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Abstract

We address the line spectral estimation problem with multiple measurement
corrupted vectors. Such scenarios appear in many practical applications such as
radar, optics, and seismic imaging in which the measurements can be modeled
as the sum of a spectrally sparse and a block-sparse signal known as outlier.
Our aim is to demix the two components and for this purpose, we design a
convex problem whose objective function promotes both of the structures. Using
the Positive Trigonometric Polynomials (PTP) theory, we reformulate the dual
problem as a Semidefinite Program (SDP). Our theoretical results state that for
a fixed number of measurements N and constant number of outliers, up to O(N)
spectral lines can be recovered using our SDP problem as long as a minimum
frequency separation condition is satisfied. Our simulation results also show
that increasing the number of samples per measurement vectors reduces the
minimum required frequency separation for successful recovery.

Keywords: Spectral super resolution, demixing, multiple measurement vector,
atomic norm, convex optimization.

1. Introduction

Spectral super resolution is the problem of estimating the spectrum of a
signal composed of sinusoids using finite number of samples. This problem, also
known as line spectral estimation, is of great importance in signal processing
applications such as radar [1, 2, 3, 4], multi-path channel estimation [5], seismic5

imaging [6], and magnetic resonance imaging [7].
There exist three main attitudes toward spectral super resolution problems:

non-parametric methods, parametric approaches [8], and optimization-based
methods [9, 10, 11]. Periodogram as a non-parametric method can localize
sinusoids up to a limited resolution [12] in the noiseless case. Multiple Signal10
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Classification (MUSIC) is a parametric method which can recover sinusoids
perfectly [13]. However, the performance of this method degrades in the presence
of noise or outliers. Also, MUSIC needs the correlation matrix of the signal
and lack of measurements can highly affect the performance of MUSIC. Other
examples of parametric approaches are Estimation of Signal Parameters via15

Rotational Invariance Technique (ESPRIT) [14] and Matrix Pencil method [15].
Optimization based approaches minimize the continuous counterpart of the ℓ1
norm known as the Total Variation (TV) norm [9]. These methods are shown
to be robust against Gaussian noise[9]. However, their performance degrades
when outliers are present. Tang et.al. proposed a mathematical formulation for20

the spectral super resolution problem using Atomic Norm Minimization (ANM)
[16]. For more illustration, consider a time dispersive multipath channel. The
problem is to estimate channel delays and the corresponding complex coefficients
using a limited number of pilots. This problem is studied using spectral super
resolution and ANM [5, 17].25

In most applications, an array of sensors is utilized to receive the signal. In
real scenarios, the output of some sensors might be corrupted by perturbations
and this makes it harder to super resolve the spectrum of the signal. Thus,
the received signal can be described as a mixture of the transmitted signal
and spiky noise. This noise can be due to the interference arising from other30

signals, lightning discharges, and sensor failures. The problem of estimating
the transmitted signal from the latter mixture is known as demixing sines and
spikes. The demixing problem using the single measurement vector (SMV) is
studied in [18] and [19]. In some certain settings in applications, we are allowed
to collect Multiple Measurement Vectors (MMVs). For example, in Direction35

Of Arrival (DOA) estimation in array processing [20], the aim is to estimate
the DOAs of narrowband sources by observing the output of a sensor array (a
group of sensors) during a time window. As each sensor collects a measurement
vector (takes snapshot) at each time instance, we have access to MMVs in a
time interval. As mentioned earlier, sensors might be exposed to perturbations40

which can lead to corrupted measurements (interpreted as outliers). To jointly
estimate the sources and the ourliers, one could use multiple disjoint SMV
demixing problems (corresponding to multiple snapshots) or a single large SMV
problem by increasing the array size. However, these approaches do not seem to
be reasonable due to cost limitations and array physical constraints. Therefore,45

it is necessary to exploit the temporal redundancy contained in the MMVs by
assuming that the sources remain fixed in a time interval.

In this work, the benefits of using MMVs in the demixing problem are inves-
tigated. It is shown that using MMVs makes it possible to localize the sines with
high precision. According to the fact that the measurement vectors share the50

same spectral characteristic of the signal of interest, it is possible to use this joint
spectral sparsity and distinguish the signal of interest from the outliers. Accord-
ing to the applied signal model, a new method for spectral super resolution in
the presence of outliers is proposed. Also, due to the infinite dimensionality of
the TV norm minimization problem, the dual problem is investigated. Using55

positive trigonometric polynomials (PTP) theory [21], a tractable SDP is pro-
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posed. A vector dual polynomial is formed using the dual variables of the latter
SDP. Also, a sufficient condition for the exact recovery of the proposed method
is provided.

The rest of the paper is as follows: In Section 2 the demixing problem60

for the MMV case is formulated, in Section 3 the TV norm minimization is
applied to distinguish the signal of interest from the outliers, in Section 4 the
dual problem is investigated and a new SDP is proposed, in Section 5 dense
Gaussian perturbation is added to the model and the corresponding SDP is
proposed. Section 6 presents the numerical results, Section 7 provides the proof65

for the main theorem, and Section 8 is devoted to the conclusion and future
work discussions. Also, the proof of the main theorem can be found in Section
9.

Notation. Throughout this paper, scalars are denoted by lowercase letters,
vectors by lowercase boldface letters, and matrices by uppercase boldface letters.70

The ith element of the vector x is given by xi. |.| denotes cardinality for sets
and absolute value for scalars. f (i)(t) denotes the ith derivative of f(t) with
respect to t. Transpose, conjugate, and hermitian of a matrix or vector are
given by (.)T , (.)∗, and (.)H respectively.

2. Problem Formulation75

Suppose that the signal of interest is composed of K complex exponentials

sjl =

K∑
k=1

akle
i2πjfk , j ∈ N , l ∈ L, (1)

where N = {0, . . . , N − 1}, L = {1, . . . , L}, akl ∈ C is the complex amplitude
corresponding to the kth frequency, i =

√
−1, N is the length of the sinusoids,

L is the number of measurements or snapshots taken over time, and fk ∈ T
where T := {f1, . . . , fK} ⊂ [0, 1] is the support set of the signal. In the Fourier
domain, (1) can be expressed as

Gl(f) =

K∑
k=1

aklδ(f − fk), (2)

where δ(f − fk) is Dirac delta function located at fk. The signal can be ex-
pressed in a matrix form S whose columns denote the measurements for one
snapshot and the rows correspond to the output of each sensor for different
snapshots. Note that we can write

sjl =

K∑
k=1

akle
i2πjfk =

∫ 1

0

ei2πjfGl(df) = (FNGl)j ,

where FN maps the measure Gl to its first N Fourier series coefficients. Here,80

we study the full measurement case. The results can be extended to the random
sampling case [22].
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As stated in Section 1, outliers degrade the performance of recent optimization-
based spectral super resolution methods. In order to overcome this problem,
the effect of the outliers should be considered in the initial model used for the
received signal. Following the same approach of [18], the outliers are added to
the received signal as a matrix Z

Y = S +Z = [(FNG1), . . . , (FNGL)] +Z, (3)

where Yjl and Zjl are the received signal and the outliers at jth sensor and
lth snapshot respectively. Note that the outliers affect few number of sen-
sors such that the outlier matrix ZN×L is considered to be row-sparse and85

Ω ⊂ {0, . . . , N − 1} denotes the overall support set of the outliers which means
the rows of ZN×L with nonzero ℓ2 norms.

3. Total Variation Norm Minimization

Without any prior assumption, the demixing problem is ill-posed. Sparse
assumption on the signal structure is proved to be helpful in solving linear90

inverse problems. In compressed sensing theory, Restricted-Isometry Property
(RIP) guaranteed that a random sampling operator would preserve most of
the signal’s energy with high probability (see e.g. [23, 24, 25, 26] for more
details). However, in spectral super resolution, it is possible that the non-zero
spectral information of the signal lies in the null space of the sampling operator.95

Thus, an additional condition called the minimum separation condition should
be met[27].

Definition 1. (Minimum separation) Consider the set T as the set of support.
The minimum separation is defined as the minimum wrap-around distance be-
tween any elements of T,

∆ := ∆(T) = inf
(f1,f2)∈T:f1 ̸=f2

|f2 − f1|.

For clarification, the wrap-around distance between f1 = 1
5 and f2 = 4

5 is equal
to 2

5 .

In compressed sensing theory, the ℓ1,2 norm was used to promote group
sparsity of the received signals sharing the same support sets (see e.g. [28, 29]).
The continuous counterpart of ℓ1,2 norm is the group Total Variation (gTV)
norm

∥X∥gTV := sup
∥F (t)∥2≤1,t∈T

F :T→CL

L∑
l=1

Re{
∫
T
FH
l (t)Xl(dt)}.

Fernandez proved that a minimum separation of 2.52
N−1 has to be met so that

the gTV norm minimization achieves exact recovery [27]. Following the same
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insight of [18], we propose the following optimization problem for demixing in
the MMV case

min
G̃,Z̃

∥G̃∥gTV + λ∥Z̃∥1,2 s.t. Y = [FN G̃1, . . . ,FN G̃L] + Z̃, (4)

where λ > 0 is a regularization parameter, ∥.∥1,2 denotes the matrix l1/2 norm100

and FN is the linear operator mapping a vector to its N lowest Fourier Co-
efficients. The main contribution of this paper is to show that under certain
assumptions, the above problem has a unique solution.

Theorem 1. Consider N measurements with L snapshots and suppose that the
ℓ2 norm of each row in the outlier matrix Z is non-zero with probability s

N . Let
the elements of the support set T satisfy the minimum separation condition of
∆ ≥ ∆min = 2.52

N−1 . If the phases al and the nonzero entries of Z are i.i.d uni-

formly distributed in [0, 2π], then (4) with λ = 1/
√
N provides the exact solution

with probability at least 1− ϵ for any ϵ > 0 as long as

K < CKN

(
log

N

ϵ

)−1(
1 +

1

L
log

√
LN3

ϵ

)−1

,

s < CsN

(
log

N

ϵ

)−1(
1 +

1

L
log

√
LN3

ϵ

)−1

,

for some constants CK , Cs, and N ≥ 2× 103.

Remark. Using MMVs leads to an increased probability of successful recovery.105

To see this, consider demixing the corresponding columns of S and Z in the
SMV case [18]. For a fixed N, each column of S and Z can be recovered from the
corresponding column of Y with a probability of at least 1−ϵ. Thus, in order to
recover all the columns of S, the probability of successful recovery would be at
least 1−Lϵ. However, in order to solve the problem with a single optimization,110

as proposed in Theorem 1, the probability of successful recovery for weaker
conditions on N and K, is at least 1 −

√
Lϵ. This explicitly certifies that

the proposed method outperforms L individual SMVs in terms of the success
probability. It is also worth mentioning that the simulation results in Section 6
indicate that the MMV performance can actually be better than even a single115

SMV. This issue can also be captured by Theorem 1 since by increasing L,
the conditions on K, s would be weaker. This in turn shows that for fixed K
and s, the performance of our method enhances by increasing the number L of
snapshots. It is also worth noting that in the SMV case (L = 1), the bound in
Theorem 1 reduces to the required sample complexity of SMV case obtained in120

[18, Theorem 2.2].

The proof of Theorem 1 appears in Section 7. In Section 4 we look at the
dual of (4) and reformulate it as an SDP.
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4. Dual Problem

According to the infinite dimensionality of gTV norm in (4), we look at its
dual formulation and analyze it. The proposed demixing problem (4) is closely
related to the atomic norm minimization problem introduced in [9]. Using the
fact that our signal of interest is composed of K complex exponentials, we can
present it sparsely with an atomic set containing N -dimensional sinusoids. The
measurements of each snapshot or time sample form a measurement matrix as
in (3). As a consequence, it is crucial that we use matrix form atoms to build
up our signal. Consider the following atomic set with ∥.∥2 denoting l2 norm

A = {a(f, ϕ)bH : f ∈ [0, 1], ϕ ∈ [0, 2π], ∥b∥2 = 1}

for any b ∈ CL×1 and

a(f, ϕ) =
1√
N

eiϕ[1, ei2πf , . . . , ei2π(N−1)f ]T ∈ CN .

Using the above definition of the atomic set, we can define the matrix S as125

S =
√
N

K∑
k=1

a(fk, ϕ)ψ
H
k =

K∑
k=1

cka(fk, ϕ)b
H
k , (5)

where ck =
√
N∥ψ∥2 > 0 and bk = c−1

k ψk

√
N with ∥bk∥2 = 1. According to

[16, 30], spectral super resolution problem can be treated using atomic norm
minimization. This attitude arises from the fact that in spectral super resolution
problem the spectrum of the signal of interest is sparse. The atomic norm is
defined as

∥X∥A := inf{t > 0 :X ∈ tconv(A)}, (6)

where conv(A) denotes the convex hull of the atomic set A.
Using the definition of the atomic norm, (4) can be represented as

min
S̃,Z̃

∥S̃∥A + λ∥Z̃∥1,2 s.t. Y = S̃ + Z̃. (7)

In order to formulate the dual problem, we need the definition of dual atomic
norm as

∥Γ∥∗A = sup
∥S̃∥A≤1

< Γ, S̃ >F,

= sup
f∈[0,1]
ϕ∈[0,2π]

∥b∥2=1

< Γ, eiϕa(f, 0)bH >F,

= sup
f∈[0,1]
∥b∥2=1

| < Γ,a(f, 0)bH >F |,

= sup
f∈[0,1]

∥ΓHa(f)∥2,

6



where < . >F shows the Frobenius inner product. Using the above definition,
the dual of (7) is written as

max
Γ∈CN×L

Re < Y ,Γ >F s.t. sup
f∈[0,1]

∥ΓHa(f, 0)∥2 ≤ 1,

∥Γ∥∞,2 ≤ λ, (8)

where Re < . > denotes the real part of the inner product and ∥.∥∞,2 is the
matrix infinity/2 norm defined as

∥Γ∥∞,2 = max
i

∥Γi,:∥2.

By applying the PTP theory [21], the maximization constraint in (8) can be
reformulated as a Linear Matrix Inequality (LMI) given by130

max
Γ∈CN×L,Λ∈CN×N

Re < Y ,Γ >F s.t.

[
Λ Γ
ΓH IL

]
⪰ 0,

T ∗(Λ) =

[
1
0

]
,

∥Γ∥∞,2 ≤ λ, (9)

where T ∗ is defined as

T ∗(Λ)j =

N−j+1∑
i=1

Λi,i+j−1,

IL denotes the identity matrix of size L× L, 0 ∈ CN−1 is a zero vector, and
⪰ 0 denotes positive semi-definiteness.

In order to localize the frequencies of the signal of interest and the noisy
spikes, Lemma1 is presented.

Lemma 1. The solution to (7) is unique if for Γ ∈ CN×L and the vector-valued135

dual polynomial Q = a(f, 0)HΓ, we have

Q(fk) =
ck
|ck|

bHk for k s.t. fk ∈ T, (10a)

∥Q(fj)∥2 < 1 ∀fj ∈ [0, 1]\T, (10b)

and for any d ∈ Ω and l ∈ Ωc,

Γd,: = λ
Zd,:

∥Zd,:∥2
, (10c)

∥Γl,:∥2 < λ. (10d)

Proof. If we find a Γ satisfying the above conditions, it is dual feasible. Consider
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Ŝ and Ẑ as the solutions to (7). Then, we would have

∥Ŝ∥A ≥ ∥Ŝ∥A∥Γ∥∗A
≥ < Γ, Ŝ >R

= < Γ,

K∑
k=1

cka(fk, ϕk)b
H
k >R

=

K∑
k=1

Re{c∗k < Γ,a(fk, ϕk)b
H
k >}

=

K∑
k=1

Re{c∗k < bk,Q(fk)
H >}

=

K∑
k=1

Re{c∗k
ck
|ck|

} ≥ ∥Ŝ∥A.

Also,140

Re < Ŷ ,Γ > = Re < Ŝ,Γ > +Re < Ẑ,Γ >

= ∥Ŝ∥A +
∑
d∈Ω

Re{Ẑ∗
d,:,Γd,:}

= ∥Ŝ∥A + λ
∑
d∈Ω

Re{
Z∗

d,:Zd,:

∥Zd,:∥2
} = λ∥Z∥1,2,

where the last equality is derived using 10c. Therefore, we must have
< Γ, Ŝ >R= ∥Ŝ∥A + λ∥Ẑ∥1,2. Thus, by strong duality, Ŝ and Ẑ are primal

optimal and Γ is dual optimal. To investigate uniqueness, we consider S̃ =∑
k∈T̃ c̃ka(f̃k, ϕ̃k)b̃

H
k and Z̃ with supports T̃ and Ω̃, respectively as the other
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optimal solutions to (7). Then, we get145

< Ỹ ,Γ >R=< S̃,Γ >R + < Z̃,Γ >R

=
∑

f̃k∈T∩T̃

Re{c̃k < b̃k,Q(f̃k)
H >}

+
∑

f̃j∈Tc∩T̃

Re{c̃j < b̃j ,Q(f̃j)
H >}

+
∑

d∈Ω∩Ω̃

Re{< Z̃∗
d,:,Γd,: >}+

∑
l∈Ωc∩Ω̃

Re{< Z̃∗
l,:,Γl,: >}

≤
∑

f̃k∈T∩T̃

Re{c̃k∥b̃k∥2∥Q(f̃k)∥2 +
∑

f̃j∈Tc∩T̃

Re{c̃j∥b̃j∥2∥Q(f̃j)∥2

+ λ
∑

d∈Ω∩Ω̃

Re{∥Z̃d,:∥2}+ ∥ΓΩc,:∥∞,2

∑
l∈Ωc∩Ω̃

Re{∥Z̃l,:∥2}

<
∑

f̃k∈T∩T̃

c̃k∥b̃k∥2 +
∑

f̃j∈Tc∩T̃

c̃j∥b̃j∥2 + λ
∑

d∈Ω∩Ω̃

Re{∥Z̃d∥2}

+ λ
∑

l∈Ωc∩Ω̃

Re{∥Z̃l,:∥2} = ∥S̃∥A + λ∥Z̃∥1,2,

which contradicts the strong duality. Thus, all optimal solutions are solely
supported on T and Ω. Since the atoms in T and Ω are linearly independent,
the pair (Ŝ, Ẑ) is the unique optimal solution to (7).

5. Demixing in Presence of Dense Perturbation

In many practical scenarios (e.g. Direction of Arrival (DOA) estimation), the
presence of dense perturbations is unavoidable [31]. When the received signal is
perturbed with dense noise, one can modify (4) as a new optimization problem
and the corresponding SDP. In this case, the received data is in the form of

Y = S +Z +W = [(FNG1), . . . , (FNGL)] +Z +W ,

whereW ∈ CN×L is the additive noise matrix with i.i.d. elements distributed as150

zero mean Gaussian distribution with standard deviation σ. Now, by modifying
(4), we reach

min
G̃,Z̃

∥G̃∥gTV + λ∥Z̃∥1,2 s.t. ∥Y − [FN G̃1, . . . ,FN G̃L]− Z̃∥F ≤ η, (11)

where η is an upper-bound of ∥W ∥F . In what follows, we derive the dual
problem of (11) and its corresponding semidefinite relaxation.
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Lemma 2. The dual problem of (11) is155

max
Γ∈CN×L

Re < Y ,Γ >F −η∥Γ∥F s.t. sup
f∈[0,1]

∥ΓHa(f, 0)∥2 ≤ 1,

∥Γ∥∞,2 ≤ λ, (12)

which is equivalent to the following SDP,

max
Γ∈CN×L,Λ∈CN×N

Re < Y ,Γ >F −η∥Γ∥F s.t.

[
Λ Γ
ΓH IL

]
⪰ 0,

T ∗(Λ) =

[
1
0

]
,

∥Γ∥∞,2 ≤ λ, (13)

with 0 ∈ Cn−1 being a vector of zeros.

Proof. Problem (11) can be reformulated as

min
G̃,Z̃

∥G̃∥gTV + λ∥Z̃∥1,2 s.t. ∥Y −U∥2F ≤ η2

U = [FN G̃1, . . . ,FN G̃L] + Z̃.

The Lagrangian of the above problem is

L(G̃, Z̃,Γ) = ∥G̃∥gTV − ⟨[G̃1, . . . , G̃L],F∗
NΓ⟩F + λ∥Z̃∥1,2 − ⟨Z̃,Γ⟩F

+ ⟨U ,Γ⟩F + ν
(
∥Y −U∥2F − η2

)
. (14)

Due to the first constraint in (12), ∥G̃∥gTV −⟨[G̃1, . . . , G̃L],F∗
NΓ⟩F is minimized

for G̃ = 0 and because of the second constraint in (12), λ∥Z̃∥1,2 − ⟨Z̃,Γ⟩F is

minimized for Z̃ = 0. Next, considering the convexity of (14), we evaluate its
gradient w.r.t U and set the result to zero to get,

∂L
∂U

= Γ− 2ν(Y −U) = 0 → U = Y − Γ

2ν
.

Therefore,

⟨Y ,Γ⟩F − 1

2ν
∥Γ∥2F + ν

(
∥ Γ

2ν
∥2F − η2

)
= ⟨Y ,Γ⟩F − 1

4ν
∥Γ∥2F − νη2. (15)

Since ν is positive, taking derivative w.r.t ν, setting the result equal to zero, and160

plugging the result back leads to (12) with the constraints used. Thus, (12) is
the dual problem of (11) and using the PTP theory [21], (13) is concluded.
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Figure 1: ℓ2 norm of dual polynomial and true frequencies.

6. Numerical Results

6.1. Without Perturbation

In this subsection, numerical experiments are presented to evaluate the per-165

formance of the method proposed in Section 4. First, we investigate the con-
straints (10a) and (10b) on the dual polynomial and the constraints (10c) and
(10d) on the dual variable. Using these constraints, one can localize the signal
frequencies and the outliers’ spikes. Next, the minimum required frequency sep-
aration for successful recovery in the MMV case is compared with the one needed170

in the SMV case. In all simulations of this subsection, the number of sensors or
the signal length is set to N = 50. In the first part of the simulations, the signal
of interest S ∈ CN×L has K = 3 frequencies and the coefficients akl are always
drawn from a standard i.i.d complex Gaussian distribution. The outliers’ spikes
are considered to be in s = 3 different random positions in each snapshot. For175

better visualization, it is assumed that outliers happen in each sensor only once.
Figure (1) depicts ∥Q(f)∥2 for L = 5 snapshots and T = {0.1, 0.4, 0.8}. As it can
be observed, the signal frequencies can be estimated by solving ∥Q(f)∥2 = 1 for
all f ∈ [0, 1]. The outliers are localized in each receiving sensor using (10c). We
considered s = 3 noisy spikes occurring randomly in each measurement without180

replacement. Thus, with L = 5 we expect to detect 15 outliers in the receiver.
Figure (2) depicts the result. As it turns out, Figure (2) verifies the conclusion
of Lemma 1.

Next, we investigate the minimum separation condition. To do this, we
consider two frequencies slowly taking distance. The first frequency is fixed
at f1 = 0.2 and the second one has a distance of fδ = {0.1/N : 0.1/N : 1.5/N}
from f1. During this experiment, s = 10 outliers out of N = 50 are considered
in the overall measurement process. Also, we define fest = [fest

1 , fest
2 ] as the

estimated frequencies vector. A successful estimation is defined as when

max{|fest − ftrue|} ≤ 10−4 (16)

where ftrue denotes the true frequencies. With this definition, Figure (3) illus-
trates the probability of successful recovery for L = {1, 3, 5} over 100 Monte-185
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Figure 2: ℓ2 norm of Γ rows in Lemma 1 in terms of sensor indices. The estimated spike
locations are found by identifying indices where the ℓ2 norm of Γ rows achieves λ.

Figure 3: Probability of successful recovery in terms of minimum separation for various number
of snapshots.

Carlo simulations. As seen, the minimum required frequency separation is de-
creased with an increase in the number of snapshots. For more illustration
on Theorem 1, phase transition diagrams for s and K are plotted in Figures 4
and 5 with parameters N = 50,K = 5, and N = 50, s = 5, respectively. In
each Monte-Carlo simulation, the frequencies are randomly generated satisfy-190

ing the separation condition and the total number of Monte-Carlo iterations is
considered to be 100. As Figure (5) shows, for fixed N and K, the probability
of successful recovery increases when the number of snapshots (L) rises. Also,
increasing the number of sources K leads to recovery corruption for fixed L
and N . Moreover, Figure (4) shows that increasing the number of snapshots195

can affect the maximum number of possible spikes to recover. However, this
behaviour is up to a limit point. This is aligned with our bound in Theorem 1.
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Figure 4: Performance of our atomic norm minimization method for diverse values of the
number of snapshots (L) and outliers’ spikes (s). The heat-map shows the probability of
successful recovery (white: success black: failure).

Figure 5: Performance of our atomic norm minimization method for diverse values of the
number of snapshots (L) and sources (K). The heat-map shows the probability of successful
recovery (white: success black: failure).

6.2. With Perturbation

In this subsection, various scenarios are considered and the results are com-
pared with the state of the art SPA [32] method. Note that comparison with200

conventional SPICE method [33] is not implemented as this method was de-
signed to estimate on-grid frequencies leading to basis mismatch issues and
estimation inaccuracies. Therefore, we only compare our method with SPA [32]
which is often regarded as a continuous version of SPICE [33]. In order to get
closer to a more realistic scenario, consider the DOA estimation problem with205

K = 3 sources where the first and third sources are considered coherent. Take
the incoming directions to be ftrue = [0.1, 0.4, 0.8] and the corresponding esti-
mation vector to be fest. In what follows, we compare our proposed method
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Figure 6: Comparison of the performance of proposed method over SPA when the number of
snapshots increases and the spikes energy is low.

with the SPA [32] when both methods are perturbed with impulsive spiky and
Gaussian dense noises.210

6.2.1. Effect of Taking Snapshots

To compare the performance of the two methods for different number of
snapshots, we set the number of DOA sensors, N , to 50 and the number of
spikes, s, to 10. The elements of the noise matrix W are considered to be
i.i.d. and distributed as Gaussian with zero mean and variance 0.5. Also, the
spectral norm of the spiky noise ∥Z∥F is set to 25. This value does not affect the
performance of the proposed method but devastates the performance of SPA.
The number of snapshots, L, is ranged from 5 to 30 and the result is presented
in Figure 6 for 100 Monte-Carlo simulations. The error is measured in terms of
the Mean Square Error (MSE) defined as

MSE =
1

K
∥fest − ftrue∥22.

As Figure (6) depicts, both methods show improvements as the number of
snapshots increases. However, it is apparent that the proposed method has
higher accuracy than the SPA method.

6.2.2. Effect of Impulsive Noise Energy215

Here, we would like to investigate the performance of two methods for various
levels of ∥Z∥F which is the Frobenius norm of Z. The setting is similar to
that of the previous subsection except that the number of snapshots is fixed
to 10. The result is shown in Figure (7). As expected, the performance of the
proposed method does not change considerably compared to the SPA in this220
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Figure 7: Comparison of the performance of proposed method over SPA in terms of the energy
of spikes i.e. ∥Z∥F .

scenario. However, it can be observed that by increasing the energy of spikes,
the performance of SPA is corrupted in such a way that after some threshold a
successful recovery will be impossible.

6.2.3. SNR

This subsection focuses on the effect of Gaussian noise variance employed225

in W on the performance of both methods in terms of MSE. The simulation
is based on the same setting as the first subsection except that the variance of
each element in W i.e. σ2 varies from 0.5 to 6.5, L = 5 and s = 5 with the
spikes energy level of 30. The result is shown in Figure (8). As seen, σ2 can
have a huge impact on the performance. Both methods tend to experience a230

threshold after which their MSEs increase dramatically. However, this threshold
for the proposed method is significantly higher than the SPA, which indicates
the greater robustness of the proposed method against Gaussian noise energy.

7. Proof of Theorem 1

In order to prove that problem (7) achieves exact demixing, we construct a235

trigonometric dual polynomial. Following the same line of [18], we apply the
following kernel to build up the dual polynomial,

K̄(f) := D0.247m(f)D0.339m(f)D0.414m(f) =

m∑
l=−m

cle
i2πlf ,

15
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Figure 8: Performance of the proposed method over SPA when the dense noise energy in-
creases.

where N = 2m+ 1, c ∈ CN is the convolution of the Fourier coefficients of the
above kernels, and Dm is the Dirichlet kernel of order m > 0 defined as

Dm(f) :=
1

N

m∑
l=−m

ei2πlf .

According to the presence of outliers, conventional forms of dual polynomial can
not be applied since the constraints (10d) and (10c) will not be met. Therefore,
we use the randomized vector form of the dual polynomial presented in [18] as240

Q(f) = Qaux(f) +R(f), (17)

where

Qaux(f) =
∑
l∈Ωc

Γl,:e
−i2πlf ,

R(f) =
1√
N

∑
d∈Ω

rd,:e
−i2πdf ,

where rd,: =
Zd,:

∥Zd,:∥2
and r ∈ Cs×L. Note that (10c) is immediately satisfied

since λ = 1/
√
N . Now we should build up the dual polynomial so that the other

constraints in Lemma 1 are met. Using the same interpolation technique of [27],
we set the value of the dual polynomial equal to ck

|ck|b
H
k = hkb

H
k at fk ∈ T and set245

the derivative of the dual polynomial equal to zero at the same points. Setting
the derivative to zero forces the dual polynomial to shape such that fk be a
local extremum and bounds the value of the dual polynomial at these points.

16



Thus, the following set of equations is formed for any fk ∈ T

Q(fk) = hkb
H
k , (18a)

Q
(1)
R (fk) + iQ

(1)
I = 0, (18b)

where Q
(1)
R denotes the real part of the first derivative of Q and QI is the

imaginary part of Q. Using (17) in the above equations yields

Qaux(fk) = hkb
H
k −R(fk), (19a)

(Qaux)
(1)
R (fk) + i(Qaux)

(1)
I (fk) = −R(1)

R (fk)− iR
(1)
I (fk). (19b)

To interpolateQ(f) with K̄(f), we need to confine the kernel toΩc, as discussed250

for the missing data case in [16]. Thus,

K(f) :=
∑
l∈Ωc

cle
i2πlf =

m∑
l=−m

δΩc(l)cle
i2πlf , (20)

where δΩc(l) are Bernoulli random variables with parameter N−s
N . Therefore,

EK is an scaled version of K̄

EK(f) =
N − s

N

m∑
l=−m

cle
i2πlf =

N − s

N
K̄(f). (21)

The asymptotic behaviour of K(f), K̄(f), and their derivatives is investigated
in [27]. With K(f) restricted to Ωc we can express Qaux in terms of K(f) and255

its first derivative as

Qaux =

K∑
k=1

αkK(f − fk) + κβkK
(1)(f − fk), (22)

where α ∈ CK×L and β ∈ CK×L are such that (19a) and (19b) are satisfied

and κ := 1/
√
K̄(2)(0). αk is the kth row of α and βk is the kth row of β. The

system of equations is then represented as[
D0 D1

DT
1 D2

] [
α
β

]
=

[
Φ
0

]
− 1√

N
BΩr, (23)

where 0 ∈ CK×L is a zero matrix,Φk,: = hkb
H
k ,260

(D0)jl = K(fj − fl), (D1)jl = κK(1)(fj − fl), (D2)jl = −κ2K(2)(fj − fl),

1√
N
BΩr = [R(f1), . . . ,R(fk),R

(1)(f1), . . . ,R
(1)(fk)]

T ,

BΩ = [ν(d1), . . . ,ν(ds)],

17



ν(g) := [e−i2πgf1 , . . . , e−i2πgfk ,

i2πgκe−i2πgf1 , . . . , i2πgκe−i2πgfk ]T .

By solving (23), one can find α and β and define Q(f) as

Q(f) =

K∑
k=1

αkK(f − fk) + κβkK
(1)(f − fk) +R(f) (24a)

= GT
0 (f)D

−1

([
Φ
0

]
− 1√

N
BΩr

)
+R(f), (24b)

where Gp(f) is defined as

Gp(f) := κp[K(p)(f − f1), . . . ,K
(p)(f − fk),

κK(p+1)(f − f1), . . . , κK
(P+1)(f − fk)]

T , (25)

for p = 0, 1, 2, . . . Now we should verify that the polynomial we formed above is
guaranteed to be valid with high probability. If one can prove that D−1 exists,
then (23) can be solved and (10a) holds. Consider D̄ as the deterministic
version of D. Lemma 8 helps defining a condition under which D−1 exists and265

its deviation is bounded. We consider εcD as the event in which D−1 exists
with probability 1− ϵ/5 for ϵ > 0 under the assumption of Theorem 1. With
this Lemma, one can conclude that in εcD (10a) holds. Note that (10c) holds
according to the definition of Q(f). All that remains is to prove (10b) and
(10d). We use the results of Lemma 7,9 below and Lemma 3.5 from [18] which270

put bounds on the deviations of BΩ, ν(d), and Gp(f), respectively. We use εcB
and εcν as the events in which BΩ and ν(d) are bounded with probability at
least 1− ϵ/5 under the assumption of Theorem 1, respectively.

Proposition 1. Under the assumption of Theorem 1 and conditioned on εcB ∩ εcD ∩ εcν ,
(10b) holds with probability at least 1− ϵ/5.275

Proof. Consider Q̄(f) as the dual polynomial constructed using K̄(f). We can
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rewrite (24b) in a more general form for K(f) and K̄(f) as

κιQ̄(ι)(f) := κι
K∑
j=1

ᾱjK̄
(ι)(f − fj)+

κι+1
K∑
j=1

β̄jK̄
(ι+1)(f − fj) = Ḡι(f)

T D̄−1

[
Φ
0

]
(26)

κιQ(ι)(f) := κι
K∑
j=1

αjK
(ι)(f − fj)+

κι+1
K∑
j=1

βjK
(ι+1)(f − fj) + κιR(ι)(f)

= Gι(f)
TD−1

([
Φ
0

]
− 1√

N
BΩr

)
+ κιR(ι)(f). (27)

We can also express (27) as

κιQ(ι)(f) := κιQ̄(ι)(f) + κιR(ι)(f)− 1√
N
Gι(f)

TD−1BΩr

+ (Gι(f)−
N − s

N
Ḡι(f))

TD−1

[
Φ
0

]
+

N − s

N
Ḡι(f)

T (D−1 − N

N − s
D̄−1)

[
Φ
0

]
.

Noting that ∥Q(f)∥2 ≤ ∥Q̄(f)∥2 + ∥Q(f)− Q̄(f)∥2, for (10b) to hold, we should
have ∥Q̄(f)∥2 + ∥Q(f)− Q̄(f)∥2 ≤ 1. The following lemmas complete the proof.

Lemma 3. Under the assumptions of Proposition 1, ∥Q(f)− Q̄(f)∥2 ≤ 10−2.

Lemma 4. Under the assumptions of Proposition 1, ∥Q̄(f)∥2 < 0.99. Also

1

2

d2∥Q(f)∥2
df2

= ∥Q′∥22 +Re{Q′′QH(d)} < 0, (28)

∀f ∈ Anear := {f ||f − fj | ≤ 0.09 forfj ∈ T}.

The proof of the above lemmas appear in Section 9.

Now, we prove (10d) as the last step to prove Theorem 1.280

Proposition 2. Under the assumption of Theorem 1 and conditioned on εcB ∩ εcD ∩ εcν ,
(10d) holds with probability at least 1− ϵ/5.
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Proof. We can express Γl,: as

Γl,: =

K∑
j=1

clαje
i2πlfj + i2πlκ

K∑
j=1

K∑
j=1

βje
i2πlfj

= clν(l)
H

[
α
β

]
= clν(l)

HD−1

([
Φ
0

]
− 1√

N
BΩr

)
= cl

(
< PD−1ν(l),Φ > +

1√
N

< BH
ΩD

−1ν(l), r >

)
. (29)

We use the results from [18] to bound ∥PD−1ν(l)∥2 and BH
ΩD

−1ν(l),

∥PD−1ν(l)∥22 ≤ 640K ≤ 0.182N

log40/ϵ
in εcD (30a)

∥BH
ΩD

−1ν(l)∥22 ≤ 640C2
BKN ≤ 0.182N2

log40/ϵ
in εcD ∩ εcB . (30b)

By applying the vector form of the Hoeffding’s inequality [22] with t = 0.18
√
N

for (30a) and t = 0.18N for (30b), we can conclude that each term in (29) is
greater than its corresponding t with probability ϵ/10. Thus,

∥Γl,:∥∞,2 ≤

∥c∥∞
(
∥ν(l)HD−1PTΦ∥2 +

1√
N

∥ν(l)HD−1BΩr∥2
)

≤ 2.6

N
(0.36

√
N) =

0.936√
N

<
1√
N

,

with probability at least 1− ϵ/5.

8. Conclusion and Future Work

The problem of demixing exponential form signals and outliers using MMVs285

was discussed. A new convex optimization problem was proposed to solve the
demixing problem. It was shown that with the minimum frequency separation
condition satisfied, there exists a dual polynomial which interpolates the sign
pattern of the signal and helps estimating the signal frequencies. Also, the dual
variable was utilized to localize the outliers in the receiver.290

As an extension to this work, one can investigate the demixing problem using
an arbitrary sampling scheme. This is the case when integer sampling is not
possible. Also, the computational complexity of the available SDPs is high. For
practical purposes, it is mandatory to reduce the computational complexity of
the proposed method.295
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9. Proofs

9.1. Proof of Lemma3

First, we bound ∥κιQ(ι)(f)− κιQ̄(ι)(f)∥2 on a grid. Then, the result is
extended to the continuous domain [0, 1] and then (10b) is proved. In order to
bound ∥κιQ(ι)(f)− κιQ̄(ι)(f)∥2, we can bound each term in

∥κιR(ι)(f)∥2 + ∥ 1√
N
Gι(f)

TD−1BΩr∥2

+ ∥(Gι(f)−
N − s

N
Ḡι(f))

TD−1

[
Φ
0

]
∥2

+ ∥N − s

N
Ḡι(f)

T (D−1 − N

N − s
D̄−1)

[
Φ
0

]
∥2 (31)

on a grid G such that |G| = 200
√
LN3 where |G| is the cardinality of G. Since,

ι ∈ {0, 1, 2, 3}, we are dealing with |U| = 4|G| points. To bound each term in
(31), we leverage Lemma 4 of [34], which is stated as follows.300

Lemma 5 ([34] Lemma 4). Consider a matrix Ψ ∈ CK×L with rows {Ψk}Kk=1

and the vector 0 ̸= ω ∈ CK . If the rows of Ψ are independently distributed on
the complex hyper-sphere S2L−1, then for all t > ∥w∥2, we have

P{∥
K∑

k=1

ωkΨk∥2 ≥ t} ≤ e
−L

(
t2

∥ω∥22
−log t2

∥ω∥22
−1

)
∀ω ∈ CK ,ω ̸= 0, t > 0. (32)

Each term in (31) is associated with an event εq and q = {1, 2, 3, 4}. For the
ease of reading, we separate the proof of the bounds on each term.

9.1.1. Bound on ε1
The first term in (31) can be expressed as

κιR(ι)(f) =
κι

√
N

∑
d∈Ω

rd,:(i2πd)
(ι)e−i2πdf (ι) = {0, 1, 2, 3}.

Therefore, we define

ε1 := {∥κιR(ι)(f)∥2 ≥ t for all f ∈ |Tgrid|}.

By setting Ψ = r and

ω =
κι

√
N

[
(i2πl1)

(ι)ei2πl1f , . . . , (i2πls)
ιei2πlsf

]T
,

in (32) and using the union bound, we can conclude that

P{sup
f∈U

∥κιR(ι)(f)∥2 ≥ t} ≤ |Tgrid|e
−L

(
t2

∥ω∥22
−log t2

∥ω∥22
−1

)
. (33)
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If we set

t2

∥ω∥22
− log

t2

∥ω∥22
− 1 ≥ 1

L
log

|Tgrid|
ϵ/20

, (34)

we get at most ϵ/20 probability of occurrence for (33). By leveraging [34, Lemma
5], a sufficient condition for (34) to hold is

t2

∥ω∥22
≥ 2(1 +

1

L
log

|Tgrid|
ϵ/20

)

→ ∥ω∥22 ≤ t2
(
2(1 +

1

L
log

|Tgrid|
ϵ/20

)

)−1

≤ t2

2

(
1 +

1

L
log

|Tgrid|
ϵ/20

)

)−1

. (35)

The above result combined with the bound [18]

∥ω∥22 ≤ κ2ι

N
(2πm)2ιs ≤ π6s

N
, (36)

leads to the sufficient condition,

s ≤ N

π6
(1 +

1

L
log

|Tgrid|
ϵ

)−1,

which is actually satisfied by the second sufficient condition in Theorem 1 after

setting t = 10−2

8 and Cs small enough. Thus, one can conclude that the event305

ε1 happens with probability at most ϵ/20 under the assumptions of Proposition
1.
9.1.2. Bound on ε2

Following the same procedure as for ε1, one can bound the second term in
(31). Consider Ψ = r and

ω =
1√
N
GT

ι (f)D
−1BΩ.

Note that we can write

∥ 1√
N
GT

ι (f)D
−1BΩ∥2 ≤ 1√

N
∥BΩ∥∥D−1∥∥Gι(f)∥2. (37)

where ∥.∥ denotes the operator norm. Now, we should find the sufficient con-
ditions for bounding each term of (37). The bound for the terms ∥D−1∥ and310

∥Gι(f)∥2 can be found below in Lemmas 8 and 9, respectively. Lemma 6 will
provide a new bound for ∥BΩ∥.
Lemma 6. Under the assumptions of Theorem 1, the event

εB =

∥BΩ∥ > CB

√
N

(
log(

N

ϵ
)(1 +

1

L
log

N3
√
L

ϵ
)

)−1/2


will occur with probability at most ϵ/5 for some constant CB.
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Proof. Define H := BΩB
H
Ω which is

H =
∑
l∈Ω

ν(l)ν∗(l).

The matrix H is dissipated around H̄ =
∑m

l=−m ν(l)ν∗(l). Using the result of
Lemma E.1 in [18], we have

∥H̄∥ ≤ 260π2N logK. (38)

Using the bound on s from Theorem 1, we can write

s ≤ CsN(

(
log

N

ϵ

)−1(
1+

1

L
log(

√
LN3

ϵ
)

)−1

≤ CsN
(
logK

)−1
(
1+

1

L
log(

√
LN3

ϵ
)

)−1

.

Then from (38) and the above bound, we can bound ∥ s
N H̄∥ as

∥ s

N
H̄∥ ≤ 260π2CsN

1 + 1
L log

√
LN3

ϵ

=
C2

B

2
N(1 +

1

L
log

√
LN3

ϵ
)−1.

Now, we can control the deviation of H from H̄ using the following Lemma.

Lemma 7. Under the assumptions of Theorem 1

∥H − s

N
H̄∥ ≤ C2

B

2
N(1 +

1

L
log

√
LN3

ϵ
)−1

with probability at least 1− ϵ
5 .315

The proof of the above Lemma is given after the current proof. Using the
result from Lemma 7, we have

∥BΩ∥ ≤
√
∥H∥ ≤

√
s

N
∥H̄∥+ ∥H − s

N
H̄∥

≤

√
C2

B

2
N(1 +

1

L
log

√
LN3

ϵ
)−1 +

C2
B

2
N(1 +

1

L
log

√
LN3

ϵ
)−1

= CB

√
N(1 +

1

L
log

√
LN3

ϵ
)−1/2 (39)

with probability at least 1− ϵ
5 . This concludes the proof of Lemma 6.

Proof of Lemma 7. Under the assumptions of Theorem 1, one can write

H =

m∑
l=−m

δΩ(l)ν(l)ν
∗(l),

where δΩ(l), l = −m, ...,m are i.i.d. Bernoulli random variables with parameter
s
n . Next we can build zero-mean self adjoint matrices from H as

Xl := (δΩ − s

N
)ν(l)ν∗(l),

so that we can apply Matrix Bernstein inequality [35].
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Theorem 2 (Matrix Bernstein inequality [35]). Let {Xl} be a finite sequence of
independent zero-mean self-adjoint random matrices of dimension d such that
∥Xl∥ ≤ B almost surely for a certain constant B. For all t ≥ 0 and a positive
constant σ2

P{∥
m∑

l=−m

Xl∥ ≥ t} ≤ de
− t2/2

σ2+Bt/3 (40)

for ∥
∑m

l=−m E(X2
l )∥ ≤ σ2.

In order to be able to apply the recent theorem on Xl, we need a bound on
∥Xl∥. Using Lemma 3.5 in [18], we have

∥Xl∥ ≤ sup
−m≤l≤m

∥ν(l)∥22 ≤ B := 10K.

Also, to find the value for σ2, we can write

σ2 := ∥
m∑

l=−m

E(X2
l )∥ = ∥

m∑
l=−m

E((δ̄(l)− s

N
))2∥ν(l)∥22ν(l)ν∗(l)∥

≤ 10K
s

N
∥H̄∥ ≤ 10C2

BNK(log
N

ϵ
(1 +

1

L
log

√
LN3

ϵ
))−1.

Thus, if we set t :=
C2

BN
2 (log N

ϵ (1 +
1
L log

√
LN3

ϵ ))−1, we can take σ2 = 20Kt in
Theorem 2. This will yield

P{∥H − s

n
H̄∥ ≥ t} ≤ 2Ke

−t2/2

σ2+Bt/3 = 2Ke
−3t
140K .

The above inequality will lead to the conclusion that to get the maximum prob-
ability of occurrence of ϵ/5, we should have

K ≤ 3C2
BN

280
(log

10K

ϵ
(1 +

1

L
log

N3
√
L

ϵ
))−1,

which is satisfied by the bound on K in Theorem 1 if we set CK small enough.
320

Lemma 8. Under the assumptions of Theorem 1, the event,

εD :=

{
∥D − N − s

N
D̄∥ ≥ N − s

4N
CD

(
1 +

1

L
log(

|Tgrid|
ϵ

)

)− 1
2

}

occurs with probability at most ϵ/5. Also, in the complement event εcD, D−1

exists and

∥D−1∥ ≤ 8, ∥D−1 − N

N − s
D̄−1∥ ≤ CD

(
1 +

1

L
log(

|Tgrid|
ϵ

)

)− 1
2

where CD is a constant.
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Proof. In order to prove, we need lemmas G.1 and G.3 from [18] which both hold
in our setting. Next, using Lemma G.1 and triangle inequality, we can bound
the smallest singular value of D by a positive number which ensures invertibility
of D. Then, setting A = D,B = pD̄ in Lemma G.3 we get ∥D−1∥ ≤ 8 (note
that N/(N − s) ≤ 2 with s ≤ N/2). Next, define

Xl := (p− δΩc(l))clν(l)ν
∗(l)

for any −m ≤ l ≤ m with p = (N−s)/N . Note that D̄ =
∑m

l=−m clν(l)ν
∗(l) and

D =
∑m

l=−m δΩc(l)clν(l)ν
∗(l). Thus, E(Xl) = 0. Using the same calculation in

[18](Lemmas 3.4, 3.5), ∥Xl∥ ≤ B := 12.6K
m . Also,

E(X2
l ) = p(1− p)c2l ∥ν(l)∥22ν(l)ν∗(l)

which leads to
∑m

l=−m E(X2
l ) ≤ σ2 := 18.5pk

m as in [18]. Now, set t = p
4C

′
D(1 +

1
L log

|Tgrid|
ϵ )−

1
2 with C ′

D = min{1, CD/4} in Theorem 2 with B and σ2 as
defined above. Then,

t2/2

σ2 +Bt/3
=

pm

32K
C ′2

D

[
18.5(1 +

1

L
log

|Tgrid|
ϵ

) + 1.05C ′
D(1 +

1

L
log

|Tgrid|
ϵ

)
1
2

]−1

>
pm

32K
C ′

D

(
1 +

1

L
log(

|Tgrid|
ϵ

)

)−1

[18.05 + 1.05C ′
D]−1

=
N − s

K
C ′′

D

(
1 +

1

L
log(

|Tgrid|
ϵ

)

)−1

Theorem 2 implies that

P{∥D − pD̄∥ > t} ≤ 2Ke
−N−s

K C′′
D

(
1+ 1

L log(
|Tgrid|

ϵ )
)−1

This probability is smaller than ϵ/5 as long as

K < NC ′′
D

(
1 +

1

L
log(

|Tgrid|
ϵ

)

)−1(
log

10K

ϵ

)−1

, s < N/2

which is the case by assumptions in Theorem 1 if CK and Cs are small enough.
This concludes the proof.

Lemma 9. Consider the equispaced grid G ⊂ [0, 1] with cardinality |Tgrid| =
200

√
LN3. Then, the event

εG :=

{
∥Gι(f)−

N − s

N
Ḡι(f)∥2 > CG

(
1 +

1

L
log(

|Tgrid|
ϵ

)

)− 1
2

}

for any f ∈ G, ι ∈ {0, 1, 2, 3} and constant CG, has probability bounded by ϵ/5.

Proof. We need vector Bernstein inequality to prove this lemma.325
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Theorem 3 (Vector Bernstein inequality [36]). Let P ⊂ Rd be a finite se-
quence of independent zero-mean random vectors with ∥p∥2 ≤ B a.s. and∑

p∈P E∥p∥22 ≤ σ2 for all p ∈ P, where B and σ2 are both positive constants.
Then,

P

∥
∑
p∈P

p∥2 ≥ t

 ≤ e−
t2

8σ2 + 1
4

for 0 ≤ t ≤ σ2

B .

Using the definition of K and K̄ we can rewrite Gι(f) and Ḡι(f) as

Gι(f) =

m∑
l=−m

δΩc(l)(i2πκl)ιcle
i2πlfν(l), Ḡι(f) =

m∑
l=−m

(i2πκl)ιcle
i2πlfν(l).

Note that by defining

p(ι, l) := (δΩc(l)− p)(i2πκl)ιcle
i2πlfν(l),

where p = N−s
N (parameter of i.i.d Bernoulli random variables δΩc(−m), ..., δΩc(m))

we have Gι(f) − pḠι(f) =
∑m

l=−m p(l). Also using lemmas 3.3, 3.4, 3.5 from
[18], leads to

∥p(ι, l)∥2 ≤ B :=
128

√
K

m
,

m∑
l=−m

E(∥p(ι, l)∥22) ≤ σ2 :=
3.25104K

m
.

Now, using Theorem 3 we have

P

{
sup
f∈G

∥Gι(f)− pḠι(f)∥2 ≥ t, ι = {0, 1, 2, 3}

}
≤ 4|Tgrid|e−

t2

8σ2 + 1
4

To make the r.h.s smaller than ϵ/5, take

t :=

√
26× 104K

m
(
1

4
+ log(

20|Tgrid|
ϵ

))

This choice is valid since

t

σ
=

√
8(

1

4
+ log(

20 ∗ |Tgrid|
ϵ

)) ≤
√

74 + 24 log(N) + 4 log(L) + 8 log(
1

ϵ
)

≤
√
74 + 44 log(N) +

√
8 log(

1

ϵ
) ≤ 0.452

√
N

√
8 log(

1

ϵ
) ≤ 0.46

√
N

where we have used
√
74 + 44 log(N) ≤ 0.452

√
N and assumed N ≥ 2 × 103,

L ≤ N5 and either K ≥ 1 or s ≥ 1. Thus, t/σ ≤ 0.46
√
N ≤ σ/B. The desired

result holds as long as

CG(1 +
1

L
log(

|Tgrid|
ϵ

))−
1
2 ≥ t ≥

√
2× 103K

N
(
1

4
+ log(

8× 103
√
LN3

ϵ
))

with CK small enough.
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Using Lemmas 8, H.8 and Corollary H.9 from [18] with respect to the new
bounds for s and K and the first condition of Theorem 1 combined with Lemma
6, we find tight bounds for (37) as

1√
N

∥BΩ∥∥D−1∥∥Gι(f)∥2 ≤ 8(Cν̄ + Cν)∥BΩ∥√
N

≤
8(Cν̄ + Cν)CB

(
1 + 1

L log
|Tgrid|

ϵ

)− 1
2 √

N
√
N

,CB =
CU

8 (Cν̄ + Cν)
.

Thus, by setting t = 10−2

8 and using Lemma 5 and the union bound, we obtain

P{sup
f∈U

∥ 1√
N
GT

ι (f)D
−1BΩ∥2 ≥ 10−2

8
}

≤ |Tgrid|e
−L

(
10−2

8

2

C2
U (1+ 1

L
log

|Tgrid|
ϵ

)−1
−log

10−2

8

2

C2
U (1+ 1

L
log

|Tgrid|
ϵ

)−1
−1

)
. (41)

With the same reasoning for ε1 and small enough CU , the event

ε2 := {∥ 1√
N
GT

ι (f)D
−1BΩ∥2 ≥ 10−2

8
for all f ∈ U}

holds with probability at most ϵ/20 under the assumptions of Proposition1.

9.1.3. Bound on ε3
For the third term, we consider Ψ = Φ and

ω = PD−1

(
Gι(f)−

N − s

N
Ḡι(f)

)
,

where P ∈ RK×2K is a projection matrix, which selects the first K elements in
a vector and ∥P ∥ = 1. According to Lemmas 8 and 9 we can write

∥PD−1

(
Gι(f)−

N − s

N
Ḡι(f)

)
∥2 ≤ ∥P ∥∥D−1∥∥Gι(f)−

N − s

N
Ḡι(f)∥2

≤ 8∥Gι(f)−
N − s

N
Ḡι(f)∥2 ≤ CU

(
1 +

1

L
log

|Tgrid|
ϵ

)− 1
2

.

By setting t = 10−2

8 and applying (32) and the union bound, we have

P{sup
f∈U

∥(Gι(f)−
N − s

N
Ḡι(f))

TD−1

[
Φ
0

]
∥2 ≥ 10−2

8
}

≤ |Tgrid|e
−L

(
10−2

8

2

C2
U (1+ 1

L
log

|Tgrid|
ϵ

)−1
−log

10−2

8

2

C2
U (1+ 1

L
log

|Tgrid|
ϵ

)−1
−1

)
. (42)
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Therefore, with the same reasoning for ε1 and ε2, the event

ε3 := {∥(Gι(f)−
N − s

N
Ḡι(f))

TD−1

[
Φ
0

]
∥2 ≥ 10−2

8
for all f ∈ U}

holds with probability at most ϵ/20 under the assumptions of Proposition1.330

9.1.4. Bound on ε4
At last, one can bound the fourth term in (31) by considering Ψ = Φ and

ω =
N − s

N
P

(
D−1 − N

N − s
D̄−1

)
Ḡι(f).

Using the Lemmas 8,9 we get

∥N − s

N
P

(
D−1 − N

N − s
D̄−1

)
Ḡι(f)∥2 ≤

∥P ∥∥D−1 − N

N − s
D̄−1∥∥Ḡι(f)∥2 ≤

Cν̄∥D−1 − N

N − s
D̄−1∥ ≤ CU

(
1 +

1

L
log

|Tgrid|
ϵ

)− 1
2

.

By applying (32) and the union bound and setting t = 10−2

8 , one can write

P{sup
f∈U

∥N − s

N
Ḡι(f)

T (D−1 − N

N − s
D̄−1)

[
Φ
0

]
∥2 ≥ 10−2

8
}

≤ |Tgrid|e
−L

(
10−2

8

2

C2
U (1+ 1

L
log

|Tgrid|
ϵ

)−1
−log

10−2

8

2

C2
U (1+ 1

L
log

|Tgrid|
ϵ

)−1
−1

)
. (43)

Therefore, with the same reasoning for ε1, ε2, and ε3 the event

ε4 := {∥N − s

N
Ḡι(f)

T (D−1 − N

N − s
D̄−1)

[
Φ
0

]
∥2 ≥ 10−2

8

for all f ∈ U}

holds with probability at most ϵ/20 under the assumptions of Proposition1.
Thus, using (33),(41),(42),(43), and the triangle inequality, we conclude that

sup
f∈U

∥κιQ(ι)(f)− κιQ̄(ι)(f)∥2 ≤ 10−2

2
(44)

holds with probability at least 1− ϵ/5 under the assumptions of Proposition1.
Next, using Bernstein polynomial inequality[37], we extend the results to the
continuous domain [0, 1]. Considering f ∈ [0, 1] and fg ∈ G, we have

∥κιQ(ι)(f)− κιQ̄(ι)(f)∥2 ≤ ∥κιQ(ι)(fg)− κιQ(ι)(f)∥2
+ ∥κιQ̄(ι)(fg)− κιQ(ι)(fg)∥2 + ∥κιQ̄(ι)(f)− κιQ̄(ι)(fg)∥2.
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Then, consider the third term in the right side of the above inequality. We
had Q̄(ι)(f) ∈ C1×L and for any v ∈ C1×L,∥v∥ ≤

√
L∥v∥∞. The jth entry of

Q̄(ι)(f) is

|κιQ̄
(ι)
j (f)| ≤ | < D̄−1Ḡι(f),Φ:,j > | ≤ 8

√
K
(
256

√
K
)
= CK ≤ CN2.

Next, take κιQ̄
(ι)
j (f) as a polynomial of z = e−i2πf with degree m and apply

the Bernstein polynomial inequality as

|κιQ̄
(ι)
j (f)− κιQ̄

(ι)
j (fg)| ≤ |e−i2πf − e−i2πfg |sup

z

∣∣∣∣∣dκιQ̄
(ι)
j (z)

dz

∣∣∣∣∣
≤ |e−iπ(f+fg)2sin(π(−f + fg))|msup

f
|κιQ̄

(ι)
j (f)| ≤ CN3|f − fg|.

Thus,

∥κιQ̄(ι)(f)− κιQ̄(ι)(fg)∥2 ≤
√
L∥κιQ̄(ι)(f)− κιQ̄(ι)(fg)∥∞ ≤ C

√
LN3|f − fg|.

The above calculations reveal that the grid size |Tgrid| = 1/|f − fg| should be

such that |f − fg| ≤ 10−2

4C
√
LN3

. Using the same arguments, one can obtain the

same bound for ∥κιQ(ι)(f)− κιQ(ι)(fg)∥2. Combining the above results with
(44) proves the lemma.335

9.2. Proof of Lemma4

Consider Afar = [0, 1]\Anear, where Anear is defined in Lemma 4. We prove
that ∥Q̄(f)∥2 < 0.99 in Afar. Next, it is shown that ∥Q(f)∥2 < 1 in Anear. For
∥Q̄(f)∥2, we write

∥Q̄(f)∥2 ≤
∑
fk∈T

∥αk∥2|K̄(f − fk)|+
∑
fk∈T

κ∥βk∥2|K̄ ′(f − fk)|

≤ ∥α∥∞,2

∑
fk∈T

|K̄(f − fk)|+ ∥β∥∞,2

∑
fk∈T

κ|K̄ ′(f − fk)|.

Using Lemma H.10 from [18], we have
∑K

j=1 κ
ι|K̄(ι)(f − fj)| ≤ 127C1 +2.42C2

for some properly chosen C1 and C2. Thus,

∥Q̄(f)∥2 ≤ (∥α∥∞,2 + ∥β∥∞,2)(127C1 + 2.42C2).

In the following, we calculate the upper bounds for ∥α∥∞,2 and ∥β∥∞,2. Recall
(23) for the deterministic case. Using this equation, we have[

α
β

]
=

[
I

D̄−1
2 D̄1

]
D̄−1

3 Φ,

where D̄3 ≜ D̄0 + D̄1D̄
−1
2 D̄1. According to Lemma 4.1 from [27] and the

fact that ∥Φ∥∞,2 = 1, we have∥α∥∞,2 = ∥D̄−1
3 Φ∥∞,2 ≤ 1 + 2.37 × 10−2 and
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∥β∥∞,2 ≤ ∥D̄−1
2 D̄1D̄

−1
3 Φ∥∞,2 ≤ 4.247

m × 10−2. Therefore, by the proper choices
of C1 and C2 we get

∥Q̄(f)∥2 < 0.99 for f ∈ Afar.

In order to show that ∥Q(f) < 1∥2 in Anear, it is enough to show that the second
derivative of ∥Q(f) < 1∥2 is negative in Anear. In a mathematical fashion, it is
enough to prove the following inequality,

1

2

d2∥Q(f)∥2
df2

= ∥Q′∥22 +Re{Q′′QH(d)} < 0. (45)

Now, we investigate each term in the above inequality. For the first term, we
can write

∥κQ′(f)∥22 = ∥κQ′(f)− κQ̄′(f) + κQ̄′(f)∥22
≤ 10−4 + 2× 10−2∥κQ̄′(f)∥2 + ∥κQ̄′(f)∥22,

which by applying the kernel bounds of [27] leads to

∥κQ̄′(f)∥2 ≤ ∥α∥∞,2

K∑
k=1

κ|K̄ ′(f − fk)|+ ∥β∥∞,2

K∑
k=1

κ2|K̄ ′′(f − fk)|

≤ 1.0237× 2.409× 10−2 +
4.247× 10−2

m
(0.087) ≤ 0.0247,

where the last inequality is achieved using m ≥ 103. The second term of (45)
can be represented as

Re
{
κ2Q′′(f)QH(f)

}
= Re

{
κ2(Q′′(f)− Q̄′′(f))QH(f)

}
+Re

{
κ2Q̄′′(f)(Q(f)− Q̄(f))H

}
+Re

{
κ2Q̄′′(f)Q̄H(f)

}
≤ 0.0101 + 0.01 +Re

{
κ2Q̄′′(f)Q̄H(f)

}
.

Next, we inspect the term κ2Q̄′′(f)Q̄H(f). According to (26), we get

κ2Q̄′′(f)Q̄H(f) = κ2Q̄′′(f)bHbQ̄∗(f) = κ2Q̄′′(f)Q̄∗(f),

which is a scalar value. Also, note that

κ2Re
{
Q̄′′(f)Q̄∗(f)

}
= κ2

(
Q̄′′

R(f)Q̄R(f) + |Q̄′′
I (f)||Q̄I |

)
≤ (−0.8915× 2.015 + 0.0474× 2.555) ≤ −1.6752.

Thus,

κ2

2

d2∥Q(f)∥2
df2

≤ −1.6752 + 0.0201 + 12.01× 10−4 < 0

and the proof is complete.
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