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Abstract. Web scraping bots are now using so-called Residential 1P
Proxy (RESIP) services to defeat state-of-the-art commercial bot coun-
termeasures. RESIP providers promise their customers to give them access
to tens of millions of residential 1P addresses, which belong to legitimate
users. They dramatically complicate the task of the existing anti-bot so-
lutions and give the upper hand to the malicious actors. New specific
detection methods are needed to identify and stop scrapers from taking
advantage of these parties. This work, thanks to a 4 months-long experi-
ment, validates the feasibility, soundness, and practicality of a detection
method based on network measurements. This technique enables con-
tacted servers to identify whether an incoming request comes directly
from a client device or if it has been proxied through another device.

Keywords: Web Scraping, Residential 1P Proxy, RESIP, Round Trip
Time measurement, TLS, Security, Bots

1 Introduction

Nowadays, websites in different domains, such as e-commerce, ticketing, and
social media, are engaged in a persistent fight against subtle but damaging ac-
tors: scraping bots. They produce a significant amount of traffic towards these
websites producing large financial losses, as explained in recent works [23//16].

Lately, scrapers behind these bots have started to take advantage of 1P ad-
dresses from Residential 1P Proxy (RESIP) providers, as explained in [I8]. RESIP
providers announce to have access to tens of millions of devices belonging to real
users. These device IP5E| can be used as exit points of requests.

This situation is problematic for scraped websites because these 1Ps addresses
belong to legitimate users. Online companies are reluctant to block traffic from
1P addresses that could come from potential customers. As a result, more and
more scrapers can perpetuate their activities without being stopped.

! In the rest of the paper, we will use 1P and 1P address interchangeably.
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To limit the actions of scrapers taking advantage of RESIP services, it is
important to find new techniques to distinguish whether or not a connection
is proxied through a device or comes directly from it. Very recently, some at-
tempts were made to leverage the behavioral differences between the two types
of connections by using machine learning [37]. Differently from it, we propose a
RESIP detection method based on the evaluation of the Round Trip Time (RTT)
difference of the TLS and TCP packets exchanges.

Our intuition is based on a difference at the transport layer among direct
and proxied connections. In the second case, two distinct TCP sessions are built
(scraper-RESIP and RESIP-target server). In a direct connection, only one TCP
session is created (scraper-server). On the other hand, only one TLS session is
put in place in both scenarios. In proxied connections, TLS packets are just
forwarded by the RESIP and TLS is end-to-end between scraper and server, as in
direct connections.

This difference is reflected on the RTT at TCP and TLS layers. The RTT gives
us information on the distancd?] between the sender and the receiver. In case
of a proxied connection, the sender of the TCP packets differs from the sender
of the TLS ones, creating discrepancies between the two RTT values. In a direct
connection, the two values are similar. We exploit this aspect to design our
detection method.

Our idea, simple and straightforward in theory, could not work in practice
if the typical variations of the TCP RTT were of the same order of magnitude of
the differences between the TLS RTT and the TCP RIT. This is why we have run
a long and thorough experiment to assess the feasibility of the approach. In this
work, we show the successful results we have obtained.

The contributions of this paper are twofold:

— We propose a novel server-side proxy detection technique based on the eval-
uation of the RIT difference between TCP and TLS RTT values.

— We provide experimental results demonstrating the feasibility, reliability,
and practicality of this solution, based on the results of a 4 months-long
measurement campaign.

Our paper is structured as follows. Section [2] illustrates the state of the art
regarding scraping bots and RESIP services as well as RTT based proxy detec-
tion methods. Section [3]describes the experimental infrastructure, the detection
method and the details of the campaign. Section [d] provides obtained results
while Section [f] discusses the stability and practicality of the method. Section [6]
concludes the paper and offers thoughts for future work.

2 To be exact, the RTT is a measure of time, from which we can infer an approximation
of the distance [26/2032].
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2 State of the art

2.1 Scraping bots exploiting RESIP services

Existing anti-bot solutions leverage several different techniques to detect bots
[13/14]. In the past years, RESIP companies have emerged and scrapers have
started using them for their activities. In [27], Li et al. show that more than half
of the bot 1P addresses they collected with their honeypots belong to residential
networks. As explained in [I6], current detection techniques struggle in blocking
bots using such 1ps.

In 2020, Mi et al. proposed the first comprehensive study of RESIP services
[28]. They created an infiltration framework to study 5 RESIP providers and
their 1ps. Our infrastructure is similar to theirs, but it is used differently: we
take network measurements of the connections and we use them to validate a
new detection method.

The dataset provided by Mi et al. has been used for subsequent studies
[21U17], focused on geo-localization and reputation of 1P addresses. Yang et al
[39], recently investigated Chinese RESIP services and their IP addresses. Chiap-
poni et al [I5] performed a mathematical analysis of 1P addresses hypothesized
to belong to RESIP providers, examining the repetitions of 1P addresses. Study
and detection of software used in devices to enroll them as RESIP GATEWAYS
have been investigated in recent publications [29134].

Very recently, a blog post from the anti-bot company DataDome [37], pro-
posed a new ML based approach to identify RESIP connections. They claim that
RESIP IPs exhibit a different behavior compared to residential 1Ps used only by
humans, even when the 1Ps are shared by the two categories. Thanks to an in-
frastructure similar to ours, they collect RESIP 1Ps. Every time they detect one
of these 1Ps sending them requests, the ML model checks if the request exhibits
RESIP behavior. This approach, differently from ours based on network measure-
ments, is intriguing and might prove to be effective. However, their blog post
only offers a high-level overview of the behavioral features used. Furthermore
accuracy, false positive and false negative values are not provided.

2.2 Proxy detection based on RTT

Our detection method relies on the comparison of the TCP and TLS RTT, mea-
sured between packets that are exchanged within a TLS session. To the best of
our knowledge, we are the first ones to have implemented this technique and to
have conducted a thorough measurement campaign to assess its feasibility.
Using some form of RTT measurement for proxy detection has been proposed
before, though. For instance, Hoogstraaten [22] suggests that comparing the RTT
of the application layer and the transport layer could potentially indicate the
presence of a proxy. He advises to calculate the application RTT by retrieving
consecutive elements from the server (e.g. HTML page and associate image) using
HTTP. As far as we know, this technique was not implemented and this approach
is different from the one we propose. Indeed, this method requires changes in the
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application code and only works if some specific assumptions hold (no caching
in the proxy, no parallel requests to retrieve both objects, etc.). Our technique,
on the other hand, does not require any modification of the original server code
because it leverages the exchanges that normally take place in a TLS connection.

In another blog post [24], the author suggests a proxy detection based only on
the measurement of the TLS RTT (ignoring the TCP RTT) which could, possibly,
work thanks to an implementation issue in chromium-based browsers. His tech-
nique takes advantage of JavaScript code running at the client-side. The code
queries 5 times both 127.0.0.1 and 0.0.0.0 with HTTPS. In the case of direct con-
nections, the RTT of the two connections are comparable. When the connection
is proxied, there should be a relevant difference between the two measurements.
This technique is different from ours for various reasons. Our detection method
does not require any code running at the client-side, is independent from the
client application or operating system, and is solely based on measurements
obtained at the server-side. No additional URL needs to be queried and the com-
parison of RTT values is performed between the TCP and TLS RTTs of a single
connection.

Other works leverage similar approaches. In [38], a RTT at the application
layer is calculated by fetching an HTTP object that cannot be cached. A patent
[35] performs the detection with the comparison of the RTTs obtained when
fetching a cached and a non cached object. Our approach, in contrast to the
described ones, works completely at the server-side, does not require fetching
any object and uses the more stable TCP and TLS RTTs as opposed to the ones
at the application layer.

In summary, previous works have considered using some form of RTT mea-
surement to detect proxied connections. However, they all require either modi-
fication of the server code and/or some JavaScript to be executed on the client-
side. Our proposal, in contrast, is exclusively based on passive measurement
made at the server-side, which does not need to be modified in any way. Fur-
thermore, contrary to our work, none of the previous works compares the TCP
RTT to the TLS one.

3 Setup and methodology

3.1 Infrastructure

The goal of our experiments is to validate a detection technique for scrapers
using RESIP services. To achieve this result, we have created an infrastructure
that reproduces the real-world conditions scrapers experience when using such
services. RESIP infrastructures are merely instruments in the hands of scrapers.
Scrapers cannot access their internal parts and change their functioning, they
can just rent the provided service using a well-defined API. Similarly, RESIP
providers take advantage of real people devices that they cannot access directly.
Thus, they cannot alter their hardware and they can only use application-level
features. These constraints create a fixed environment in which scrapers have to
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send their requests. Our infrastructure reproduces these conditions and enables
us to perform network measurements that are representative of those observed
in real-world scraping traffic carried out through RESIP proxies.

As shown in Fig. [Ta] our infrastructure includes: a client sending requests to
a target server, a target server, a RESIP provider, and a database.

The client, which represents the scraper, sends requests either directly to the
server (Direct connection) or through a RESIP provider (Proxied connection) of
which we purchased the services. On the other side of the connection, the server
analyses each received query at the application and network layers. The client
and the server locally produce logs and send them to a database where they are
aggregated and processed.

22 machines and 4 RESIP providers constitute the core of the infrastruc-
ture. Section discusses the examined RESIP services. Configuration, location,
and roles of our clients and servers are explained in Section Section
and Section [3.5] outline the performed network measurements and the detection
technique. Section [3.6]describes the timeline and data storage of the experiment.

3.2 RESIP providers

Thanks to the information provided by analysts and companies working against
scraping bots as well as online blogs devoted to web scraping activities, we have
identified 4 RESIP providers widely used by scrapers: Bright Data [3], Oxylabs
[6], Proxyrack [8], and Smartproxy [10].

The four services offer different packages and options. We subscribed to each
of them to have 40GB (Bright Data) and 50GB (the other providers) of (incom-
ing+outgoing) traffic per month proxied through residential 1P addresses.

The details about the internal implementation of RESIP services are not
known. From the information available on their websites, the four providers
appear to have a similar architecture. As displayed in Fig. the client sends
the HTTP/HTTPS request to the SUPERPROXY, through an HTTP CONNECT. The
SUPERPROXY forwards the request to one of the residential GATEWAYs (GW1,...,
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GWn). It is not known if there are other machines in between these two par-
ties. The chosen GATEWAY sends the request to the server. The server receives a
request with the 1P address of the GATEWAY as source address.

In the case of HTTPS connections, RESIP services are supposed to perform
SSL tunneling: they should not decrypt and re-encrypt the packets they receive.
They act as a circuit GATEWAY by forwarding packets back and forth between 2
distinct TCP sessions while changing 1P addresses.

We have experimentally confirmed that this is, indeed, their behavior. To
do so, we have established a connection through the 4 RESIP services to one of
our servers configured to never send any ACK packet. The three-way handshake
between our client and SUPERPROXY always completes successfully, whereas the
one between GATEWAY and server does not. This confirms that two distinct
TCP connections are created. Then, we have checked if the request sent by the
client and the one received by the server have the same encryption and that
the Session ID is the same in the "ClientHello" and "ServerHello" messages of
the TLS protocol. This check has given us a positive result, confirming that the
session is not decrypted and re-encrypted by the proxy.

3.3 Clients and servers

Each of our machines plays both the roles of client and server described in
Fig. [[al In this way, we maximize the number of different client-server paths
covered in our experiment. To avoid any possible geographical or vendor bias,
our clients and servers are spread all over the world and are rented from two
different suppliers: we use 16 machines from Amazon Lightsail and 6 from Azure.
We host two machines in each of the following locations: India, Australia, Japan,
Germany, Ireland, Canada, USA (Virginia and Oregon), South Africa, United
Arab Emirates, and Brazil. The last three locations correspond to the machines
acquired from Azure.

We have implemented both client and server algorithms in Python3. The
server has been built thanks to the ThreadingHTTPServer and BaseHTTPRe-
questHandle of the library http.server[d]. We have modified the source code to
insert a timeout for connections not completing the TCP handshake. For the
client, the library urllib[TI] is used both to perform direct and proxied connec-
tions.

The client algorithm consists of an infinite loop. According to the speed set
in the configuration file, queries are sent to each server in the experiment. Each
machine is queried five times, with one direct connection and four proxied ones,
one per provider. The query is performed with an HTTPS GET.

To communicate the 1P address of the client to the server as well as informa-
tion on the RESIP provider used, we encode it into the requested URL. We assign
a unique numeric code to each machine, from 01 to 22. We also assign a numeric
code to each RESIP provider, from 1 to 4. Direct connections have code 0. Every
time we need to perform a request, we obtain a random sequence of 5 digits. We
XOR this random sequence with the concatenation of client, proxy, and server
codes. The final URL is the concatenation of the XORED and the random values.
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Fig.2: Tcp and TLS packet exchanges used in the detection technique for a)
direct and b) proxied connections.

The server algorithm keeps listening for new incoming HTTPS connections
on port 443. At launch time, an option can be used to specify if the server
uses TLS1.2 or TLS1.3. Every time a new HTTPS GET request arrives, the URL
is studied to check if it is part of the experiment (as opposed to, eg. a scanner
or a crawler) and to retrieve the client, proxy, and server codes. Requests not
passing the check are answered with an error page. Otherwise, a simple page is
delivered.

3.4 Network measurements

In each machine, a sniffer is put in place to collect network measurements. The
sniffer parses each incoming packet to port 443. It is implemented in Python3,
thanks to the library PyShark [25]. It is restarted every hour for the stability
of the code and to avoid increasing memory consumption. Information about
packets is saved in a structure representing the corresponding stream.

For each incoming stream, we use the RTT to measure how far from each
otherﬂ the parties taking part in the communication are. The explanation of
these measurements is illustrated by the schema in Fig. 2] Fig. [2a] shows the
packets in the TCP (on top) and the TLS (on the bottom) exchanges that we use
for detection in case of direct connection. Dotted lines represent TCP packets,
dashed lines the TLS ones. Fig. presents the same exchanges in the case of
proxied connection. Dotted lines represent TCP packets between the client and
RESIP, dash-dotted lines stand for TCP packets between RESIP and server, and
dashed lines show the TLS connections. d;; and p;, represent the timestamp
measurements of the sending/arrival of a packet at the server for direct (di.)
and proxied (pt,) connections.

3 For sake of concision, we take the liberty of using the expression "measure of dis-
tance" instead of "approximation of the measure of distance" when referring to the
RTT in the rest of the paper.
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The first measurement we take is the TCP RTT. This value is the RTT between
the SYN-ACK packet sent by the server and the corresponding received ACK. In
case of direct connection, the TCP connection is created directly between client
and server. Thus, the TCP RTT (di2-dy; in Fig. is a measure of the distance
between these two parties.

By contrast, in a proxied connection, two distinct TCP connections are created
(Section . One connection takes place between client and SUPERPROXY, and
one between GATEWAY and server. In this scenario, the TCP RTT (pi2o-py1 in
Fig. represents the distance between GATEWAY and server.

Network delays can increase the RTT value of the first TCP exchange, both in
direct and proxied connections. In this case, the measured TCP RTT is the sum
of the real RTT of the exchange plus the delay. To understand how this delay
can influence our analysis, we collect the RTT for all packets sent by the server.
We calculate statistics of these values that we use in Section [ to discuss the
variability of the TCP RTT within a given connection.

Secondly, we compute the TLS RTT. This value corresponds to the RTT of the
TLS layer. The TLS protocol is end-to-end between client and server both in case
of direct and proxied connection. Thus, this metric should give us the measure
of the distance between client and server in all scenarios.

To obtain the TLS RTT, we consider two packets, P1 and P2. P1 contains a
server TLS record after which the server does not send any other TLS records
before receiving a specific TLS answer, as per the protocol. P2 is the packet
containing the client TLS record that allows the continuation of the protocol.
Any couple of TLS packets that satisfy these conditions can be considered.

As explained in Section the RESIP architecture can be considered fixed
for our scenario. Thus, the only variables that can influence the choice of P1 and
P2 are the server and client implementations. Our detection method is server-
side and we assume anyone recreating this experiment will have full access and
knowledge of the server implementation. In the TLS connection, the server de-
cides which information is needed for the client to complete the connection e.g.
accepting the cipher proposed by the client or deciding if client authentication
is required. In such conditions, we expect to be able to anticipate all the pos-
sible exchanges between client and server to find a couple of packets and cover
possible corner cases. For these reasons, having full control over the client in our
experiment, contrary to the real-world case, does not constitute a bias.

In our setup, we have a generic HTTP server, which does not require any
client authentication and accepts common encryption ciphers. We expect this
to be a common scenario for scraped websites that need to be accessed by the
largest possible number of clients. In these conditions, we can identify P1 and
P2 among the first TLS packets. This is an added value because it enables us to
perform detection before any application content is delivered to the client.

Hereafter, we focus on the TLS records we use to perform our measurement.
We refer to [31] for an accurate and detailed description of TLS.

Depending on the version of TLS, we use different TLS records to identify pP1
and P2. For TLs1.2, the RFC 5246 [19] states that, after sending the "ServerHel-
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loDone" TLS message, the server waits for a client response. We recognize P1 as
the packet containing the TLS record encapsulating this message.

After the "ServerHelloDone" message, the client needs to continue the com-
munication. The first TLS message sent by the client must be the "ClientKeyEx-
change", according to the RFC [19]. We identify P2 as the packet whose TLS
record contains this TLS message.

In TLS1.3, if the server agrees on the cipher chosen by the client, it sends the
"ServerHello" TLS message. Since the server has already obtained the client-side
information for encryption, subsequent data in the message is encrypted. We
choose P1 as the packet whose TLS record contains the last encrypted server
data sent after the "ServerHello" message.

As explained in Appendix D of RFC 8446 [33], TLS1.3 implementations in-
clude a dummy "change cipher spec" TLS record to guarantee backward com-
patibility for middleboxes. This record is sent by the client before its encrypted
handshake flight if the client does not offer early data and it does not send a
second "ClientHello" message. In our implementation, the server imposes these
conditions and thus "change cipher spec" TLS record is the first client TLS
record sent upon reception of the "ServerHello" TLS message. We identify P2 as
the packet containing this record.

We define the TLS RTT as the difference between the sending of P1 and the
arrival of P2 at the server. As shown in Fig, [2| this corresponds to the difference
dys-dg3 in the case of direct connection and p;5-p:3 in the case of proxied oneﬂ

3.5 The detection method

In this section, we present our approach for detecting connections passing through
RESIP services. The method is based on the study of RTT measurements.

As described in Section [3:4] for each incoming connection, the server collects
the TCP RTT and the TLS RTT. As previously discussed, these two metrics give us
measures of distances. TCP RTT informs about the distance between client and
server, for direct connections. In the case of a proxied connection, this value rep-
resents the distance between a RESIP GATEWAY and a server. TLS RTT represents
the distance between a client and a server in both scenarios.

Our intuition is that the TLS RTT is similar to the TCP RTT in the case of
a direct connection. On the contrary, we expect a difference between the two
values for a proxied one. When a proxy is used, the TLS RTT represents the sum
of the distances between the parties plus the increased distance imposed by the
traversal of the RESIP infrastructure, starting from a, possibly, far away gateway.

4 The reader may wonder why we are not using the arrival of the Ack packet of P1
as the second point of measurement (dw and dia, in Fig. . In case of proxied
connection, there are two distinct TCP connections (client-SUPERPROXY and GATE-
WAY-server, as explained in Section . The AcK packet is created by the kernel
and it is sent at the arrival of Pl at the GATEWAY, without synchronization with
the client-SUPERPROXY TCP connection. Hence, the difference p¢s5-pra represents the
distance between GATEWAY and server and not the one between client and server.
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Indeed, in the RESIP setup, the connection passes through, at leastﬂ two more
points (SUPERPROXY and GATEWAY), before arriving at the destination. In this
scenario, the total distance is the sum of the distances client-SUPERPROXY, SU-
PERPROXY-GATEWAY, and GATEWAY-server. Depending on the geo-localization
of the client, SUPERPROXY, GATEWAY, and server, packets could take a much
longer route to arrive at the destination, with respect to a direct connection.

We define RTT difference as the difference between the TLS RTT and the
TCP RTT. If this value is systematically, constantly, and significantly higher for
proxied connections than direct ones, it offers to the server a mean to know if an
incoming connection comes through such proxy or not, and to act accordingly if
deemed appropriate.

3.6 Timeline and data storage

The experiment was started at 15:00 uTC 40 on 12/01/2022. In this work, we
will study only the connections performed till 01/05/2022 at 15:00 uTc +O0.
Thus, the total number of examined days is 110.

Every day at 00:00 uTC +0, each server is restarted and switches from TLS1.2
to TLS1.3 and vice versa. In this way, we obtain the same amount of data for
both protocols.

Initially, only 16 machines from Amazon were part of the experiment. Con-
sidering all machines, 10.88 requests/second were sent /received and each RESIP
provider was processing 2.18 requests/second. We used these rates to remain
below the limits imposed on us by our RESIP subscriptions. On 24/01/2022 at
19:00 uTc +0, we added 6 machines from Azure to our pool. At first, we kept the
same rates per client/server. Hence, the rate was 14.96 requests/second and the
ratio per RESIP provider was 2.99 requests/second. On 25/01/2022 at 16:00 UTC
+0, Bright Data stopped our access to their network and ended our subscrip-
tion. More details on the motivation for this choice are provided in Appendix[A]
Since it was not possible to restore this service, on 02/02/2022, we eliminated
it from our experiment. We adjusted the rates accordingly and since then, 9.90
requests,/second were sent /received for the rest of the experiment. Each RESIP
provider processed 2.48 requests/second.

On 07/03/2022 at 00:00 uTc +0, we started collecting more network infor-
mation to study the variability of our measurements. For each connection, we
measure the RTT of all the TCP exchanges.

Occasionally, some machines were restarted by the cloud providers and this
resulted in losses of data. We also had some brief synchronization issues, caused
by using one port for both TLS1.2 and TLS1.3 server program and switching
among them at midnight. Fortunately, this has been an extremely rare event. It
has happened, on average, only 1.6 times per machine over the 110 days, with
an average loss of only 0.17% of the traffic per machine.

We have created a database with POSTGRESQL [7] to gather the data from
the experiment. In the database, we keep a unique record for each connection.

5 The internal implementations of RESIP services are not known.
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This record includes information collected at the client and the server as well as
the network measurements.

For each connection, we save the epoch of the client request and the dif-
ference between the epoch of the server request and this value, the URL of the
connection, the code of the used RESIP, client IP and port, SUPERPROXY IP and
port, GATEWAY 1P and port, server 1P and port. Moreover, we gather the TCP
version, TCP RTT, and TLS RTT. We calculate the minimum and maximum RTT
of all the TCP packets exchanges and their corresponding positions in the stream.

In total, our clients have generated close to 98M connections but, as explained
before, some observed connections were incomplete. Client requests sent when
some servers were down only exist in the client-side logs (around 4M). Similarly,
some requests are made to our servers from other machines than our clients
(eg. from scanners and crawlers) and, for those, we have no matching record
in the client logs (around 200K). Moreover, the sniffer program restarts every
hour, and incoming connections arriving at the moment of the switch could
have incomplete RTT measurements. We only create a record in our database for
connections that exist both in the client and server logs and for which we have
no missing field. In other words, we ignore connections for which we have no
measurement from the sniffer logs. As a result, we use 95% of the total amount
of connections started by the clients which sums up to 92,712,461 connections.

4 Results

In Fig. 3| we show the RTT differences for each proxy and for direct connections.
To better visualize the RTT differences of the majority of the connections, we
consider different ranges. 97% of direct connections have an RTT difference value
lower or equal than 20ms. We use the range [0,20Jms for the x-axis. For proxied
connections, we consider instead the RTT differences in the range [0,2000] ms,
which amounts to the same percentage of connections.

We can see how for direct connections (Fig. , the difference is always close
to zero. In the RESIP plots , instead, we can see how the difference
varies for proxied connections. It is very important to note that the maximum
value of the RTT difference (x-axis) in Fig. is 100 times smaller than the
ones in the other graphs. The maximum values on the y-axis is at least 3 orders
of magnitude larger for direct connections than for the proxied ones. Yet, the
total amount of connections has similar values for each proxied and the direct
scenaricﬂ These results clearly show that direct and proxied connections have
dramatically different distributions of RIT differences.

Our approach determines if a connection passes through a RESIP provider
from the measurement of the RTT difference. This measurement is conducted on
packets sent and received on the Internet. Thus, network delays could, possibly,
negatively impact our approach.

5 Except for Bright Data for which we have less traffic due to the early end of the
service, as explained in Appendix @
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Fig.3: RTT difference of the connections, divided among RESIP and direct ones

In our experiment, we see connections with negative values for the RTT dif-
ference. The percentage of the total amount of connections per provider is 2.9%,
0.9%, 1.8%, 0.2%, 1.4%, respectively for direct connections, Bright Data, Oxy-
labs, Proxyrack and Smartproxy. A negative value of RTT difference occurs when
the TCP RTT is higher than the TLS RTT. This happens when the SYN-ACK and /or
the ACK packets of the TCP connection are delayed but the subsequent packets in
the TCP connections are not. Thus, the TLS handshake packets are not delayed.

Similarly, it can also happen that only the TLS packets are delayed while the
initial TCP ones are not. In this case, the RTT difference increases. This case is
visually shown by the long tails of the distributions in Fig. [3] We note that, in
the case of proxied connections, the packets participating in the TLS handshake
have a longer "journey" than the ones used to compute the TCP RTT. Indeed, the
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packets travel from the client, through SUPERPROXY and GATEWAY, to the server
whereas the latter only travel between GATEWAY and server. Hence, it is more
likely to observe an increase of the RTT difference caused by temporary network
congestion rather than a decrease. Our experimental results confirm this.

Fortunately, the above-mentioned situations, as reflected by the data of our
experiment, are rare. To better understand how the variability of the network
could influence our technique, we have studied the variation of the RTT values
per connection.

For 56 days, we have collected the RTT of each TCP packet sent by the server
and the corresponding ACK. For each connection, we identify the minimum value
of RTT and its position within the stream as well as the maximum RTT value
and its corresponding position.

For our proxy detection technique to work, the ideal case is to have the
minimum RTT in the first exchange and/or to have low variability of its value
throughout the connection. Our method could work taking as TCP RTT a RTT
value of later exchanges (e.g. the minimum one of an entire connection). However,
in this scenario, it would not enable us to detect the RESIP proxy at the very
beginning of the connection (to possibly block it).

We have studied the network metrics collected in 45,902,917 connections.
The minimum RTT is found in the first exchange in 56% of the connections but,
fortunately, the variability is low (relatively to our use case). More than half of
the connections (53%) present a difference between the maximum and minimum
RTT lower or equal to 50ms.

We have chosen this value to empirically have a threshold above which we
categorize the connections as proxied. After experimenting with different values,
we found this to be the best threshold. Beyond being higher than more than half
of TCP variations, it induces low values for the False Positive (FPR)E] and False
Negative (FNR)E| rates. Indeed choosing this threshold we obtain a FPR of 0.04%
and a FNR of 1.93%. The corresponding accuracy is 99.01%.

In 29% of the connections, the first RTT is the maximum one among all
the exchanges. Despite that, the RTT difference shows relevant differences in
the case of proxied connections. Let us consider the very unlucky case where
all first RTTs would have the highest observed value of that connection. If we
compute the RTT difference with this value and we choose 50ms as the threshold,
we obtain a FPR of 0.01%, a FNR of 9.68%, and an accuracy value of 92.78%.
Naturally, the percentage of false negatives increases with respect to our previous
results (1.93%), but the accuracy remains high, even in this worst-case scenario.
These results show that our technique is robust and can confidently detect RESIP
connections even in very unlikely worst-case situations.

For each connection, as explained in Section we collect the GATEWAY
1P address. Studying their distribution per provider with Hilbert Curves|30],
we have discovered that they are not uniformly distributed around the world.
Naturally, we could fear that this influences the RTT difference values calculation.

" Direct connections flagged as RESIP over the total amount of direct connections
8 RESIP connections flagged as direct over the total amount of RESIP connections
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More specifically, we could wonder if the connections between clients and servers
that are both in a location in which there is a high number of GATEWAYS of a
specific provider could result in a small RTT difference. In such scenario, indeed,
the added distance by the RESIP infrastructure could be small.

Based on our observations, Bright Data has the majority of its GATEWAYSs in
ARIN [2] and RIPE [9]. We have checked the RTT differences for the connections
of this provider from our clients in Virginia to our servers in the same location.
Oxylabs and Smartproxy GATEWAYs are mainly registered in LACNIC [5]. We
have studied the RTT difference distributions between our machines in Brazil.
For Proxyrack, whose IPs are mostly registered in AFRINIC [1], we have examined
the RTT differences between clients and servers in South Africa.

The distributions of the above-mentioned combinations are in line with the
other distributions of the same providers. Considering our threshold (50ms),
the FNR value for these combinations is even lower than the one for all the
connections (FNR =0.78%). This data confirms the idea that the detection of
RESIP based on the RTT difference is a possible and viable method, even when
clients, servers, and GATEWAYs are geographically close to each other.

5 Discussion

We propose a new method based on the measurement of the RTT to detect
connections coming from RESIP providers. Our results show that this approach
is feasible and robust.

The difference between the measurements in case of direct and proxied con-
nections is substantial. 97% of the direct connections have an RTT difference
lower than 20ms. In the same interval of RTT difference (|0,20]ms), Bright Data,
Oxylabs, Proxyrack and Smartproxy connections accounts for, respectively, the
0.6%, 0.4%, 0.05% and 0.3% of the total. Moreover, the accuracy of our method
remains high even in conditions of network delays.

Our technique can be easily implemented to protect existing servers because
it applies to all connections using TLS1.2 or TLS1.3. Nowadays, more than 79%
of websites use HTTPS connections and this percentage grows every year [12].
Thus, we can use our method in the majority of the Internet transactions.

Furthermore, our approach does not need any change in the existing software
of the server. The measurement can be done outside the server with a sniffer, as
we did in our setup.

Our technique does not detect only connections passing through RESIP ser-
vices. It recognizes all the tunnel techniques that break the TCP connection
between client and server. An example of this is $SH forwarding. Both local
and remote forwarding do not provide end-to-end TCP connections and are thus
detected with our method.

Generally, secure tunneling solutions do not break TCP, but leverage encap-
sulation. Tunneling providers guaranteeing anonymization typically use Network
Address Translation (NAT) and 1PsEcC. This technique is nowadays really pop-
ular and widely used both in private and commercial networks. Neither NAT
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devices nor IPSEC, however, do break the TCP connection. Hence, requests pass-
ing through a VPN or a NAT device are not classified as proxied by our technique.
There are methods, however, to detect these tunnels, such as the ones based on
the Maximum Transmission Unit (MTU) analysis [36/22]. It is thus not a conve-
nient solution for RESIP providers to switch to it, in order to avoid our detection.

A widely deployed defense for companies is the Web Application Firewall
(WAF). WAFS need to break TLS to study the application content and assess if
the communication is allowed to continue. Thus, if a client is behind a WAF, both
TCP and TLS between client and server are broken and we see comparable TCP
RTT and TLS RTT measurements. These connections are not declared as proxied
by our method.

The reader could wonder if RESIP providers could break TLS, as WAF do, to
avoid detection through the study of the RTT difference. This scenario is tech-
nically feasible but, in our opinion, unlikely to occur. Indeed, to do this, the
proxy has to establish a TLS connection with the client and another one with
our server. If the TLS session with the client terminates at the SUPERPROXY, an
additional TLS connection has to be created between SUPERPROXY and GATE-
wAY. This implies that i) the client has to accept a root certificate that enables
the SUPERPROXY or the GATEWAY (depending on where the first TLS session
ends) to impersonate any server in the world, ii) the GATEWAY devices are now
capable of decrypting (and thus monitoring or modifying) the exchanges be-
tween the clients and the servers, iii) the GATEWAY must handle two distinct
TLS connections and decrypt/re-encrypt in both directions.

It is improbable that RESIP customers would let a third company observe and
possibly modify contents of communications that should normally be encrypted
between them and the server. Retrieved content could be modified and this could
damage their web scraping activity.

RESIP providers leverage home devices, mobile phones, etc. which they do not
own and on which they do not have full control. Furthermore, they must consume
as few resources as possible to remain invisible to the owner of these devices.
Users accept (consciously or not) to run RESIP software on their machines in
moments in which they do not need them (e.g. when they are not using them
and they are being charged). The additional burden of having to manage 2
distinct TLS sessions plus the decryption/re-encryption in both of them is likely
to be a deterrent for devices’ owners.

To be able to impersonate any possible end server, the proxy would have to
establish certificates on the fly and to push them to the GATEWAY. Moreover, the
client would have to accept the root certificate that would make this possible.
While technically feasible, this adds a level of complexity and latency that would
hurt the RESIP business and would be a major threat to the client once this root
certificate is installed.

For all these reasons, we think breaking TLS would be difficult to implement
in the RESIP infrastructure. If RESIP providers were to do that, we could still
measure the RTT to the end client by serving HTML pages containing objects
that the client would need to request to us. By measuring the time between the
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sending of the page to the client and the arrival of the request we would have
a pretty good approximation of the RTT (objects need to be defined in a way
that caching by the proxy would not be possible). Injecting objects for the sake
of identifying proxies, as proposed in past work [3824I35122], could be leveraged
for this. Defeating that scenario would require running a browser-like application
on the GATEWAY itself which, for the reasons explained above, would increase
even more the complexity of RESIP systems.

The reader could now also wonder whether RESIP providers could just pro-
duce delays at the TCP level to evade our detection method. This is not a feasible
approach. RESIP providers do not own the devices used to proxy out the requests.
They simply leverage them at the application level only. They cannot alter the
connection settings of the device and/or do kernel level modifications to increase
the TCP RTT.

Another point to raise is that an unexpectedly high delay caused by the
certificate validation at the client side could increase the number of false pos-
itives. This scenario happens in case the server certificate is not signed by a
known trusted party, requiring the client to fetch information online to establish
a successful certificate chain. In this scenario, since we have full knowledge of the
server, we expect to be able to anticipate this and account that all the real clients
will have a somehow fixed delay. The chosen threshold can be then modulated to
consider this delay. Moreover, we do not expect this situation to happen often.
Scraped websites want to be largely accessed and, thus, use certificates that are
widely trusted by their clients.

6 Conclusion and future works

In this paper, we provide a new sound method to detect proxied connections
through the comparison of the TLS and TCP RIT of a single connection. We
show that the method is easy to deploy and stable in case of network delays. We
explain how it would be difficult for scrapers behind RESIP to evade it.

The next steps will consist in deploying this detection technique in front of
servers suffering from scrapers using RESIP services. This will enable us to assess
the real-world effectiveness of the proposed solution.
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