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Abstract—Deep Neural Networks (DNNs) process big datasets
achieving high accuracy on incredibly complex tasks. However,
this progress has led to a scalability impasse, as DNNs require
massive amounts of processing power and local memory to be
trained, making them impossible or impractical to be used on a
single device. This situation has led to the design of distributed
training architectures, where the DNN and the training data
can be split among multiple processors. How to choose the
appropriate distributed training architecture, however, remains
an open question. To help bring insights into this debate, in
this work we design a Distributed Training Simulator (DTS)
that estimates the training time of a DNN in a distributed
architecture through a mathematical model of the distributed
architecture and resource-allocation heuristics. We illustrate the
power of the proposed DTS through the implementation of five
different distributed architectures, Pipeline Learning, Federated
Learning, Split Learning, Parallel Split Learning, and Federated
Split Learning, and we validate the accuracy of the training
estimates using three different datasets of varying complexity
and two different DNNs. Finally, we present a trade-off analysis
to demonstrate the coherence of DTS estimates for diverse high-
performance computing scenarios by comparing these estimates
with the behaviors of a real computer cluster.

Index Terms—big data, distributed computing, deep learning,
simulator.

I. INTRODUCTION

The interest in Deep Neural Networks (DNNs) has grown
in the past decade, due to their ability to reach high accuracy
levels when predicting outcomes for a variety of applications.
A few examples of these applications are sensor fusion [1],
malware detection [2], face recognition [3], robotics [4], and
healthcare [5]. Training such complex models in a centralized
fashion is becoming unsustainable, based on the ever-growing
need to retrain a model with new, fresh data in a timely
fashion. Training a neural network is costly both in terms of
processing power and required memory. Additionally, there is
a growing concern about how deep learning applications might
invade privacy [6], [7]. These factors have led to the design
of distributed training architectures [8]–[12].

Researchers have recently proposed methods and solutions
aimed at increasing the accuracy of DNNs or decreasing
DNNs’ training time by focusing on several different charac-
teristics of a DNN ecosystem. For example, some researchers
have proposed tuning the hyper-parameters of a DNN [13],
[14] or modifying its training sequence [15]. Some authors
have proposed mathematical models for the general work-
load of DNNs [16], but have not expanded these models

to distributed architectures and split computing. Others have
focused on intra-DNN batch management optimizations [17],
for different cores and threads within the same machine. Some
of these studies have also focused on Split Computing (SC)
applications [18]–[20], albeit only with a single client and a
single server. However, none of them have focused on trying
to optimize the very first choice that must be made when per-
forming distributed training: selecting the appropriate neural
network architecture, as well as the hardware configuration.
This choice should allow the distributed training of the models
to comply with the user’s available resources while optimizing
training time, or while keeping in mind the training time
deadline to avoid service level agreement violations.

An immediate benefit of this optimized selection is minimiz-
ing the training time for the user’s DNN. This minimal training
time allows the user to retrain more often within a limited
period and with fewer resources, leading to lower hardware
costs, potentially higher revenues [21], and a decreased carbon
footprint [22], [23].

Hence, there exists a gap in the study of Deep Learning
optimization: to our knowledge, there is no work focused on
the optimization of multi-client and multi-server training of
DNNs. Additionally, none of these works provide mathemati-
cal models for the time it would take for a DNN to be trained
on a distributed architecture with multiple clients and servers,
nor do they use similar models to optimize the selection of
the appropriate hardware and network configuration (network
graph) for this architecture.

In this paper we aim to close this gap by presenting two
key contributions: (1) We propose a simulator that, given in-
formation about the DNN and the cluster it will be trained on,
outputs the final training time of the DNN on five distributed
architectures: Pipeline Learning (PL) [8], Federated Learning
(FL) [9], Split Learning (SL) [10], Parallel Split Learning
(PSL) [11], and Federated Split Learning (FSL) [12]. Our
Distributed Training Simulator (DTS) also outputs the network
graph specifying the role (server, edge server, or client) each
processor in the cluster or machine network must have to
obtain the simulated output. (2) We provide the mathematical
models used by the simulator to estimate the training time
per batch of a DNN working on each of these five distributed
architectures. The simulator obtains close-to-optimal solutions
for these mathematical models through resource-allocation
heuristics.



The rest of the paper is organized as follows. Section II
presents how our proposed simulator works, what information
it requires from the user and its outputs. Section III details how
the five distributed architectures work and how their workflow
leads to our proposed mathematical models. Section IV details
the experiments to validate the accuracy and coherence of
DTS. Finally, in Section V we conclude by summarizing the
most important insights from this research.

II. DISTRIBUTED TRAINING SIMULATOR (DTS)
This section explains the main workflow of the proposed

Distributed Training Simulator (DTS) (Section II-A), what
user-input information it requires (Section II-B), how it uses
this information (Section II-C), its outputs (Section II-D), and
its accompanying measurement tools (Section II-E).

A. DTS Workflow
DTS’ workflow is as follows: given the properties of a DNN

(what will be trained), the available machines in a cluster
(where the DNN will be trained), and information about the
training sequence (how it should be trained), DTS outputs the
lowest possible training time of that DNN for each of the
supported distributed architectures and their required network
graph. The network graph refers to how the machines should
be linked through the network and which role (client or server)
each machine should have in the distributed architecture. A
graphical representation of DTS is shown in Figure 1.

B. DTS Inputs
The user must provide three inputs: (1) Cluster information,

telling DTS the characteristics of the HPC cluster or general
machine network where the DNN will be trained, (2) DNN
information, specifying the characteristics of the DNN to be
trained, and (3) Training sequence information, specifying
the setup of the training sequence that DTS must consider
when calculating the final training time of the DNN. A list
of these three groups of variables is shown in Table I.

Cluster Information: This set provides DTS with an accurate
depiction of the machines in the network that can be used
for DNN training and how they are interconnected. This
set includes the number of processors in the network, their
processing power, the potential fluctuation, their memory, the
links between processors, their respective bandwidths, and
how these can fluctuate depending on the network conditions.

DNN Information. This set provides information that allows
DTS to allocate processing, memory, and communication
resources according to what is required by the DNN. It
includes the number of layers, the DNN’s size in memory,
its computational complexity (FLOPs), the size of gradients
when being sent through the network, and others.

Training Sequence Information. This set gives DTS the
constraints imposed by the desired training sequence for a
DNN. It includes the sample size, the batch size, the number of
batches per client, the total epochs, and the number of clients.

Fig. 1: Simplified graphical representation of the Distributed
Training Simulator (DTS)’s workflow.

TABLE I: DTS’s customizable parameters. All parameters are
independent, which allows the user to simulate different DNNs
on multiple machines and network conditions.

Group Variable Unit

Cluster
Information

Processor amount None
Processing power GFLOP/s
Power fluctuation ±%
Residual memory GB
Bandwidth GB/s
Bandwidth fluctuation ±%
Parallelization factor None

DNN
Information

Layer amount None
DNN complexity GFLOP/sample
Memory required GB
Server-side complexity GFLOP/sample
Client-side complexity GFLOP/sample
Server memory required GB
Client memory required GB
Size of weights GB
Size of gradients GB
Intermediate results GB

Training
Sequence

Information

Individual sample size GB
Batch size None
Batches per client None
Training epochs None
Number of clients None

C. DTS Processing

DTS processes the input to obtain the training time of
the DNN in five distributed training architectures: PL, FL,
SL, PSL, and FSL. To do so, the simulator uses allocation
heuristics to solve mathematical models for the training time
per batch of data of a DNN in each of these architectures.

Mathematical models. These models provide DTS with a
mathematical representation of the training time per batch
of data for a DNN in a distributed training architecture.
The models account for the time to transfer data between
machines, the time to perform forward and backward passes,
and others. The models for the five currently supported
architectures are described in detail in Section III.



Allocation heuristics. DTS’s goal is to minimize the math-
ematical models while abiding by the constraints established
by the input parameters in Table I. This requires assigning
“roles” to processors in the cluster. Once the roles are defined,
the characteristics of each chosen processor (processing power,
memory, links to other processors, etc.) are introduced into the
mathematical models to obtain a training time for the DNN
in the corresponding distributed architecture. The assignable
roles to the processors depend on the distributed architecture
itself. Section III explains each of these roles in more detail.

The selection of these processors and their respective roles
is not done randomly. DTS uses a unique resource-allocation
heuristic for each distributed training architecture, but they
all follow three key “guidelines”: (1) the most CPU/GPU
intensive tasks should be assigned to the most powerful
processors, (2) no processor should execute a set of tasks that
exceeds its available memory, and (3) the processors with the
best links to others (highest bandwidths) should be assigned
roles with the highest network overhead.

A summarized version of our heuristic works as follows.
Firstly, DTS “ranks” the processors based on the availability
of three resources: processing power, memory, and bandwidth.
DTS then builds the specified distributed architecture by as-
signing roles to the highest ranked processors in each category.
After each role is assigned, available resources are updated and
the processors are re-ranked before the next assignation.

After each selection, DTS checks if all the necessary
constraints have been met. If not, then DTS will determine
which processor is causing the greatest “delay” in the training
sequence, and either change its role or choose the next
processor best suited for that task. This process continues until
a set of processors that meets all constraints has been found.

Each of these successful selections is called a “path” that
can lead to the optimized distributed training architecture.
However, multiple paths can exist for any specific allocation
scenario. As such, the user defines a maximum number of
paths that DTS can obtain through the use of the max paths
parameter. If max paths is set to infinite, DTS will attempt all
possible configurations and reach the optimal selection. Once
the maximum number of attempts has been reached, DTS will
output the path that resulted in the lowest training time.

D. DTS Outputs

DTS provides two outputs per distributed architecture: the
lowest training time and the network graph.

Lowest training time. After having run all allocation
heuristics, DTS outputs the lowest training time of the DNN
for the supported distributed architectures. The user can then
compare the training time of their DNN between each of the
distributed architectures and make a decision based on their
current goals, available resources, and time restrictions.

Network graph. All the output training times will be accom-
panied by a corresponding network graph that tells the user

which role each processor in the network must have to achieve
the proposed lowest training time. More information on each
“role”, how these architectures work, and their respective
mathematical models are presented in Section III.

E. DTS Measurement Tools

Many of the input parameters mentioned in Section II-B
are difficult to obtain through specifications sheets or from
PyTorch [24] code. For example, the computational complex-
ity (total GFLOPs) of a DNN in PyTorch is not specified, and
the processing power allocated by the operating system (OS)
to the training of a DNN is not constant. Hence, we provide
two measurement tools, one for the DNN information and one
for the processing power, to help the user obtain these values.

The first tool obtains all DNN information from a DNN
class written in PyTorch and then transforms it into usable
parameters by the simulator. As an example, to obtain the com-
putational complexity (GFLOPs) of the DNN, this tool uses the
PyTorch computational complexity estimator [25] to estimate
the total multiply-accumulate operations (MACs) needed to
run a forward pass of one input sample. These MACs are then
converted into GFLOPs. Other similar operations are done to
obtain the remaining DNN-related parameters for DTS.

The tool for the processing power determines the total pro-
cessing power a machine in the cluster allocates to the training
task. The specification sheet of a conventional machine will
detail the peak processing power, but the OS rarely allocates
all resources to a single task. To calculate this parameter, the
tool runs a short training session of the DNN using a small
number of batches. The tool knows how many GFLOPs are
required per sample, as obtained by using the first tool. Hence,
the tool knows how many batches are used during the training
session, how many GFLOPs are executed, and how long it
takes for those operations to finish. With these three values,
the tool calculates the processing power allocated by the OS
in GFLOP/s. We remind the reader that in some HPC clusters
it is possible to manually set the processing power allocated
to a specific training task. If the user has access to such a
tool, they can simply input this information directly into DTS
without the use of our processing power estimation tool.

III. DEEP LEARNING DISTRIBUTED TRAINING
ARCHITECTURES AND MATHEMATICAL MODELS

A. Pipeline Learning (PL)

Pipeline Learning (PL), also referred to as Pipelining, was
designed to address the need to train massive DNNs that
require too much local memory to be housed in a single
processor [8]. This distributed training architecture aims to
split the NN into multiple processors in a network, where
each processor houses a layer or group of layers of the NN.
All processors are assigned the role of “workers” in this
architecture. The mathematical model for the training time of
one batch of data for a DNN in this architecture is:

TPL =

m∑
i=1

n∑
j=1

[Tfejj′ + TFij + TBij + Twrjj′′ ], (1)



where TPL is the training time for one batch of a neural
network (forward + backward pass), Tfe is the time it takes
for processor j to fetch the data from a previous processor j

′
,

TFij
is the time it takes processor j to compute the forward

pass of layer i, TBij is the time it takes processor j to compute
the backward pass of layer i, and Twrjj′′ is the time it takes for
a processor j to write (output) the data to the next processor
j
′′

, m is the total of layers in the DNN, and n is the number
of processors necessary to house all layers of the DNN.

B. Federated Learning (FL)

Federated Learning (FL) is an architecture designed to train
machine learning models with sensitive data from multiple
users at once, with the constraint that the data can never
be shared between them. As such, it is a privacy-preserving,
completely parallelized architecture [9].

The processors in FL can be assigned the roles of “clients”
or “servers”. Clients have access to the data and train the
entire DNN on their processors, but they cannot share the
data between them. Servers are only in charge of a process
called “federated averaging”, where the server takes all trained
models from the clients and averages their weights to obtain
a new, universal DNN model. This model is then sent back to
the clients for the start of the next epoch of training.

Hence, the mathematical model for the training time of one
batch of data for any DNN in this distributed architecture is:

TFL = max[TFj + TBj ] + max[2 ∗ Ttrjk ] + Tavgk (2)

where TFL is the training time of the DNN for one batch
of data, TFj

is the time it takes for client j to compute the
forward pass of the DNN for one batch, TBj

is the time it
takes for client j to compute the backward pass of the DNN
for one batch, 2 ∗ Ttrjk is the time it takes to transfer the
weights through the network from the j-th client to the k-th
server, and Tavgk is the time it took the server to average the
models. Ttrjk is multiplied by 2 because the total training time
for one batch includes sending the weights to the server and
then receiving them back after the federated averaging process.

C. Split Learning (SL)

Split Learning (SL) was designed to provide advantages
of both PL and FL: the need to split a DNN into multiple
processors (PL), while also training on multiple datasets from
different clients without sharing the data between them [10].
SL splits a DNN into two parts: server-side and client-side.
The server-side split is kept on a central server, while the
client-side split is sent to all individual clients in the network.

As with FL, the processors can be assigned roles as either
clients or servers. Clients have access to the data and train the
client-side DNN, while servers do not have access to the raw
data and only train the server-side DNN. This is a sequential
architecture because the training with one client must end
before proceeding on to the training of the next client.

The mathematical model for the training time of one batch
for a DNN in the SL architecture is:

(3)
TSL =

n∑
j=1

[Tfej + TFj
+ TBj

+ 2 ∗ Ttrk + TFk
+ TBk

]

+ (n− 1) ∗ Ttrwj−j+1

where TSL is the time it takes to train a DNN for one batch
in SL, Tfej is the time it takes for client j to fetch its data,
TFj

is the time it takes for client j to compute the forward
pass of its client-side NN, TBj

is the time it takes for client j
to compute the backward pass of its client-side NN, 2 ∗ Ttrk

is the time it takes to transfer data from the client to server
k, TFk

is the time it takes the server to process the forward
pass of the server-side NN, TBk

is the time it takes the server
to process the backward pass of the server-side NN, and n
is the number of clients. Notice that Ttrk is multiplied by
2 because each client sends data to the server once during
the forward pass (intermediate results) and once during the
backward pass (gradients). Finally, Ttrwj−j+1

is the time it
takes for the weights to be transferred from client j to client
j+1 (the next one in the chain), which is done (n−1) times.

D. Parallel Split Learning (PSL)

Parallel Split Learning (PSL) combines the benefits of
splitting a DNN (PL, SL) with the parallelization strategies
of its client side (FL) [11]. It is very similar to both SL and
FL in the fact that it has multiple clients and a single central
server. As such, processors can be assigned the role of either
clients or servers. However, its client-side training phase is
parallelized, while the server-side remains sequential.

The mathematical model for the training time of one batch
of data for a DNN in PSL is:

TPSL = max[Tfej+TFj
+TBj

+2∗Ttrj ]+

n∑
j=1

[TFj
+TBj

] (4)

where TPSL is the time to train a DNN for one batch, Tfej is
the time it takes for client j to fetch its data, TFj is the time
it takes client j to compute the forward pass of its client-side
DNN, TBj

is the time it takes client j to compute the backward
pass of its client-side DNN, 2 ∗ Ttrj is the time it takes for
client j to transfer its data to the server (send and receive),∑n

j=1[TFj
+TBj

] is the time it takes the server to process the
forward and backward passes of the server-side DNN for all
j clients and n represents the total number of clients.

E. Federated Split Learning (FSL)

FSL aims to combine all the benefits of the previous archi-
tectures and add a focus on privacy-preserving measures [12].
To do so, in addition to both clients and servers (also called
“parameter servers”), FSL introduces a new processor role
called “edge server”. Clients have access to the data and
the client-side DNN, and each client in the network has an
accompanying edge server which helps the client train the
DNN by splitting it at least once. As in FL, servers are only
in charge of federated averaging.



The mathematical model for the training time of one batch
for a DNN trained with FSL is:

(5)
TFSL = max[Tfej + TFj

+ TBj
+ 2 ∗ Ttrjj′ + TFj′

+ TBj′ + Ttrj′j′′ ] + Tavg

where TFSL is the time it takes for a DNN to be trained for
one batch in FSL, Tfej is the time it takes client j to fetch
its data, TFj

is the time it takes client j to process its forward
pass, TBj

is the time it takes client j to process its backward
pass, 2 ∗ Ttrjj′ is the time it takes client j to transfer data to
edge server j′ (send and receive), TFj′ is the time it takes for
the edge server j′ to compute its forward pass, TBj′ is the time
it takes for the edge server j′ to compute its backward pass,
Ttrj′j′′ is the time it takes the edge server j′ to transfer the
data to the server j′′, and Tavg is the time it takes the server
to perform a federated average of all the received models.

F. Additional Distributed Training Architectures

The current version of DTS supports five distributed training
architectures, but more can be added. To do so, the user must
provide a resource-allocation heuristic and a mathematical
model to estimate the training time of the new architecture.
Any user can write these two elements in a Jupyter Note-
book [26] file and then instruct DTS to use this code. To
facilitate this process, the user has access to all the global
variables used by the current allocation heuristics, so that the
integration of the new model is as seamless as possible.

IV. EVALUATION

This section details the experiments to validate the accuracy
and coherence of DTS when estimating the training time
of a DNN. Section IV-A details our hardware and software
configuration, the datasets, and the DNNs used for our
testbed. Sections IV-B and IV-C detail the two main accuracy
validation experiments we conducted. Section IV-D details
the tradeoff analysis we performed to validate the coherence
of all simulations, i.e. how close the behavior of the simulated
architectures was to the behavior of their real-life counterparts.

A. Experimental Setup

Configuration: All experiments were carried out by creating
custom versions of VGG-11 [27], because of its widespread
use and ease of reproducibility. These versions are referred to
as DNN 1 and DNN 2, shown in Tables II and III respectively.
They were trained on a computer with a CPU Intel Core
i7-8550U @ 1.80GHz with 8 GB of RAM, running on
Ubuntu 20.04.2 LTS. We then used PySyft [28] to implement
these DNNs in PL, FL, SL, PSL, and FSL.

Datasets: Three datasets of varying complexity were used for
these experiments. Firstly, MNIST [29] was used as the most
basic dataset, which consists of 1000 images of the handwrit-
ten numbers 1 through 9. Secondly, Cats and Dogs [30], a
popular dataset of 25000 images, was used; we considered
this dataset to be one of moderated complexity. Finally, the

TABLE II: DNN 1, detailed in PyTorch nomenclature. It has
72802 parameters (weights). The Rectified Linear Unit (ReLU)
activation function is not listed for brevity.

Layer Number Layer Details
1 Conv2d(1, 16, kernel size=(5, 5))
2 maxpool (input, (2,2))
3 Conv2d(16, 32, kernel size=(5, 5))
4 maxpool (input, (2,2))
5 Conv2d(32, 64, kernel size=(5, 5))
6 maxpool (input, (2,2))
7 Linear(in features=256, out features=32)
8 Linear(in features=32, out features=2)
9 soft-max

TABLE III: DNN 2, detailed in PyTorch nomenclature. It has
1044482 parameters (14 times the amount of DNN 1) and
is 4.8 times more computationally expensive. The Rectified
Linear Unit (ReLU) activation function is not listed for brevity.

Layer Number Layer Details
1 Conv2d(1, 32, kernel size=(3, 3))
2 maxpool (input, (2,2))
3 Conv2d(32, 64, kernel size=(3, 3))
4 maxpool (input, (2,2))
5 Conv2d(64, 128, kernel size=(3, 3))
6 maxpool (input, (2,2))
7 Conv2d(128, 256, kernel size=(3, 3)))
8 maxpool (input, (2,2))
9 Linear(in features=1024, out features=512)

10 Linear(in features=512, out features=256)
11 Linear(in features=256, out features=2)
12 soft-max

EchoNet-Dynamic dataset [31] was used as the dataset with
a high degree of complexity. Echonet-Dynamic contains over
10000 echocardiography open-source videos. The purpose of
this dataset is to challenge the research community to build AI
models to diagnose cardiovascular diseases and abnormalities.

For the experiments in Sections IV-B and IV-C, the datasets
were distributed amongst the processors as follows. Firstly,
all architectures had at least three clients. Depending on
the architecture, the number of servers would be chosen
appropriately from the other virtual workers. Regarding the
data, PL required the entire dataset to be stored on a single
virtual worker, as the architecture does not allow for split data.
For FL, the training data (including labels) was split into three,
one for each virtual client. For SL and PSL, the training data
was split into three, one for each client, but the labels were
stored in the architecture’s central server. Finally, for FSL,
the training data was split into three, one for each client, and
the labels were stored in the edge servers paired up with each
client. Regarding the split of the DNNs, DNN 1 (Table II) had
layers 1-4 stored in each client, while layers 5-9 were stored
in the servers. For DNN 2 (Table III), layers 1-3 were stored
in the clients, while layers 4-12 were stored in the servers.

B. Accuracy Validation Metric #1: Batch Training Time Esti-
mation (BTTE)

These experiments measure DTS’s accuracy for estimat-
ing the time required to train with a single batch. The



Batch Training Time Estimation (BTTE) experiments were
executed as follows: (1) For each DNN-dataset-architecture
configuration, five epochs of training were executed in our
testbed, where each epoch contained at least 100 batches.
This leads to a total of 500 batch testbed times for each
DNN-dataset-architecture configuration. (2) We simulated 100
batch times for each DNN-dataset-architecture configuration.
(3) We compared these 100 simulated batch times to 100
testbed batch times sampled from the 500 testbed times.
This sampling process was done to account for potential
differences in batch times between epochs: the 100 testbed
batch times were randomly uniformly sampled as 20 batches
from each epoch. Based on the comparison results, the average
accuracies for each architecture among the three datasets were
calculated (Table IV). To better visualize the significance of
these accuracies, we also plotted the simulated and testbed
batch times against each other in boxplots (Figure 2).

As a reminder, in our testbed, many of the hardware char-
acteristics are completely controlled and allocated over time
by the OS. We used the measurement tools to estimate these
properties and DTS’s modifiable parameters to simulate this
pseudo-stochastic behavior. Despite all these approximations,
DTS still managed to achieve an accuracy of over 80% in
all BTTE scenarios. In an HPC cluster, the accuracy of DTS
would increase, as the user would have more control over the
allocation of these resources over time. This high accuracy
validates DTS’s output for batch times. Hence, the next step
is to validate our prediction accuracy of entire training epochs.

C. Accuracy Validation Metric #2: Epoch Training Time Es-
timation (ETTE)

Epoch Training Time Estimation (ETTE) is very similar to
BTTE, except that this time we measure and compare the times
for entire epochs, not individual batches. Each epoch consisted
of training the DNN with the totality of the data: over 10000
images for MNIST, over 25000 images for Cats and Dogs,
and over 37000 images for Echonet-Dynamic, divided into
multiple batches, each containing 100 images.

As before, we compare our testbed epoch times with our
simulated epoch times and calculated the accuracies for each
architecture’s predictions (Table IV). Better visualization of
the significance of these accuracies is shown in Figures 2c
and 2d. Considering the estimation error of a predicted batch
may accumulate over time when predicting epochs, it is natural
for the accuracies in this experiment to be either very similar
to or lower than the BTTE results. The biggest reductions in
accuracy were only 7.59% for PSL for DNN 1 and 7.66%
for PL for DNN 2. Considering everything is being simulated
solely through our resource-allocation heuristics, mathematical
models, and measurement tool approximations, we consider
these small reductions in accuracy as acceptable results.

D. Coherence Validation: A Tradeoff Analysis

In this section, we extrapolate DTS’s results to more
resource-intensive DNN training sessions, which are typical in
HPC scenarios. We validate the coherence of DTS’s outputs by

TABLE IV: Summary of results for BTTE and ETTE. The
lowest accuracy was reported for PSL on ETTE (73.61%),
while the highest accuracy was reported for SL on BTTE
(95.70%). Considering all architectures and both validation
metrics, this amounts to an average accuracy of 84%.

DNN Architecture BTTE Acc. ETTE Acc.

DNN 1

PL 0.8389 0.8019
FL 0.8178 0.7984
SL 0.8950 0.9139

PSL 0.8120 0.7361
FSL 0.8136 0.7750

DNN 2

PL 0.9477 0.8711
FL 0.8986 0.8308
SL 0.9570 0.8953

PSL 0.8024 0.7969
FSL 0.8246 0.7831

performing a tradeoff analysis. To understand the methodology
of this set of experiments, it is important to remember that
DTS allows for the independent manipulation of all variables
in a scenario. This gives the user the freedom of changing any
single simulation parameter, running DTS, and then analyzing
the impact of said parameter on the obtained results. The HPC
cluster properties for these experiments were taken from real-
life Amazon Web Services (AWS) clusters [32]. We simu-
lated over 36000 scenarios, with different DNN sizes, cluster
properties, and network conditions. The results were analyzed
to check if they were coherent with how these distributed
architectures would behave in a real-life HPC cluster.

To this aim, we plotted the training time vs. one parameter
with a fixed value, while another parameter randomly changed
its value from simulation to simulation. Simulation results
were obtained with a 95% confidence interval with respect to
the randomly changing parameter. This process was repeated
for all potential combinations of DTS’s parameters including
processing power, power and bandwidth fluctuation, residual
memory per node, memory required to run the neural network,
and others that we will release with the git repository of
this project upon acceptance. This procedure enabled us to
determine how much effect the variability of the randomly
changing parameter had on the training time of a DNN when
the condition defined by the fixed parameter was met. Then
we checked if these results were coherent with the expected
behavior of these distributed architectures in an HPC cluster.

We first observe that PL, SL, and PSL are not scalable.
As the number of clients increases, the difference between
the parallelized architectures (FL, FSL) and the sequential
architectures (PL, SL, PSL) also increases. This behavior is
evident in DTS’s outputs, as shown when comparing Figures
3a and 3b. These figures also evidence the fact that the worst
results of the parallelized architectures are on par or even better
than the best results of the sequential architectures.

Secondly, when the bandwidth is high, then the most
influential variable should be the available processing power,
assuming the DNN properties (size, number of layers, etc.)
are fixed. In our simulated clusters high refers to a bandwidth
B ≥ 40 Gb/s. This behavior is present in DTS’s outputs: it does



(a) (b) (c) (d)

Fig. 2: BTTE and ETTE results for all three datasets for DNN 1 and DNN 2. (a) Results for BTTE for DNN 1 with Echonet-
Dynamic. (b) Results for BTTE for DNN 2 with MNIST, (c) Results for ETTE for DNN 1 for Echonet-Dynamic. (d) Results
for ETTE for DNN 2 for Cats and Dogs.

(a) (b) (c) (d)

Fig. 3: Obtained best training times on different DTS configuration scenarios. (a) Variable processing power, fixed bandwidth
of 40 Gb/s (5 GB/s), and 3 clients. (b) Variable processing power, fixed bandwidth of 40 Gb/s (5 GB/s), and 5 clients. (c)
Variable processing power, fixed bandwidth of 40 Gb/s (5 GB/s), and network size of 630 FLOPs. (d) Variable network size,
fixed bandwidth of 10 Gb/s (1.25 GB/s), and fixed processing power of 13K GFLOPS /s.

not matter if the DNN is small or big, the available processing
power always causes the biggest variance in the final training
time. This behavior is shown in Figure 3c, and it appeared in
all scenarios where the bandwidth B ≥ 40 Gb/s (5 GB/s).

However, when the bandwidth is low then the bandwidth
becomes the main bottleneck. In our case, low refers to a
bandwidth B ≤ 10 Gb/s or lower. Now, most of the training
time is spent sending information through the network instead
of processing information on the clients and servers. As such,
a parallelized architecture with a very high network overhead
like FSL (because of its 2N+1 processor requirement) should
be much slower and even comparable to other sequential archi-
tectures with a much lower network overhead. This behavior
is evident in Figure 3d, where FSL is now on par with a semi-
sequential architecture like PSL. A high network overhead
combined with low bandwidth and gigabytes of data being
constantly sent over the network slowed down FSL to a point
where its parallelization strategies showed no benefits.

Other behaviors were also present in this tradeoff analysis.
For example, DTS would notify the user when there was not
enough local memory available in the processors to house the
DNN. The way a DNN is split also defined whether a dis-
tributed training architecture was viable or not. For example,
splitting a DNN such that 50% of it is on the servers and
50% of it is on the clients usually led to scenarios where the
training was not possible because the clients could not house
that portion of the DNN. However, splitting a DNN 70%-30%
would make the training scenario viable again, without the
need to modify any properties of the HPC cluster.

V. CONCLUSION AND DISCUSSION

In this work, we presented our Distributed Training Simu-
lator (DTS), which given information about a DNN and the
machine network it will be trained on, can output the best
training time and the required network graph for five dis-
tributed training architectures: PL, FL, SL, PSL, and FSL. We
accounted for fluctuations in processing power and bandwidth,
datasets of different complexities, DNNs of vastly different
sizes, and times from multiple batches and epochs in differ-
ent points of the DNN training sequence. We presented the
experiments to validate its training time estimation accuracy
and the coherence of its results with real-life scenarios.

The most important takeaway is that our simulator can
adequately output the time it takes to train a DNN for a
specified number of batches and epochs in the five studied
distributed training architectures with an average accuracy
of 84.05% (minimum 73.51%, maximum 95.70%). Other
concluding remarks include: (1) The difference between par-
allelized and sequential architectures is proportional to the
number of clients. (2) Modifying the available processing
power always drastically influenced the final training time
of a DNN. (3) Low bandwidth can easily become a severe
bottleneck when working with architectures with high network
overhead like Federated Split Learning architectures.

Additionally, DTS can be extended to account for other
DNNs and distributed training architectures. Regarding the
DNNs, the provided measurement tools work for all kinds
of DNNs input as a PyTorch class, which allows the user to
input the DNN parameters into DTS. Regarding the distributed
architectures, the mathematical models and allocation heuris-
tics for the currently supported architectures are provided as a



base for future optimization strategies to be included in DTS.
As a relevant example, the current version of DTS accounts
for the pipelining architecture defined in [8], but other works
have focused on specifically optimizing this strategy to its full
potential [33]–[35]. While these approaches have not been
included in this version of DTS, their integration into the
simulator is straightforward and makes part of the future work.
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J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, and C. Willing, “Jupyter notebooks – a publish-
ing format for reproducible computational workflows,” in Positioning
and Power in Academic Publishing: Players, Agents and Agendas,
F. Loizides and B. Schmidt, Eds. IOS Press, 2016, pp. 87 – 90.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ICLR, 2015.

[28] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” 2018.

[29] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[30] M. Research, “Kaggle cats and dogs dataset,” 2017. [Online]. Available:
https://www.kaggle.com/c/dogs-vs-cats

[31] D. Ouyang, B. He, and e. a. Ghorbani, A., “Video-based ai for beat-to-
beat assessment of cardiac function,” Nature, vol. 580, p. 252/256, 2020.
[Online]. Available: https://www.nature.com/articles/s41586-020-2145-8

[32] Amazon, “Recommended gpu instances,” 2021. [Online]. Available:
https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html

[33] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1–15.
[Online]. Available: https://doi.org/10.1145/3341301.3359646

[34] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen,
“Gpipe: Efficient training of giant neural networks using pipeline
parallelism,” CoRR, vol. abs/1811.06965, 2018. [Online]. Available:
http://arxiv.org/abs/1811.06965

[35] J. Tarnawski, A. Phanishayee, N. R. Devanur, D. Mahajan, and F. N.
Paravecino, “Efficient algorithms for device placement of DNN graph
operators,” CoRR, vol. abs/2006.16423, 2020. [Online]. Available:
https://arxiv.org/abs/2006.16423


