The bots arms race on airlines booking websites

Elisa Chiapponi, Olivier Thonnard, Mohamed Fangar, Vincent Rigal
{elisa.chiapponi, olivier.thonnard, mohamed.fangar, vincent.rigal}@amadeus.com
EU MINI AVTECH EXCHANGE
21st September 2022
Who are we?

Elisa Chiapponi, Phd student Amadeus Global SOC and EURECOM

Finding practical means to defeat scraping bots
Understanding their ecosystem (actors, techniques, infrastructure)

Global SOC members Olivier Thonnard, Mohamed Fangar, Vincent Rigal
Academic supervisor Prof. Marc Dacier
Agenda
Which weapons are they using?
What can we do now?

The battle against scrapers
- Which weapons are they using?
- What can we do now?
1. The battle against scrapers
 - Which weapons are they using?
 - What can we do now?

2. WebApp Honeypot
 - Is it possible to lure attackers?
1. The battle against scrapers
 - Which weapons are they using?
 - What can we do now?

2. WebApp Honeypot
 - Is it possible to lure attackers?

3. RESIP detection
 - Is it possible to detect scrapers taking advantage of Residential IP addresses?
The battle against scrapers
Web scraping is the periodical or continuous retrieval of accessible data and/or processed output contained in web pages.

OWASP automated threats to web applications
Why is scraping a problem?
Why is scraping a **problem**?

- CPU cost

E-commerce websites
Why is scraping a problem?

- CPU cost
- Storage cost

E-commerce websites
Why is scraping a problem?

- CPU cost
- Storage cost

E-commerce websites
Why is scraping a problem?
Why is scraping a problem?
Why is scraping a problem?

E-commerce websites

Scrapers

Ticket fares
Seat availability

Why is scraping a problem?
Why is scraping a problem?

- CPU cost
- Storage cost
- Scrapers
- Requests
- Purchases

E-commerce websites

Scrapers
Why is scraping a problem?
Why is scraping a problem?

- E-commerce websites
- Scrapers
- Slow connections
- Server down
- Requests
- Purchases
Why is scraping a problem?

- E-commerce websites
- Scrapers
- Slow connections
- Server down
- Requests
- Purchases
Why is scraping a problem?
Why is scraping a problem?

- E-commerce websites
- Scrapers
- Slow connections
- Server down
- Requests
- Purchases
Why is scraping a problem?
Call to the army

2022 Imperva Bad Bot Report | Evasive Bots Drive Online Fraud
Call to the **army**

Scrapers → Users → E-commerce websites
Call to the army

Scrapers

Detection and mitigation

Anti-bot companies

E-commerce websites

Users
A persistent battle

Anti-bot companies

Scrapers
A persistent battle

http

HTTP header anomaly detection

Browser fingerprinting

Anti-bot companies

Scrapers
A persistent battle

http

HTTP header anomaly detection

Browser fingerprinting

Anti-bot companies

Scrapers

Browser emulation frameworks

Scrapy

PhantomJS
A persistent battle

Browser fingerprinting

HTTP header anomaly detection

JS and cookies challenges

Human interaction check

http

Anti-bot companies

Scrapers

Scrapy

PhantomJS

Browser emulation frameworks

Persistent battle

JS

AmaDeus
A persistent battle

http

HTTP header anomaly detection

Browser fingerprinting

JS and cookies challenges

Human interaction check

Anti-bot companies

Scrapers

Automated browsers, cookies and JS support

Browser emulation frameworks

Scrapy

PhantomJS

JS

A persistent battle
A persistent battle

http
- HTTP header anomaly detection
- Browser fingerprinting
- JS and cookies challenges
- Human interaction check
- CAPTCHAs

Scrapers
- Scrapy
- PhantomJS

Anti-bot companies

Automated browsers, cookies and JS support

Browser emulation frameworks
A persistent battle

http

- HTTP header anomaly detection
- Browser fingerprinting
- JS and cookies challenges

Anti-bot companies

- Human interaction check
- CAPTCHAs

Scrapers

- Automated browsers, cookies and JS support
- CAPTCHA farms
- Browser emulation frameworks
- Scrapy, PhantomJS

JS
A persistent battle

anti-bot companies

- **HTTP header anomaly detection**
- **browser fingerprinting**
- **JS and cookies challenges**
- **Human interaction check**
- **CAPTCHAs**
- **Machine learning**
- **Wasting bots resources**

scrapers

- **Scrapy**
- **PhantomJS**
- **Browser emulation frameworks**
- **Automated browsers, cookies and JS support**
- **CAPTCHA farms**

APIs

- **xhr requests**
- **cookies**
- **splash pages**
- **fingerprinting**
- **anomalies**

tools

- **Scrapy**
- **PhantomJS**
- **requests library**
- **BeautifulSoup**
- **Selenium**
A persistent battle

http
- HTTP header anomaly detection
- Browser fingerprinting
- JS and cookies challenges
- Human interaction check
- Machine learning
- CAPTCHAs
- Wasting bots resources

Anti-bot companies vs. Scrapers

Scrapers
- Browser emulation frameworks
- Automated browsers, cookies and JS support
- CAPTCHA farms
- Residential IP (RESIP) proxy

Machine learning

New arrival: Residential IP (RESIP) proxy
A persistent battle

http
- HTTP header anomaly detection
- Browser fingerprinting
- JS and cookies challenges
- Human interaction check
- CAPTCHAs
- Machine learning
- Wasting bots resources

Anti-bot companies

Scrapers
- Browser emulation frameworks
- Automated browsers, cookies and JS support
- CAPTCHA farms
- Residential IP (RESIP) proxy
- Higher risk to block legitimate users

Scrapy
PhantomJS
JS
Problems
Problems

Current mitigation techniques give direct feedback of detection and scrapers can react to them
Problems

- Current mitigation techniques give direct feedback of detection and scrapers can react to them.
- Scrapers avoid more and more current detection techniques, using RESIP services.
Problems

- Current mitigation techniques give direct feedback of detection and scrapers can react to them.
- Scrapers avoid more and more current detection techniques, using RESIP services.

What can we do?
What can *we* do?

Problems

- Current mitigation techniques give direct feedback of detection and scrapers can react to them

- Scrapers avoid more and more current detection techniques, using RESIP services
2 WebApp Honeypot
Idea

Prevent scrapers to know they have been detected providing **incorrect but plausible** answers at a cheap cost for the provider.
Inserting the WebApp Honeypot

Scrapers

Users

Anti-bot companies

E-commerce websites
Inserting the WebApp Honeypot
Inserting the **WebApp Honeypot**

Scrapers → Anti-bot companies → E-commerce websites

Users → Anti-bot companies → Honeypot

Same front-end of the real website
Modified **but** plausible prices
Proof of concept

- Collaboration with an airline company
Proof of concept

- Collaboration with an airline company
- Running for 56 days (interruption linked with COVID-19 restrictions on flights)
Proof of concept

- Collaboration with an airline company
- Running for 56 days (interruption linked with COVID-19 restrictions on flights)
- After 3 days, modification of fares: increase the real price by 5% for 10% of the requests
Proof of concept

- Collaboration with an airline company
- Running for 56 days (interruption linked with COVID-19 restrictions on flights)
- After 3 days, modification of fares: increase the real price by 5% for 10% of the requests
- No change of behavior from before and during the PoC
Proof of concept

- Collaboration with an airline company
- Running for 56 days (interruption linked with COVID-19 restrictions on flights)
- After 3 days, modification of fares: increase the real price by 5% for 10% of the requests
- No change of behavior from before and during the PoC
- Scrapers plausibility check not sophisticated enough for small changes
Challenges

- **Technical**: same front-end w.r.t the original website but different back-ends
Challenges

Technical: same front-end w.r.t the original website but different back-ends

Functional: zero false positive policy, we can redirect only connections we are 100% sure that are not coming from customers

Advantages
Challenges

- **Technical**: same front-end w.r.t the original website but different back-ends

- **Functional**: zero false positive policy, we can redirect only connections we are 100% sure that are not coming from customers

- **Reduce costs**: the WebApp Honeypot consumes CPU to work. We need to reduce them to make it convinient

Advantages

- Technical: same front-end w.r.t the original website but different back-ends

- Functional: zero false positive policy, we can redirect only connections we are 100% sure that are not coming from customers

- Reduce costs: the WebApp Honeypot consumes CPU to work. We need to reduce them to make it convinient
Challenges

- **Technical**: same front-end w.r.t the original website but different back-ends
- **Functional**: zero false positive policy, we can redirect only connections we are 100% sure that are not coming from customers
- **Reduce costs**: the WebApp Honeypot consumes CPU to work. We need to reduce them to make it convinient

Advantages

- No direct feedback of detection to attackers
Challenges

- **Technical**: same front-end w.r.t the original website but different back-ends
- **Functional**: zero false positive policy, we can redirect only connections we are 100% sure that are not coming from customers
- **Reduce costs**: the WebApp Honeypot consumes CPU to work. We need to reduce them to make it convinient

Advantages

- No direct feedback of detection to attackers
- Attackers database poisoning
Challenges

- **Technical**: same front-end w.r.t the original website but different back-ends
- **Functional**: zero false positive policy, we can redirect only connections we are 100% sure that are not coming from customers
- **Reduce costs**: the WebApp Honeypot consumes CPU to work. We need to reduce them to make it convenient

Advantages

- No direct feedback of detection to attackers
- Attackers database poisoning
- Reduce workload for the real website
Using the WebApp Honeypot as a service, redirecting there persistent bot connections
1. Using the WebApp Honeypot as a service, redirecting there persistent bot connections

2. Serving cache prices
Problems

- Current mitigation techniques give direct feedback of detection and scrapers can react to them
- Scrapers avoid more and more current detection techniques, using RESIP services

What can we do?
Problems

Current mitigation techniques give direct feedback of detection and scrapers can react to them.

Scrapers avoid more and more current detection techniques, using RESIP services.

What can **we** do?
3 RESIP detection
RESIP providers

Residential IP (RESIP) proxy
RESIP providers

Tens of millions of residential IPs

Residential IP (RESIP) proxy
RESIP providers

Tens of millions of residential IPs

Good reputation IPs

Residential IP (RESIP) proxy
Tens of millions of residential IPs

Residential IP (RESIP) proxy

Good reputation IPs

No traceback
RESIP providers

- Good reputation IPs
- No traceback
- No private distributed infrastructure

Tens of millions of residential IPs

Residential IP (RESIP) proxy
Automated services!
Residential IPs represented nearly 30% of bot requests

As more and more websites and applications are setting up some form of protection against malicious automated traffic, bot developers are turning to residential IPs to camouflage their bots as legitimate traffic.

While residential IP addresses are more expensive than data center IPs, due to a more limited supply, they can be obtained easily enough through companies such as Geosurf or Luminati that provide residential IP proxies.

Out of the billions of bad bot requests we registered during the 2019 end-of-year holiday period, 29.55% were using a residential IP address. This means that nearly one in three bad bots requests would pass for human traffic if you were looking at the IP address only.

We also found that 20.55% of bad bots came from an organizational IP address. For the most part, these are probably infected devices that are exploited unbeknownst to the IP address owner. Poorly secured IoT devices, for example, are very popular among bad bot operators.

DECEMBER 16-29, 2019

Data center/other
49.9%

Residential
29.6%

Organization
20.6%
Scenario
Scenario

- Residential IPs are shared between legitimate customers and scrapers: threat for e-commerce to have false positives during detection
Scenario

- Residential IPs are shared between legitimate customers and scrapers: threat for e-commerce to have false positives during detection.

- There is a need for specific detection when device is used directly or through RESIP services.
Scenario

- Residential IPs are shared between legitimate customers and scrapers: threat for e-commerce to have **false positives** during detection

- There is a need for specific detection when device is used *directly or through RESIP services*

- Both types of connection are similar at the application layer **but** present differences at the transport layer
Direct Connection

RESIP Connection
Direct Connection

User

TCP

TLS

E-commerce website

RESIP Connection
How can we check this?

The Round Trip Time gives an "approximation" of the physical distance between sender and receiver [1].

How can we check this?

The Round Trip Time gives an "approximation" of the physical distance between sender and receiver [1]

We can use the RTT among the TCP packets against the one among the TLS ones to see if there is a difference in the setup and spot RESIP connections.

How can we check this?
How can we check this?

TLS RTT ~ TCP RTT
How can we check this?

TLS RTT ~ TCP RTT Direct connection
How can **we** check this?

- TLS RTT ~ TCP RTT
- TLS RTT >> TCP RTT
- Direct connection
How can *we* check this?

- **TLS RTT ~ TCP RTT**
 - Direct connection

- **TLS RTT >> TCP RTT**
 - Proxied connection
Experiment

Client → RESIP provider → Server
Experiment

4 RESIP services, 22 client/server machines all over the world
Experiment

- 4 RESIP services, 22 client/server machines all over the world
- TCP and TLS RTT measurement, difference calculation
Experiment

- 4 RESIP services, 22 client/server machines all over the world
- TCP and TLS RTT measurement, difference calculation
- 4 months experiment, 92M+ connections
Direct Connection
Direct Connection

RESIP Connection
Outcome
Outcome

- Promising technique
Outcome

- Promising technique
- Filed patent submission
Outcome

- Promising technique
- Filed patent submission
- Next step: test on real-world scraping connections
What have we talked about today
What have *we* talked about today

There is an *arms race* between e-commerce websites and scraping bots
What have we talked about today

There is an arms race between e-commerce websites and scraping bots

Scrapers are becoming more and more sophisticated and we need new technologies for detection and mitigation to compete against them
What have we talked about today

There is an arms race between e-commerce websites and scraping bots

Scrapers are becoming more and more sophisticated and we need new technologies for detection and mitigation to compete against them

Detection can be improved thanks to a specific RESIP detection method based on the comparison of TLS and TCP RTT
What have we talked about today

There is an arms race between e-commerce websites and scraping bots.

Scrapers are becoming more and more sophisticated and we need new technologies for detection and mitigation to compete against them.

Detection can be improved thanks to a specific RESIP detection method based on the comparison of TLS and TCP RTT.

Mitigation can be improved implementing the WebApp Honeypot which enables to lure attackers into believing they passed by undetected while receiving incorrect data.
Thank you!

Q&A

More questions? elisa.chiapponi@amadeus.com

Our works:
Why do they scrape?
Scrapers vs **amaDEUS**: why?

- **Competitive intelligence companies**
- **Aggregators**
- **Online travel agencies**
RESIP devices

- Mobile SDKs
- Infected devices
- Browser extensions
- Huge IP pool
Scrapers vs aMADEUS: how much?

- Every month, anti-bot rules triggered by **140 million** requests
- **41%** of the attempted connections detected as bots (February 2022)
- **Constant** bot traffic
- Bot reaction to countermeasures: from days (past years) to **hours** (now)

Daily amount of reactions between 08/03/22 and 14/03/22.
CAPTCHA solving time (2018)
RESIP activities in aMaDEUS

Residential IPs detected as bots in 30 days: **12%**

Goal: reducing false positives

Total RESIP traffic is a much **larger** portion

Wide usage of RESIP
Some questions...

▲ Is it possible to recognise a bot campaign from the information included in the payloads?

▲ Are bots crafting payloads to detect the honeypot?

▲ Can we derive meaningful information studying the patterns of bot IPs?
Behavioral analysis

- 51.5% of requests for return flights
- Return flights: 7 days period
- Only 25 combination of departure and arrival airports, small fraction of the airline's offer
- Homogeneous distribution of the time interval between departure and request date among different segments and request dates