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Abstract—Identifying an attacker is a key factor to mitigate
ongoing attacks. To evade localization, a single compromised ma-
chine can hide for months behind millions of available residential
IP proxies. Without knowing the IP address of the machine,
registration-based geolocation methods cannot be applied.

Measurement-based methods have been proposed to estimate
the location of a target without using its IP address. These
methods use Round Trip Time (RTT) values and network speed
modeling. They estimate a distance between the target and
other observation points with known locations, called landmarks.
However, most of these methods require additional information,
whether it is on the topology of the network or the characteristics
of the landmarks.

In this paper, we present ImMuNE, a measurement-based
technique which can estimate a location with only a few Round
Trip Time measurements between a target and landmarks, even
when some of these measures are inflated by temporary network
congestion.

Leveraging a previously made measurement campaign, we
present promising results based on 11 millions TCP connections
collected over a period of 4 months.

Index Terms—RTT, multilateration, Geolocalisation, Internet
measurement

I. INTRODUCTION

Scraping bots are a plague for online companies. They
continuously query websites, increasing the costs for their
owners without generating any revenue [1]. Commercial anti-
bot solutions exist to counter this threat. They recognize and
block mischieving IPs. However, in recent years, scrapers have
started using the services of Residential IP proxy (RESIP)
providers. This enables them to hide their machine behind
millions of IPs belonging to real residential users, helping them
to increase stealthiness and avoid detection.

The goal of our work is to locate such scraping machine
hiding behind a RESIP provider. This will help us in better
understanding the ecosystem of the scrapers, their main actors.
A precise localization is not required at this stage. Knowing
from which part of the world they launch their attacks would
already greatly help those fighting against them.

There are two types of internet geolocalization tech-
niques: registration-based and measurement-based [2]. The
first method uses a database. This database contains previously
known data which link a block of IP addresses to a location.
The second method uses Round-Trip Time (RTT) measure-
ments to apply a process called multilateration.

The first approach is not applicable to our problem since
we do not know the IP address of the scrapers. We must thus
consider measurement-based ones.

Fig. 1. Examples of multilateration. The point T is the ground-truth location
of the target. The triangles are landmarks, the centers of circles. The radius
of a circle is the distance between the landmark and the target, considering an
average packet speed of 80 km/ms. Methods seeking the common intersection
of all circles lead to point A as a solution; CBG [3], another classical method,
returns instead the whole green area, from which its centroid B can be derived.

The idea of multilateration is to measure a distance between
a target and several other observation points, called landmarks,
whose location are known. From these, we can infer the
location of the target (see Fig. 1). Instead of distances, we
can only measure how much time it takes for an exchange of
packets between two machines, i.e. a round-trip-time (RTT). If
we know the speed of the packet, we can derive a distance
from this RTT. Unfortunately, the RTT can be affected by
many elements, such as the path taken, and so does the speed
(e.g. because of network congestion). We must thus find a
solution that would be resilient to, possibly, large errors in the
estimation of the distances used.

Section II motivates the research done. Section III discusses
why existing solutions are not satisfactory for our problem.
Section IV shows that the distribution of packet speeds in our
dataset is too volatile to enable a satisfying modeling, which
deters the use of existing techniques. Section V describes
our new measurement-based geolocalization method, called
ImMuNE, and how it addresses our needs. Section VI presents
our results. Section VII concludes the paper and offers some
ideas for future work.

II. MOTIVATION

In [1], Chiapponi et al. present the impact of residential IP
proxies on web scraping campaigns. In [5], the same authors
use the semantics of the received queries to group searches
issued by different IP addresses, leading to the conclusion that



Fig. 2. RESIP proxies infrastructure. In this picture, the client is the web
scraper. (taken from Chiapponi et al [4])

a single machine is likely behind specific campaigns but its
location remains a mystery, which we want to solve.

The connections between the scrapers, the RESIP providers
and the web servers are represented in Fig. 2. In [4], Chiapponi
et al. explain how a web server can measure the values T1
and T2 represented in that Figure. It is very important to
understand that there are a very large number of gateways
(several millions), located all over the world and that, for each,
we have a very small amount of T1 and T2 measures. The
machines acting as gateways are diverse, ranging from servers
to cell phones. The quality and stability of their access to the
network are extremely variable. Furthermore, the packets sent
(resp. received) by a gateway to a client must pass through
the RESIP provider infrastructure which can be far away from
the gateway and/or the client. In other words, the imposed
trajectory through the RESIP infrastructure is likely to increase
the value T2 and, thus, the error in the estimated distance
between the gateway and the client.

Our end goal is to use the numerous gateways (GWi) as
landmarks to find the location of the scraper (client). We face
two major difficulties to solve that problem: i) the poor quality
of our landmarks, ii) the unknown latency introduced by the
RESIP infrastructure.

As we will see, existing solutions cannot cope with the
kind of errors introduced by our landmarks. We must thus
address that first challenge before considering the second one.
Therefore, in this work, we seek a robust method capable of
geolocalizing a machine thanks to a number of measures of
varying quality. To do so, instead of using the T2 measures,
we will use the T1 measure, not impacted by the RESIP
infrastructure. We rephrase our problem as follows: how to
use the gateways as landmarks to geolocalize a given server?
Since we know the real location of the servers, we can assess
the quality and stability of our method. This is what we do
in this paper and we plan on leveraging the produced new
method to address the second challenge in a future work.

To validate experimentally our new method, we use the
dataset built by Chiapponi et al [4]. It has been built thanks
to 22 servers located in eight different places, all around the
world (India, Australia, Japan, Europe, Canada, USA, South
Africa, and Brazil). Connections have been collected over
almost a 4 months period ((12/01/2022-01/05/2022), leading
to a dataset of over 11 millions of unique gateway/server pair.
The locations of the RESIP gateways were obtained from the
MaxMind Ip-to-location database [6]. [7] [8] have shown that
such database can encounter serious errors, which add to the

uncertainty of our measurements.

III. STATE OF THE ART

Several measurement-based location methods have been
proposed in the past. In [9] and [10], the authors aim to
use measurement-based location to complement IP block-to-
location database methods and need the IP address. In our
use-case scenario we do not assume to have access to the IP
address. Other methods are restricted to a limited geographical
area (such as China [11] [12], or Europe/US [13] [14] [15]
[16]) and need information like network topology to model the
speed. All these information are not accessible in the context
of targets hidden behind a proxy, as ours.

Other works do not work on the global scale because they
need close landmarks [17] [18], sometimes inside the very city
of the target, whereas our landmarks can be all over the world.
The further away the landmarks are, the larger the RTT will
be, and the more cumulative the error will be. The radii of the
circles will then have a very large error and the results will
then be affected.

Some methods which only need the RTT exist and find ways
to estimate a distance from this metric [19] [3]. [20] conducted
a study to determine an average global packet speed, giving a
result of about 80km/ms with a good coefficient of determi-
nation (0.9794). However, as [21] pointed out, this study has
several biases :

• The landmarks were taken from PlanetLabs which nodes
have better connectivity than mainstream nodes.

• Most of PlanetLabs nodes are located inside the US and
Europe, which could lead to a geographical bias.

• It was possible to conduct many measures between a sin-
gle server-landmark pair, in order to closely approximate
the minimum value, i.e. the one without congestion delay.

In their paper [21], Weinberg et al compared the most
prominent measurement-based location methods from the lit-
erature, plus two variations of their own design, at the scale
of the whole world. They clearly show that the most efficient
solution was Constraint-Based Geolocation (CBG). CBG con-
sists in an overestimation of the speed, and the intersection of
all circles should give the area of the target. From this, they
implemented CBG++, to fit CBG on a global scale.

The goal of their work is different from ours: they want to
check that a proxy is within the country it is claimed to be
in, and therefore see if it is in the ”solution zone” proposed
by CBG++. This promising solution cannot be used in our
framework because of several issues :

• In CBG++, the targets are assumed to be within datacen-
ters. This information is used for an important step of
their analysis, called the disambiguation phase. That is
not necessarily true for our final use case.

• The landmarks they use are RIPE anchors [22], known to
be very stable, reliable and well connected. In contrast,
our gateways are often, according to RESIP providers,
mobile phones with unknown connectivity in varying
conditions.



Fig. 3. Distribution of the packet speed, for connections from different
continents to a server located in India (Y axis is the amount of connections
observed with a given speed)

Fig. 4. Distribution of packet speed, from the connections among all servers
(Y axis is the amount of connections observed with a given speed)

• It is important to notice that unlike in previously pub-
lished experimental environments, the gateways (our
landmarks) establish a single TCP connection of short
duration to the target (the server). In the very few cases
where we observe the same IP more than once, we do
not know if it is associated to the same device, in the
same operational conditions. In other words, we cannot
accumulate a large number of measurements for each
landmark to reduce the error possibly caused by, e.g.,
temporary network congestion.

• They obtain very good results at the global scale thanks to
a 2 phases method. They first identify the target continent,
then rely on local landmarks to refine the geolocation.
This is only possible if all the RTTs are reliable and none
grossly overestimated. In our study, this is unfortunately
not the case.

• They rely on an ”average speed” which, as we will show
in the Section IV, does not really exist in our use case.

Enriched by the past results, we have produced an original
method, called ImMuNE, which can cope with all the con-
straints described above and give us a good approximation
of the position of the servers, while using very poor quality
landmarks.

Fig. 5. CDF of the packet speed

IV. ASSESSMENT OF THE PACKET SPEED

As mentioned in section III, several methods were proposed
to model the speed of packets between 2 points. All these
techniques assume that such mean value exists for the speed
of a packet between each pair of landmark and targets. Our
experimental results, unfortunately, dispute this claim.

Fig. 3 shows the distribution of the average speed between
a server located in India and landmarks located everywhere
in the world. This distribution was built by taking all the RTT
measurements acquired between this server and the landmarks
in our dataset. Using MaxMind IP-to-Location database [6],
we gathered the location of each landmark. The relative speed
of each connection was simply taken by dividing half of the
RTT by the ground-truth distance between the landmark and
the server.

We can see a very large range of values. The CBG++ solution
proposed by [21] makes the assumption that there are no
packet speed below 84km/ms but we have a lot of speeds
under it! Fig. 5 shows that 40% of the computed speeds are
below this value. Most speeds from Africa to India are even
below 60km/ms, as shown in Fig. 3.

Other servers, even in Europe or in the USA, lead to a
similar packet speed distribution. Fig. 4 shows the overall
distribution computed over all our servers.

Due to this uncertainty, the final error on the distance is
far too large to consider one value alone as acceptable. The
resulting error prevents existing algorithms from performing
a correct multilateration, and gives unsatisfactory results (see
section VI).

There is no average speed, because each speed depends on
the landmark-target pair. Thus, using an algorithm that requires
to use the same speed for all landmark-target pairs is deemed
to fail.

V. OUR IMMUNE SOLUTION

A. Iterative Least Square Multilateration

The area estimation proposed by CBG++ is often too big
to narrow the research to a specific point, covering more than
half the surface of the earth in more than 40% of the time [21].
The multilateration method used by CBG/CBG++ is therefore
not optimal for our study framework.

The multilateration solution we choose is based on the
Iterative Least Square (ILS) method [23] [24]. The principle
of the Least Square method is to find a point that minimizes



the squared error between this point and our different circles.
The idea is to find a point ”close enough” to all the circles.

The solution is found iteratively. The detailed method of the
resolution is explained in [23] .

This method has been used before in other geolocation
settings, where the scale was reduced and the error was much
smaller [23] . The challenges imposed by our study setting led
to an improvement of ILS presented later in this section.

B. 3D ILS

To our knowledge, ILS-based multilateration was only per-
formed in a context where the landmarks and the target are
relatively close [23] or at least close enough to neglect the
roundness of the earth and to assimilate it to a plane.

At our scale, it is logical to consider the spherical aspect
of the earth. Thus, we implemented a 3D version of ILS.
However, the addition of a third dimension was discouraging,
both in terms of lower accuracy (see Fig. 10) and much higher
complexity. The reason is that the intersection of the spheres
is not necessarily on the surface of the earth. Reprojection
onto the earth’s surface then introduces an additional error
that can be very large (on the order of 5000kms in our
experiments). Based on these results, we made the choice to
do the multilateration on a 2D projection of the earth. The
impact of this projection is discussed in Subsection V-D.

C. Multiple ILS : Using several speeds per landmark

This section presents the modifications of the ILS-based
multilateration that we have made to adapt it to our problem.

We started using ILS with the speeds proposed by previous
authors. Our related distances were sometimes close, some-
times very far from the ground-truth. As we saw in section IV,
this happens because the speed is dependent on the landmark-
server pair. In our final problem, this will be the web scraper-
landmark pair which is, clearly, unknown since the scraper is
the unknown element that we try to identify.

Instead of attributing one unique speed to a given landmark-
server pair, we can attribute several ones. The idea is that if
we are able to determine the perfect speed for each connection
between each landmark and each server, then we will have the
right solution. Then, if we add bad speeds (i.e. more circles
centered around the same landmark), the good circles will
still be there, and the others will only add marginal noise.
The intuition is that the optimal solution, as defined by the
ILS method in Subsection V-A, remains the same even with
the addition of the “erroneous” circles. The procedure is an
iterative one and does not lend itself well to an analytical
proof of correctness though. Instead, we provide a thorough
experimental evaluation of the application of the method with
real world data representative of the problem we want to solve.

D. Impact of the projection centering on the estimation

A projection on a flat surface necessarily introduces errors,
but this error is different depending on the chosen projection.

In our case, we must minimize the distortion around the
equator, because most landmarks are located between 40S and

Fig. 6. Example of a misplaced circle. Because of the centering of the
projection, the solution will try to minimize d2 instead of d1.

60N, as pointed out by [25] and also done in [21]. We also
need to project the whole earth. We chose the Equirectangular
projection. This projection distorts the distances at the poles,
so we expect to have a latitude error higher than the longitude
error. Since the landmarks are more likely to be close the
equator than very close to the poles, this is acceptable in our
case.

The centering of the projection also affects the result. Fig. 6
illustrates the problem of the 2D projection. In this figure, the
red dot in the USA is the target, and the green triangle in
Japan is one landmark. The circle C2 is the circle representing
the distance between this landmark and the target. C2 is
projected, and we know that in reality it should end where C1
is represented. Unfortunately, C1 is lost in the 2D projection.
The target is at the distance d1 of that circle, but the ILS will
see it at the distance d2, which introduces a large error.

Fortunately, we can find a way to select the correct pro-
jection. As explained, ILS searches the point with the least
squared distance to the circles. The implementation of ILS we
choose [24] returns several values : the estimated location, but
also its error (i.e. least squared distance to the circles), and a
radius which is correlated to the uncertainty of the result. We
can use these last two values as a confidence value, called κ.

For a given set of landmarks and a given target, we have
used three distinct projections. In the first one, Europe is in the
middle of the rectangle whereas the American continent (resp.
China) is in the center of the second (resp. third). We apply
the ILS method to each case and discover that the confidence
value κ is best when the ground-truth location of the target
is located in the center of the projection. That experiment
has been repeated a very large amount of times and Fig. 9
highlights how, by using this indicator, we can select the right
projection and minimize the error with respect to the ground
truth of the target.

VI. RESULTS

To test our model, we apply our method for each of
the targets (the servers) at our disposal. The method is as
follows. First, we select the amount of landmarks to be used.



Fig. 7. Box plot showing the statistics of the overall location estimation error

This number can be among the following values : [10, 20,
30, 50, 100, 200]. We use 3 different speeds per landmark,
namely 40, 80 and 120km/ms. Then, we do the multilateration
using ImMuNE with 3 projections each time, centered around
Europe, USA and China, to tackle all cases discussed in
Subsection V-D. Relying on the κ estimation explained in
section V-D, we select the assumed best location estimation.
Since we know the exact location of the target, we compute
the error between the estimated and the real location.

We repeat this 10.000 times, for each server and for each
number of chosen landmarks. We manage to locate every target
with an error of less than 1000kms in 50% of cases using only
30 landmarks (see Fig.e 7). Some servers like Japan or India
(see Fig. 8) are located with an accuracy of about 500kms to
their ground-truth location. This enables us to clearly identify
these countries with less than 30 landmarks, no matter where
they are placed on the planet.

As expected in Subsection V-D, the longitude errors are
smaller than the latitude errors. This difference increases as
one moves away from the equator. Thus, the errors in South
Africa are larger than the errors in India, closer to the equator.
The errors in longitude are small enough for the problem we
try to solve, with less than 1000km in more than 60% of
cases and less than 2000km in 95% of cases. Fig 9 shows the
Cumulative Distribution Function (CDF) of the longitudinal
error for all servers, with 50 landmarks per multilateration and
using 1000 multilaterations per server, with randomly taken
landmarks for each multilateration and in three situations. The
top line represents the ideal case when we always chose the
best projection to find the location, knowing the ground truth
location. The line underneath it, close to it, is computed when
we use our κ estimator to identify which of the 3 projections to
use to identify the location. The third line, below, is computed
with a single projection always centered on Europe. This
highlights the impact of the projection and the effectiveness of
the κ estimator, as the results are far better with an adaptive
centering using the κ estimator than without.

A 1000 kms approximation might seem a big error for a
geolocalization solution but it is perfectly acceptable for our
use case. Indeed, as a first step, we want to know in which

Fig. 8. Box plot showing the statistics of the location estimation error, when
the target is in India

Fig. 9. CDF of the longitudinal location error, using centering suggested
by the κ estimator, the best ground-truth centering, and the same centering
(Europe) for all targets.

part of the world the web scraper is located (e.g. Russia VS
USA, Europe VS China, etc.). For regions where mitigation
is possible, then, in a second phase, a selection of landmarks
from that region can be selected to get much better results, as
proposed in previous approaches ( [21] [18] [16])

We also observe a disparity between the different hemi-
spheres. Indeed, despite an equivalent distance to the equator
between South Africa and Japan, we observe a bigger latitude
error for South Africa (-500km for Japan and about 3000km
for South Africa). A possible explanation is the less recti-
linear internet link between the continents of the Southern
Hemisphere (e.g. regarding submarine cables). For example, a
US-South Africa link via the Atlantic passes through Europe,
resulting in a larger RTT and thus a far larger associated circle
than it should be theoretically.

[26] points out this issue in detail. This problem takes place
especially for African location. Packets sent to these locations
take large detours and this results in large measurement
errors. The same problem exists as well for other types of
transcontinental links, such as the Australia-South America
route which pass by the USA. However, this should not be to
much of a problem in our case since these regions have not
historically been known as safe harbors for scrapers machines.

Last but not least, Figure 10 confirms that with the iterative



Fig. 10. Median error on the location estimation (considering the combination
of all target servers) Y axis is the longitudinal error in kms.

least square technique, a 2D projection (bottow lines) leads to
better result than with a 3D approach (top line). It also shows
the consistently better results obtained when using several
speeds per landmark as opposed to the average 80km/msec.

VII. CONCLUSIONS AND FUTURE WORK

To our knowledge, our method is the first to achieve the
kind of geolocalisation we need in terms of connectivity and
stability with very unreliable landmarks about which we have
no additional information. We are now confident that we can
use the gateways, as described in our RESIP environment, in
order to localize the servers they talk to.

It remains to be seen whether we can leverage this newly
produced method in order to find the location of the scrapers.
Whereas we have no doubt about our method itself, the
complete absence of knowledge of the inside architecture of
the RESIP infrastructure does not enable us to ensure that we
will be successful in tackling the second challenge. We leave
this as further work. If we are successful, we will then be able
to minimize our geolocalization error by enriching our solution
with a multi steps approach, as proposed in some earlier work
in other contexts.
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[26] R. Landa, J. T. Araújo, R. G. Clegg, E. Mykoniati, D. Griffin, and
M. Rio, “The large-scale geography of internet round trip times,” in
2013 IFIP Networking Conference. IEEE, 2013, pp. 1–9.


