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Abstract—Approximate Message Passing (AMP) allows for
Bayesian inference in linear models with non identically indepen-
dently distributed (n.i.i.d.) Gaussian priors and measurements
of the linear mixture outputs with n.i.i.d. Gaussian noise. It
represents an efficient technique for approximate inference which
becomes accurate when both rows and columns of the mea-
surement matrix can be treated as sets of independent vectors
and both dimensions become large. It has been shown that the
fixed points of AMP correspond to extrema of a large system
limit of the Bethe Free Energy (LSL-BFE), which represents
a meaningful approximation optimization criterion regardless
of whether the measurement matrix exhibits the independence
properties. However, the convergence of AMP can be notoriously
problematic for certain measurement matrices and the only sure
fix so far is damping (by a difficult to determine amount). In this
paper we revisit the AMP algorithm by rigorously applying an
alternating constrained minimization strategy to an appropriately
reparameterized LSL-BFE with matched variable and constraint
partitioning. This guarantees convergence, and due to convexity
in the Gaussian case, to the global optimum. We show that the
AMP estimates converge to the Linear Minimum Mean Squared
Error (LMMSE) estimates, regardless of the behavior of the
variances. In the LSL, the variances also converge to the LMMSE
values, and hence to the correct values.

I. INTRODUCTION

In the Gaussian case, the signal model for the recovery of
a sparse signal vector x can be formulated as, z = Aw,
y = z + v, where y are the observations or data, A is
called the measurement or the sensing matrix which is known
and is of dimension M x N with typically M < N. In the
sparse model case, « contains only K non-zero (or significant)
entries, with K’ < M < N. In Bayesian inference, the Sparse
Bayesian Learning (SBL) algorithm was first proposed by
[1], [2]. SBL is based on a two or three layer hierarchical
prior on the sparse coefficients @. The priors for the hyper-
parameters (precision parameters) are chosen such that the
marginal prior for  induces sparsity, allowing the majority of
the coefficients to tend towards zero. It is worth mentioning
that [3] provides a detailed overview of the various sparse
signal recovery algorithms which fall under /; or ls norm
minimization approaches such as Basis Pursuit, LASSO etc
and SBL methods. The authors justify the superior recovery
performance of SBL compared to the above mentioned con-
ventional methods. Nevertheless, the matrix inversion involved

in the Linear Minimum Mean Squared Error (LMMSE) step
in SBL at each iteration makes it computationally complex
even for moderately large data sets. This complexity is the
motivation behind approximate inference methods.

Belief Propagation (BP) based SBL algorithms [4] are com-
putationally more efficient. A more detailed discussion on the
various approximate inference methods for SBL appears in
[5]. Various studies on the convergence analysis of Gaus-
sian BP (GaBP) can be found in [6]-[9]. Although BP
achieves great empirical success [10], not enough rigorous
work exists to characterize the convergence behavior of BP
in loopy networks. In [11] a convergence condition for GaBP
is provided which requires the underlying distribution to be
walk-summable. Their convergence analysis is based on the
Gaussian Markov random field (GMRF) based decomposition,
in which the underlying distribution is expressed in terms of
the pairwise connections between the variables.

The Approximate Message Passing (AMP) algorithm has been
introduced to further reduce complexity of GaBP. In General-
ized AMP (GAMP), the vector x can have non-Gaussian priors
and the measurement process can be more general than with
additive Gaussian noise. However, the convergence of AMP
can be problematic for certain measurement matrices A. Many
variations have been introduced to help AMP converge, such as
adding ADMM, exploiting part of the singular value decompo-
sition of the measurement matrix in Vector AMP (VAMP) (but
which does not allow to handle n.i.i.d. priors conveniently),
sequential updating in Swept AMP (SwWAMP) which works
almost always, and especially by introducing damping with
typically difficult to determine damping requirements.

A. Contributions of this paper

o We propose a version of AMP with guaranteed conver-
gence, by rigorously applying an alternating constrained
minimization strategy with matched variable and con-
straint partitioning. We apply this strategy to an appro-
priately augmented Lagrangian of the constrained Large
System Limit of the Bethe Free Energy.

e The new AMP, dubbed AMBAMP below, requires to
solve for the mean constraint Lagrange multipliers s
appearing in the posterior mean z(s) to make it satisfies



this mean constraint. This can be solved explicitely in the
Gaussian case considered here.

« We indicate that asymptotically, for a statistical n.i.i.d.
element model for A, the variance computations in
AMBAMP are exact and we indicate an asymptotically
correct iterative scheme to compute them.

o We also show (perhaps for the first time) that the esti-
mates (means) produced by AMP in the Gaussian case
converge to the actual Linear Mininum Mean Squared
Error estimates, regardless of whether the variances con-
verge to the correct LMMSE values or not.

II. APPROXIMATE MESSAGE PASSING

The data model considered in AMP is essentially a linear
mixing model

z=Azx, pw(.’B) ) py\z(y|z) (D

with (possibly) non identically independently distributed
.. . N Lo
(n.i.i.d.) prior pg(x) = [[;_; Pz, (x;) and n.i.i.d. measure-
M . .
ments py,(y|z) = [[i—1 Py, |z (Yr|2x). In Bayesian estima-
tion we are interested in the posterior, which is given by

Paaly (%, 2|Y) = Pa (@) py|2(Y|2) Liz=az) /Py(Y)
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where we have the negative loglikelihoods for prior and
measurements

(2)
1 {z=Az}

faci (lz) = _lnpa:i (xz)v fzk (Zk) = _lnpyk|zk (yk|Zk) (3)

where the equality in case of f., (z;) is up to constants that
may depend on y (and which are absorbed in the normalization
constant Z(y)). We shall consider here the Gaussian case, with
n.i.i.d. Gaussian pg(x) and py|,(y|z) = p,(y—2z), so we have
(neglecting constants)
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We shall need below the vectors 02 = [02 ---02 T, 02 =

x x v

[02 ---02,]". The problem in Bayesian estimation is the
computation of the constant Z(y) in (2) and of the posterior
means and variances. Belief propagation is a message passing
technique that allows to compute the posterior marginals.
However, due to loops in the factor graph, loopy belief prop-
agation may have convergences issues and is furthermore still
relatively complex. AMP is an approximate belief propagation
technique which is motivated by asymptotic considerations in
which the rows and columns of the measurement matrix A are
considered as random and independent, in which case AMP
can actually produce the correct posterior marginals. In any
case, AMP computes a separable approximate posterior of the
form

N M
Qm,z(mv Z) = qx (.’1}) qz (Z) = H qx; (xz) H qzp (Zk) (5)
=1 k=1

Algorithm 1 AMP
Require: y, A, S = A.A, fz(x), f.(2)
1: Initialize: t = 0, ¢, 7}, s'"1 =0

2: repeat

3: [Output node update]

4: Tt=S7!

5: t= Azt — st*I.T;

6: z'=ploi./(os+7l)+y.Tl /(o0 + 7))
7: Tl=o0l.7). (0l + 7))

8: st = (Et —pt)./T;;

9; Tl = (1—1'5./7'15)./7';

._
4
—

Input node update]
11: 7t =1./(ST})

T

-~

122 rl=z'+ 7L ATS
13: it =rt.ol. /(o2 + 7))
14 ti=1tol /(i +T))

15: until Convergence

in which the dependence on y has been omitted. Note that as
in Expectation Propagation, these posterior marginal (approx-
imations) will be of the form

dz; (LE@) = Mgy, (ml) Pz, (‘TZ) y Gz (zk) = My, (Zk) Py |z (yk|'?6€))
where not all dependence on y is shown explicitly. The
factors my, (z;), m,, (z)) are the extrinsic informations on the
respective variables. The AMP algorithm [12], [13] appears in
the table for Algorithm 1. We only consider here Sum-Product
AMP (for MMSE estimation, as opposed to Max-Sum AMP
for MAP estimation).

I11. AMBAMP

AMB is short for ACM-LSL-BFE: Alternating Constrained
Minimization of the Large System Limit of the Bethe Free
Energy. As we shall see, AMBAMP uses most of the same
updates as AMP, but AMP does not rigorously follow the prin-
ciple of alternating minimization (block coordinate descent)
esp. in the presence of constraints. It has been shown that any
fixed point of the AMP algorithm is a critical point of the
following constrained minimization of a Large System Limit
(LSL) of the Bethe Free Energy (BFE) (see [13] and references
therein):

min  Jrsr-Bre(Ge; ¢z, Tp)
qx,9z,Tp

s.t. E(z]gz) = A E(z|qz)
7, = Svar(x|qy)

where the LSL BFE is given by
JLBFE(q:cv(Iszp):D(QH:He_fm)'f'D(QZ'|e_fz)+HG(QZ7Tp)7
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and where D(q|lp) = E(In(})|q) is the Kullback-Leibler
distance (KLD) and Hg(gz,7p) is a sum of a KLD and
an entropy of Gaussians with identical means but different
variances. Here E(z|q,) denotes the expectation of the vector



z using the distribution g, and 7, = [7,, - - - T, |7 denotes a
vector of variances.

The LSL BFE optimization problem (8) can be reformulated
with the following augmented Lagrangian

min  max L(qg, ¢z, Tp, u, s, Ts) With
w1z Tpy U S,Ts

L = D(gelle™7*)+D(qalle™"*)+ He (g2, 7p)

+ST(E(Z|QZ) —-A E(¢|Q:c)) - %TE(TP - Svar(a:|qw))

T3 E@lge) —ul2, + ] Ezla,) — Aull?,
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where s, 7, are Lagrange multipliers, and 7 = 1./(ST'7)
is just a short-hand notation for quantities that depend on 5.
We also use the notations: ||u|? = >, u?/7;, element-wise
multiplication as in s.7 and element-wise division as in 1./,
where 1 is a vector of 1’s.
We interpret the constraints as follows:

E(z|gz.) = A E(x|q.) is interpreted as a constraint on
E(z|¢z), and
T, = Svar(x|g,) (which is a vector of the individual

variances) is interpreted as a constraint on 7,. To interpret
constraints as constraints on a subset of the variables, such
subset should be rich enough to allow to satisfy the constraints.
Due to the updating order, the other variables will be fixed
actually as can be seen further. So the alternating optimization
of (9), which corresponds to alternating minimization of the
constrained problem (8), should be carried out in the following
way. In the partitioning of the variables to be updated, the
Lagrange multipliers for the constraints in which a given
subset of variables is involved, should be optimized at the same
time as that subset of variables. Such alternating optimization
policy guarantees the cost function to decrease at each update,
and hence to converge, to at least a local optimum. We propose
to follow the following updating order

{¢z,8} = {u} — {TpaTs} = {Ga}- (10)

In other words, at iteration ¢ we have the following sequence

{q,s'} = argn;inmsaxL(qi_l, Gz, T;_l,ut_l,s,TSt_]()l)

{u'} = argmuinL(qtm_l,qi,rﬁ‘l,u,st,Tst_l) (12)
{rymi} = argminmax L(gy " a5, 7w’ 8", 7) - (13)
{4z} = argmin L(ga, 45, 75, u', 8", 75) (14)

A. Update of {qqz,s}
The most tricky part is the update of {¢,,s}. To that end,
consider

t—1 t—1 t—1
L(g " Gar T,

= D(qg|le™7=) + Svar(z|q,). /7t

+sT E(z|g,) + 3| E(zlg,) — Au"1|2, ., + const.
Tp

= D(gz|le™"=) + L E(2"2|q,). /Tt

—(E(2lgz)" (Au'~t)./7i~! — ) + const.

= D(galle™ %) + 3 E(||lz — P'(8)[12:-1142) + const.

— t—1
U »S, T )
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where const. denotes constants w.r.t. z and where we intro-
duced

pi(s) = Ault — s.7']§_1 . (16)

This cost function is separable, hence we can continue per
component. Note that the last expression in (15) can be
interpreted as a single KLD:

rginD(qzngik/Zik) = ¢, =95 /7,

k
Zt (sk) = [ gL (zrisk)dzr, —Ingl (zx;se) =

2
fan(21) + T;%(%" —zp Ag.utT) + 2 81
k
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where Aj . denotes row k of A. Note that the partition
function Z;k acts as cumulant generating function:

dln Zt _
T os E(zklds,) = Ezlpk(sk), 75, ) = Zi(sk)
9?InZt
952 b= Var(zk|P§c(8k)aT£k_l) =7t (sk)
i
63an§k E( E )3
———F5 2 =E(z —Ez
ds3

(18)
To satisfy the mean constraint in (7), we require s/, to satisfy

B =Zk(sk) = Ap. ' Tl =1L (s))

19)

The second derivative in (18) being positive shows that Z} (sy)
is a monotonically increasing function. Actually, we shall see
that in the Gaussian case here, 2 (sg) is linear and 77 is
constant as a function of si. Hence the following first-order
Taylor series expansion is exact:

Z(sk) = (s D) = (s ) (s — s 1) = AR (0)
from which we get
1

sh=s, ' — - (Ap.2 T =2 (s )
2k

2n

which is very similar to a Method of Moments (MM) update of
the Lagrange multiplier (which allows the MM to converge).
Actually, we can recognize from the last expression in (15)
that the extrinsic for z is Gaussian:
1

Inml(z) = -3 ||z—pt(s)Hi;71 (22)
which together with the Gaussian prior leads to a Gaussian
posterior via the Gauss-Markov theorem

qt(z) = N(z; 2%, diag(7!)) with
2'(s) = p'(s).00. /(o] + 7,71 +y.r (e + 77
=0l (el + 7))

(23)
where p'(s) is defined in (16). This shows that the posterior
mean is linear in s and that the posterior variance is constant
w.r.t. s. The posterior variance expression leads to line 8 in
Algorithm 2. Line 4 follows from (16) with p! = p’(s‘~1).
Line 5 follows from (23). Line 6 corresponds to the mean
constraint in (19). Line 7 finally follows from (21).



B. Update of u
From (9), (12), we get

L NV AT
(qm t qf g A /\3—1 A 2 (24)
— L&t —ull?, + HAF — A2, + const.

where const. denotes constants w.r.t. w. The minimizer is
obviously

ul =2

=1 (25)

Note that due to the update of (only) {g¢,,s} just before, we
have z! = A Z'~! which greatly simplifies this update of u.
In contrast to [14] where a complex update of u is required
which is not compatible with the fast AMP style algorithms.

C. Update of {1, Ts}

Due to the preceding update of wu, the two quadratic terms
shown in (24) are now zero. As a result, the dependence of
those terms on 7, T via the weights disappears for the update
of {7, 75} which comes next. Hence the terms of interest in
(12) for (10) are now

L(gy ™t gl mp, ul, st )

= Hg (qz»Tp) - l"'T(Tp -

t—1
3 ST,

) + const. = const.+

t—1
E TSk Tpk_ ky: Ty )

(26)
where const. denotes constants w.r.t. {7,, 7s }. The optimiza-
tion yields

M 7t
;Z Tz
2

k=1 Tpw

+In(27 7, }

aL t t—1
ank =0 = Tpr = Si.T 27
oL 1, 7t 1
=S — =) =0
0T, 20 15 T
1 Tt
= 1, = 1-=5) (28)
Tpk Tpk
(29)

D. Update of qy
For the update of ¢, in (14) finally, consider the relevant
terms in the augmented Lagrangian (and remember that 7! =
1./(STxl) or 1./7t = ST7t) (13)

L(qe, 4, Ty, ut,s', TL)

~ D(gulle- fm) —s'TA E(2]g) + 577 S var(z|qa)

+1|| E(z|gz) — ut||,2,_ﬁ + const.

= D(galle™=) + 3 (1./7))" E(z.z|02)

—(ut. /)T E(x|qe) + const.

= D(galle” =) + 3 (1./7))" E(z.2|02)

—(u! + 7L ATSHT(E(x|qe ). /L) + const.

= D(qzlle™"=) + 5 E([|= — r'|

—s'TA E(x|gz)

-Qr; |gz) + const.
(30)
where const. denotes constants w.r.t.  and

rt =ul + T,’f.ATSt . 31

Algorithm 2 AMBAMP

Require: y, A, S = A.A, fz(x), f.(2)
1: Initialize: t = 0, 2¢~1, 7171, w1, 7';_1, st-1=0
2: repeat
3: [Output node update]

4: pt =Aut~t -t 71

si 2'(s'Y) = (ploy +y.r ) (o) + )
6: z'=7'(s!) = A:Et !

7: mi=ol1) 7/ (0} +‘";§ b
g st=st"1— (2t - Af( )./t
9: ul = zt-1

10: [Variance matchlng]

11: T, =ST"

122 Ti=(1 —‘rt [T T

13 Ti=1. /(ST )

14: [Input node update]

15: rt =ul + 7L ATs

16: zl =rt.o?. /(o2 + 7))

7. 1t =1tol./(a? + 1))

18: until Convergence

This cost function is separable. We get per component
Tl
Zy, = | 9%, (xk) da
—Ingg, (@) = fou(2r) + go(@n = i) = 7]

Actually, we can recognize from the last expression in (30)
that the extrinsic for @ is again Gaussian:

(32)

(33)

1
nmty(2) = —3 1z = x|,

which together with the Gaussian prior for x leads to a
Gaussian posterior via the Gauss-Markov theorem

(@) = N(z; 2", diag(7;))
zt =rt.ol. /(o2 + 1))

i)

with
(34)
Tt =71l.02./(o
where r! is defined in (31).
IV. AMBAMP LARGE SYSTEM ANALYSIS

In the Gaussian case, we have investigated Large System
Analysis in [15] using large random matrix theory. In this
analysis, the entries of A are considered n.i.i.d. with zero mean
and variances according to S = A.A. An asymptotic regime
is considered in which the two dimensions M and N of A
tend to infinity at fixed ratio. According to [13, Appendix A],
under some conditions the approximate posterior variances 7,
T, produced by AMP converge to the solution of the following
coupled equations

1.7, =02 +S"r,, 1./1. =02 +ST,. (35)

In this asymptotic regime, these variances converge to their
correct LMMSE values, namely

1. = diag((D(1./02) + AT D(1./02)

A)"hH. (36)



V. AMP MEAN CONVERGENCE TO LMMSE

By eliminating the variables p, s and zZ in AMBAMP, one can
identify that the mean estimate & in ABMAMP satisfies the
following second-order recursion

= D(¢7'2./(0'2 )zt~ —

D(rt) ATD(1./7t1) AZ'~2 4 D(rt

D(r') ATD(1./7!) Az
YATD(1./02)y
(37)

where D(7) = diag(T) denotes a diagonal matrix con-
structed from a vector. One can note that the dynamics in
the AMBAMP algorithm are different from those of the AMP
algorithm. At convergence we can solve for the steady-state
value Z from (37). We get

D(1./7;)(I-D(o%./(03 + 7)) @
+AT(D(1./7.) — D(1./7,)) AZ = ATD(1./02) y
= %= (D(1./02) + AT D(1./02) A)'ATD(1./02) y

(38)
which is the LMMSE estimate. This LMMSE steady-state
value for the mean is also valid for the original AMP algo-
rithm, if it converges.

VI. CONCLUDING REMARKS

To arrive at the convergent AMBAMP algoritrhm, a particular
formulation of the Bethe Free Energy (BFE) criterion has been
considered with a judiciously chosen Method of Moments
extension to incorporate equality constraints quadratically. The
Lagrangian of the resulting augmented BFE is then introduced.
The alternating optimization of the resulting cost function
only leads to the desired algorithm of low complexity when
alternating optimization is done in one particular order. Other
updating orders would also lead to convergent algorithms but
not to low complexity updates.

We have drawn attention to an approach to perform alternating
constrained optimization. The approach consists of not only
partitioning the variables appearing in the cost function, but
also to partition the constraints according to this variable
partitioning and to identify for each constraint subset the
variable subset that can be used to satisfy these constraints.
In the alternating optimization of the cost function w.r.t.
each variable subset, the possible corresponding constraint
subset should be involved in the constrained optimization
sub-problem. This same alternating constraint optimization
approach is widely applicable. It has for instance been used in
beamforming design where normalized beamformers can be
updated separately from the signal powers, which get updated
while satisfying the power constraints, leading to waterfilling
type solutions [16].
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