN algorithm with memory
(1− β)M .

2) Delivery Phase: It was shown in [18] that, when there
are α users per group requesting unique files, the optimal
worst-case load can be upper bounded as

R⋆ ≤ min
β

max
α

R(β, α) (4)

where R(β, α) is defined as

R(β, α) :=

(
K

tc+1

)
−
(
Gα
tc+1

)(
K
tc

) +G

(
K/G
tu+1

)
−
(
K/G−α
tu+1

)(
K/G
tu

) (5)

with tc := KβM/Nc and tu := K(1− β)M/GNu.
Since the works in [18], [20] treated the variables K, G,

Nc, Nu and t := KM/N as continuous1, we do the same here
for the sake of simplicity. Further, we extend the Scheme 2
in [18] to the entire memory regime 0 ≤ M ≤ Nc +Nu, using
the Gamma function whenever the binomial coefficients in (5)
have non-integer arguments.

1Indeed, if the quantities K, G, Nc and Nu are large enough, the rounding
errors due to integer effects during calculations can be neglected.

B. A Genie-Aided Converse Bound

We will provide our converse bound on the optimal worst-
case load under uncoded prefetching using the genie-aided
approach in [7]. Consider a demand vector d ∈ D and let
u = (u1, . . . , uK) ∈ SK be a permutation of the set [K].
Denoting by Zk the cache content of user k ∈ [K], we can
construct a genie-aided user with the following cache content

Z ′ =

Zuk
\

 ⋃
i∈[k−1]

Zui
∪W

fui
,g(ui)

dui

 : k ∈ [K]

 (6)

which is enough for such genie-aided user to inductively
decode all the requested files from (X,Z ′). Consequently,
the following

R(d, χ)B ≥ H(X) (7)
≥ H(X | Z ′) (8)

≥ I

({
W

fuk
,g(uk)

duk

}
k∈[K]

;X | Z ′
)

(9)

= H

({
W

fuk
,g(uk)

duk

}
k∈[K]

| Z ′
)

(10)

=
∑

k∈[K]

∑
T ∈([K]\{u1,...,uk})

∣∣∣W fuk
,g(uk)

duk
,T

∣∣∣ (11)

holds, which means that we have the following lower bound

R(d, χ) ≥
∑

k∈[K]

∑
T ∈([K]\{u1,...,uk})

∣∣∣W fuk
,g(uk)

duk
,T

∣∣∣
B

(12)

on the communication load for a given2 d ∈ D and χ ∈ X .
Since it will be of use later, we define the following

RLB(d,u, χ) :=
∑

k∈[K]

∑
T ∈([K]\{u1,...,uk})

∣∣∣W fuk
,g(uk)

duk
,T

∣∣∣
B

. (13)

III. MAIN RESULTS

The first result provides a converse bound on the optimal
worst-case load under uncoded prefetching. The proof is
presented in Section IV.

Theorem 1. For the coded caching problem with heterogeneous
user profiles presented in Section II, the optimal worst-case
load under uncoded cache placement is lower bounded as

R⋆ ≥ min
β

1

2

((
K

tc+1

)(
K
tc

) +G

(
K/G
tu+1

)(
K/G
tu

)) (14)

where tc = KβM/Nc and tu = K(1− β)M/GNu.

If we compare the achievable performance in (4) with the
converse in Theorem 1, we can provide the following optimality
result, whose proof is described in Section V.

Theorem 2. The achievable load in (4) is order optimal within
a multiplicative factor of 2.

2We recall that the dependency on M is implied for the sake of simplicity.

Remark 1. The result in Theorem 2 improves the previously
known order optimality results presented in [20]. Indeed,
even though the work in [20] provided a converse bound
without constraining the placement to be uncoded, the smallest
gap to optimality therein was a constant factor 8 for the
limited memory regime N/K ≤ M ≤ N/2G. Moreover,
the achievable performance in (4) was shown to be within a
multiplicative factor of 8+8K/G from optimal for the memory
regime G(Nc + Nu)/K ≤ M ≤ N/2G. Here, although our
converse holds under the assumption of uncoded placement, we
provide a gap to optimality which is a constant multiplicative
factor of 2 for the entire3 memory regime 0 ≤ M ≤ Nc +Nu.

IV. CONVERSE BOUND PROOF

We recall that our goal is to lower bound the quantity

R⋆ = min
χ∈X

max
d∈D

R(d, χ). (15)

where again the dependency on M is implied to simplify
the notation. Denote by Dc the subset of D that contains all
demands for which users make requests only from common
files, which implies d = ((d1, c), . . . , (dK , c)) for each d ∈
Dc. Similarly, denote by Du the subset of D for which users
make requests only from unique files, which implies d =
((d1, u), . . . , (dK , u)) for each d ∈ Du. One can see that |Dc| =(
Nc
K

)
K! and |Du| =

((
Nu

K/G

)
(K/G)!

)G
. Then, we proceed to

lower bound the optimal worst-case load as follows

R⋆ = min
χ∈X

max
d∈D

R(d, χ) (16)

≥ min
χ∈X

max

(
max
d∈Dc

R(d, χ),max
d∈Du

R(d, χ)

)
(17)

≥ min
χ∈X

1

2

(
max
d∈Dc

R(d, χ) + max
d∈Du

R(d, χ)

)
(18)

≥ min
χ∈X

1

2

(
1

|Dc|
∑
d∈Dc

R(d, χ) +
1

|Du|
∑
d∈Du

R(d, χ)

)
(19)

= min
χ∈X

1

2
(Rc(χ) +Ru(χ)) (20)

where Rc(χ) and Ru(χ) are defined as

Rc(χ) :=
1

|Dc|
∑
d∈Dc

R(d, χ) (21)

Ru(χ) :=
1

|Du|
∑
d∈Du

R(d, χ). (22)

Notice that (17) holds because (Dc ∪ Du) ⊂ D, whereas
both (18) and (19) follow from the fact that the maximum
can be lower bounded by the average.

We proceed now to lower bound separately Rc(χ) and Ru(χ)
by means of the genie-aided approach in Section II-B.

3The bound in Theorem 1 becomes 0 only when it holds tc = K and tu =
K/G simultaneously. This happens when β = Nc/M and (1−β) = Nu/M ,
which implies 0 ≤ M ≤ Nc +Nu. In addition, we recall that the Scheme 2
in [18] is extended to the entire memory regime 0 ≤ M ≤ Nc +Nu.

A. Lower Bounding Rc(χ)

As we observed in Section II-B, the communication load can
be lower bounded, for a given demand d and a given caching
scheme χ, as in (12). Hence, if we construct the inequality
in (12) for each demand d ∈ Dc and for each permutation of
users u ∈ SK , and then we sum together all such inequalities,
we obtain

K!
∑
d∈Dc

R(d, χ) ≥
∑

(d,u)∈(Dc,SK)

RLB(d,u, χ) (23)

which can be further rewritten as

Rc(χ) ≥
1

K!|Dc|
∑

(d,u)∈(Dc,SK)

RLB(d,u, χ) (24)

recalling that d = ((d1, c), . . . , (dK , c)) for each d ∈ Dc and
that W c,g

n = W c
n for each n ∈ [Nc] and for each g ∈ [G].

Now, towards simplifying the expression in (24), we proceed
by counting how many times each subfile W c

n,T — for any
given n ∈ [Nc] and T ⊆ [K] — appears in the RHS of (24).

First, we focus on the subfile W c
n,T for some n ∈ [Nc]

and T ⊆ [K] such that |T | = t′ with t′ ∈ [0 : K]. Next, we
denote by Dc,n,k the subset of demands in Dc for which the
file W c

n is requested by some specific user k ∈ ([K] \ T).
We can see that |Dc,n,k| =

(
Nc
K

)
K!/Nc = |Dc|/Nc. Then, we

observe that, for each d ∈ Dc,n,k, all permutations of users
u ∈ SK are considered. Nevertheless, we can notice from
the construction of (12) that, for each d ∈ Dc,n,k, the subfile
W c

n,T appears in the RHS of (24) only for those permutations
of users where k appears before the elements from the set T
in the permutation vector u. Since there is a total of (K −
1− t′)!t′!

(
K

t′+1

)
such vectors, we can conclude that the subfile

W c
n,T appears in the RHS of (24) a total of |Dc|(K − 1 −

t′)!t′!
(

K
t′+1

)
/Nc times when we consider the demands in Dc,n,k

only. Then, since the reasoning above holds for each user
k ∈ ([K] \ T), we can conclude that the subfile W c

n,T appears
in the RHS of (24) a total of |Dc|(K − t′)!t′!

(
K

t′+1

)
/Nc times.

Moreover, we considered a generic subfile W c
n,T , so the above

holds for any n ∈ [Nc] and for any T ⊆ [K]. Therefore, we
can rewrite the RHS of (24) as

1

K!|Dc|
∑

t′∈[0:K]

|Dc|(K − t′)!t′!

(
K

t′ + 1

)
xc
t′ (25)

where xc
t′ is defined as

0 ≤ xc
t′ :=

∑
n∈[Nc]

∑
T ⊆[K]:|T |=t′

∣∣∣W c
n,T

∣∣∣
BNc

. (26)

After some algebraic manipulations, we can rewrite (24) as

Rc(χ) ≥
∑

t′∈[0:K]

fc(t
′)xc

t′ (27)

where fc(t
′) is defined as

fc(t
′) :=

(
K

t′+1

)(
K
t′

) . (28)

B. Lower Bounding Ru(χ)

Applying as before the genie-aided approach from Sec-
tion II-B, we obtain the following inequality

Ru(χ) ≥
1

K!|Du|
∑

(d,u)∈(Du,SK)

RLB(d,u, χ) (29)

recalling that now d = ((d1, u), . . . , (dK , u)) for each d ∈ Du.
Once again, towards simplifying the expression in (29), we
proceed by counting how many times each subfile W u,g

n,T —
for any given n ∈ [Nu], g ∈ [G] and T ⊆ [K] — appears in
the RHS of (29).

First, we focus on the subfile W u,g
n,Ti

for a given g ∈ [G],
n ∈ [Nu] and Ti ⊆ [K] with |Ti| = t′ for some t′ ∈ [0 : K],
where i denotes the number of users from group g that appear in
the set Ti, namely, i = |{k ∈ Ti : g(k) = g}|. Then, we let k be
one of the (K/G− i) users from group g that do not appear in
Ti and we further assume that the file W u,g

n is requested by such
user k. If we denote by Dg

u,n,k the subset of demands in Du for
which the file W u,g

n is requested by this user k, we can see that

|Dg
u,n,k| =

((
Nu

K/G

)
(K/G)!

)G
/Nu = |Du|/Nu. In addition,

for each d ∈ Dg
u,n,k, all permutations u ∈ SK are considered.

Nevertheless, as already observed, the subfile W u,g
n,Ti

appears in
the RHS of (29), for each d ∈ Dg

u,n,k, only when k is located
before the elements from Ti in the permutation vector u. Since
there is a total of (K−1−t′)!t′!

(
K

t′+1

)
such vectors, the subfile

W u,g
n,Ti

appears |Du|(K−1− t′)!t′!
(

K
t′+1

)
/Nu times in the RHS

of (29) when only the demands Dg
u,n,k are considered. The same

reasoning holds for any of the (K/G− i) users from group g
not appearing in Ti, so the subfile W u,g

n,Ti
appears |Du|(K/G−

i)(K−1−t′)!t′!
(

K
t′+1

)
/Nu in the RHS of (29). In addition, since

this reasoning holds for each g ∈ [G], n ∈ [Nu] and Ti ⊆ [K]
where i ∈ [max(0, |Ti| − K + K/G),min(|Ti|,K/G)], after
some algebraic manipulations we can rewrite the RHS of (29)
as ∑

t′∈[0:K]

min(t′,K/G)∑
i=max(0,t′−K+K/G)

(K/G− i)

t′ + 1
xu
t′,i (30)

where xu
t′,i is defined as

0 ≤ xu
t′,i :=

∑
g∈[G]

∑
n∈[Nu]

∑
Ti⊆[K]:|Ti|=t′,

|{k∈Ti:g(k)=g}|=i

∣∣∣W u,g
n,Ti

∣∣∣
BNu

. (31)

We can further lower bound the RHS of (29) as follows∑
t′∈[0:K]

min(t′,K/G)∑
i=max(0,t′−K+K/G)

(K/G− i)

t′ + 1
xu
t′,i (32)

≥
∑

t′∈[0:K]

min(t′,K/G)∑
i=max(0,t′−K+K/G)

(K/G−min(t′,K/G))

t′ + 1
xu
t′,i

(33)

=
∑

t′∈[0:K]

(K/G−min(t′,K/G))

t′ + 1

min(t′,K/G)∑
i=max(0,t′−K+K/G)

xu
t′,i

(34)

=
∑

t′∈[0:K]

G

(
K/G
t′+1

)(
K/G
t′

)xu
t′ (35)

where xu
t′ is defined as

0 ≤ xu
t′ :=

min(t′,K/G)∑
i=max(0,t′−K+K/G)

xu
t′,i

G
. (36)

After the passages above, we can rewrite (29) as

Ru(χ) ≥
∑

t′∈[0:K]

fu(t
′)xu

t′ (37)

where fu(t
′) is defined as

fu(t
′) := G

(
K/G
t′+1

)(
K/G
t′

) . (38)

C. Lower Bounding R⋆

Finally, we can lower bound the optimal worst-case load
R⋆. Indeed, we have the following

R⋆ ≥ min
χ∈X

1

2
(Rc(χ) +Ru(χ)) (39)

≥ min
χ∈X

1

2

 ∑
t′∈[0:K]

fc(t
′)xc

t′ +
∑

t′∈[0:K]

fu(t
′)xu

t′

 . (40)

Moreover, for any uncoded cache placement χ ∈ X and for
some 0 ≤ β ≤ 1, the following∑

t′∈[0:K]

xc
t′ = 1 (41)

∑
t′∈[0:K]

t′xc
t′ ≤

KβM

Nc
(42)

holds for common files, whereas we have the following∑
t′∈[0:K]

xu
t′ = 1 (43)

∑
t′∈[0:K]

t′xu
t′ ≤

K(1− β)M

GNu
(44)

for unique files. This means that we can consider xc =
(xc

0, . . . , x
c
K) and xu = (xu

0, . . . , x
u
K) as probability mass

functions with constraints in (42) and (44) on the first moment,
where such constraints simply represent the maximum memory
that is available across the caches of all users for common
files and unique files, respectively. In light of the above, we
can write

R⋆ ≥ min
χ∈X

1

2

 ∑
t′∈[0:K]

fc(t
′)xc

t′ +
∑

t′∈[0:K]

fu(t
′)xu

t′

 (45)

= min
β,xc,xu

1

2
(Exc [fc(t

′)] + Exu [fu(t
′)]) (46)

≥ min
β,xc,xu

1

2
(fc(Exc [t′]) + fu(Exu [t′])) (47)

≥ min
β

1

2
(fc(tc) + fu(tu)) (48)

= min
β

1

2

((
K

tc+1

)(
K
tc

) +G

(
K/G
tu+1

)(
K/G
tu

)) . (49)

Notice that, since both fc(t
′) and fu(t

′) are convex and
decreasing in t′, we have (47) and (48) from Jensen’s inequality
and the constraints on the first moment, respectively. The proof
is complete.

V. ORDER OPTIMALITY PROOF

From Theorem 1 we have

R⋆ ≥ min
β

1

2

((
K

tc+1

)(
K
tc

) +G

(
K/G
tu+1

)(
K/G
tu

)) (50)

=
1

2

((K
t⋆c +1

)(
K
t⋆c

) +G

(
K/G
t⋆u +1

)(
K/G
t⋆u

)) (51)

where t⋆c = Kβ⋆M/Nc and t⋆u = K(1−β⋆)M/GNu for some
optimal β⋆. Further, from [18] we have

R⋆ ≤ min
β

max
α

R(β, α) (52)

≤ max
α

R(β⋆, α) (53)

= max
α

(
K

t⋆c +1

)
−
(

Gα
t⋆c +1

)(
K
t⋆c

) +G

(
K/G
t⋆u +1

)
−
(
K/G−α
t⋆u +1

)(
K/G
t⋆u

) (54)

≤

(
K

t⋆c +1

)(
K
t⋆c

) +G

(
K/G
t⋆u +1

)(
K/G
t⋆u

) (55)

where the inequality in (53) holds since the optimal value
β⋆, which minimizes the lower bound in Theorem 1, is not
necessarily the optimal memory splitting for the scheme in
Section II-A. To conclude, we have

1

2

((K
t⋆c +1

)(
K
t⋆c

) +G

(
K/G
t⋆u +1

)(
K/G
t⋆u

)) ≤ R⋆ ≤

(
K

t⋆c +1

)(
K
t⋆c

) +G

(
K/G
t⋆u +1

)(
K/G
t⋆u

) (56)

which implies that the coded scheme in Section II-A is order
optimal within a constant multiplicative factor of 2. The proof
is complete.

VI. CONCLUSION

In this paper, we considered a coded caching setting with
heterogeneous user profiles. Under the system model originally
proposed in [18], we constructed a novel information-theoretic
converse on the worst-case communication load under uncoded
prefetching. We developed the lower bound by taking advantage
of the genie-aided approach introduced in [7]. Interestingly, the
proposed converse bound, jointly with the Scheme 2 from [18],
allows us to characterize the optimal worst-case load under
uncoded prefetching within a constant multiplicative factor of 2.
Although the converse in Theorem 1 holds under the constraint
of uncoded placement, the result in Theorem 2, which provides
a constant order optimality factor independent of all system
parameters, improves the previously known order optimality
results in [20]. Possible extensions could include the study of
other (maybe more complex) heterogeneous user profiles as
well as establishing the exact fundamental limits of the setting
considered in this paper.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1176–1188, jun 2018.

[3] E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of coded caching
with multiple antennas, shared caches and uncoded prefetching,” IEEE
Trans. Inf. Theory, vol. 66, no. 4, pp. 2252–2268, Apr. 2020.

[4] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the feedback
bottleneck of multi-antenna coded caching,” IEEE Trans. Inf. Theory,
vol. 68, no. 4, pp. 2331–2348, Apr. 2022.

[5] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-antenna
interference management for coded caching,” IEEE Trans. Wireless
Commun., vol. 19, no. 3, pp. 2091–2106, Mar. 2020.

[6] K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach
to caching with uncoded cache placement,” IEEE Trans. Inf. Theory,
vol. 66, no. 3, pp. 1318–1332, Mar. 2020.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” IEEE Trans. Inf. Theory,
vol. 64, no. 2, pp. 1281–1296, Feb. 2018.

[8] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, vol. 63,
no. 5, pp. 3108–3141, May 2017.

[9] B. Serbetci, E. Parrinello, and P. Elia, “Multi-access coded caching: gains
beyond cache-redundancy,” in 2019 IEEE Inf. Theory Workshop (ITW),
Aug. 2019, pp. 1–5.

[10] P. N. Muralidhar, D. Katyal, and B. S. Rajan, “Maddah-Ali-Niesen
scheme for multi-access coded caching,” in 2021 IEEE Inf. Theory
Workshop (ITW), Oct. 2021, pp. 1–6.

[11] F. Brunero and P. Elia, “Fundamental limits of combinatorial multi-
access caching,” IEEE Trans. Inf. Theory, Jul. 2022, early access. doi:
10.1109/TIT.2022.3193723.

[12] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158, Feb.
2017.

[13] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity
distributions,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 349–366, Jan.
2018.

[14] C.-H. Chang and C.-C. Wang, “Coded caching with heterogeneous file
demand sets — the insufficiency of selfish coded caching,” in 2019 IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1–5.

[15] C.-H. Chang, C.-C. Wang, and B. Peleato, “On coded caching for two
users with overlapping demand sets,” in ICC 2020 - 2020 IEEE Int. Conf.
Commun. (ICC), Jun. 2020, pp. 1–6.

[16] F. Brunero and P. Elia, “Unselfish coded caching can yield unbounded
gains over selfish caching,” IEEE Trans. Inf. Theory, Aug. 2022, early
access. doi: 10.1109/TIT.2022.3195345.

[17] K. Wan, M. Cheng, M. Kobayashi, and G. Caire, “On the optimal memory-
load tradeoff of coded caching for location-based content,” IEEE Trans.
Commun., vol. 70, no. 5, pp. 3047–3062, Mar. 2022.

[18] S. Wang and B. Peleato, “Coded caching with heterogeneous user profiles,”
in 2019 IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 2619–2623.

[19] C. Zhang and B. Peleato, “On the average rate for coded caching
with heterogeneous user profiles,” in ICC 2020 - 2020 IEEE Int. Conf.
Commun. (ICC), Jun. 2020, pp. 1–6.

[20] C. Zhang, S. Wang, V. Aggarwal, and B. Peleato, “Coded caching with
heterogeneous user profiles,” IEEE Trans. Inf. Theory, Jun. 2022, early
access. doi: 10.1109/TIT.2022.3186210.

