
Humans vs. Machines in Malware Classification

Simone Aonzo
EURECOM

Yufei Han
INRIA

Alessandro Mantovani
EURECOM

Davide Balzarotti
EURECOM

Abstract
Today, the classification of a file as either benign or

malicious is performed by a combination of deterministic indi-
cators (such as antivirus rules), Machine Learning classifiers,
and, more importantly, the judgment of human experts.

However, to compare the difference between human and
machine intelligence in malware analysis, it is first necessary to
understand how human subjects approach malware classifica-
tion. In this direction, our work presents the first experimental
study designed to capture which ‘features’ of a suspicious
program (e.g., static properties or runtime behaviors) are
prioritized for malware classification according to humans and
machines intelligence. For this purpose, we created a malware
classification game where 110 human players worldwide and
with different seniority levels (72 novices and 38 experts)
have competed to classify the highest number of unknown
samples based on detailed sandbox reports. Surprisingly, we
discovered that both experts and novices base their decisions
on approximately the same features, even if there are clear
differences between the two expertise classes.

Furthermore, we implemented two state-of-the-art Machine
Learning models for malware classification and evaluated their
performances on the same set of samples. The comparative
analysis of the results unveiled a common set of features
preferred by both Machine Learning models and helped better
understand the difference in the feature extraction.

This work reflects the difference in the decision-making
process of humans and computer algorithms and the different
ways they extract information from the same data. Its findings
serve multiple purposes, from training better malware analysts
to improving feature encoding.

1 Introduction

The evolution of technology and digitization has transformed
our lives and our society, but it has also given birth to a wide
range of new cyber-criminal activities. These activities, inde-
pendently of their goal, are often carried out using different
types of malicious software, also known as malware. Over the
past three decades, the steady rise of malware attacks has cre-
ated the need for specialized security experts trained to study,

recognize, and classify new malware strains: the malware ana-
lysts. Their goal is to examine malicious software, such as bots,
worms,and trojans, to understand the nature of their threat. This
task usually requires examining how the suspicious sample in-
teracts with its environment, observed by executing the sample
inside a malware analysis sandbox. Sandboxes come in differ-
ent flavors and with different functionalities. However, they all
provide the analysis with a dynamic (i.e., behavioral) report that
summarizes all operations performed by the program, together
with some static properties extracted from the executable file.

In turn, such static and dynamic components are divided
into different fine-grained feature groups, which we will
henceforth call features for readability. For example, the
Import Table of a Portable Executable file is a static feature,
while the DNS queries it performed during its execution are
part of the network activity, which is a dynamic feature.

The role of a malware analysis report is to provide the raw
information required to classify the unknown program as either
benign or malicious. This malware classification task can be
challenging, as it requires reasoning about the possible purpose
and intent of the unknown software. Because of this, in the past,
this task was usually performed manually by expert malware
analysts. However, today a typical antivirus company collects
and analyses over 350,000 suspicious programs per day [8],
and these are not just minor variations of known families: for
instance, 41% of the families observed in the wild in 2019
were never observed before [7]. It is clear that the number of
security experts cannot scale to cope with these numbers.

Machine learning (ML) offers an easy-to-deploy and
scalable solution to massive-scale malware classification
applications. A vast amount of research has been conducted
on ML-based malware classification [14, 16, 17, 28, 29, 33, 34,
39, 43, 47, 49, 51, 52, 64, 67, 68, 70, 71, 77, 92–94, 96], often
with very promising results. However, unlike applications
such as speech and text recognition, where pronunciations and
character shapes remain relatively constant over time, malware
constantly changes to evade detection. Therefore, it is unclear
how robust these previous results are and, more importantly,
which features really influences the accuracy of classification
in the previously reported results. In other words, no study to
date has examined whether human experts and ML-based so-

lutions use the same information to decide whether a sample is
benign or malicious. We do not even know if different humans
rely on the same features or if the choices of the used features
change as the analyst’s background and experience vary.

This paper tries to answer all these questions by conducting
the first experiments designed to compare 110 humans with
different expertise (72 novices and 38 experts) vs. different
state-of-the-art ML algorithms. Our goal is not to measure who
performs better but to understand how each group uses the data
extracted from malware analysis reports to make its decision.

To collect the data, we designed an online game “Detect
Me If You Can!”, which asks the participants to classify 20
suspicious files based on their sandbox reports. Players have to
‘buy’ each individual set of features to add them to their report,
allowing us to capture which information they considered
more valuable and how many features they needed to reach
a decision. Even though we observed a general agreement
among the features preferred by all human subjects in our
experiments, experts and novices showed distinctive traits
(especially speed and accuracy). For example, while dealing
with goodware, experts used many more features, and novices
made more mistakes. This is because experts know that they
need to rule out any possible signs of bad intentions in order
to classify a sample as goodware.

Finally, to compare humans with machine intelligence, we
collected 21,944 reports, equally distributed among malware
and goodware, to train two Machine Learning-based malware
classification models based on the encoding techniques
recently proposed in state of the art. Both ML players
performed in the game like an average human expert, but
with the exceptional advantage of accessing all the features
simultaneously. In a second test, we use the same algorithms
to replay some experts’ games using the same features that
human subjects used to classify each sample. In this case, the
accuracy of the two ML players was worse than random guess.
This brings us to one of the main findings of our study: the two
ML algorithms do NOT use the same features as human an-
alysts do. Quite the opposite: they often rely on static features,
whereas human subjects prefer mostly dynamic behavior
features. ML even ranked the resource section’s entries of
executables as the most relevant feature, which was constantly
ranked in the last place – and almost never used – by humans.

2 Related Work

For over two decades, the automated analysis of malicious
code has been one of the top research areas in system security.
Because of the large number of samples that need to be
analyzed, previous studies have mainly focused on fully
automated techniques or approaches requiring minimal
interaction with the analyst. These solutions range from
malware analysis sandboxes [18, 24, 45, 74, 79] to machine
learning classifiers [53, 54, 57, 65, 75].

For example, Darshan et al. [27] focus their vectorization
approach on the syscalls reported by the Cuckoo sandbox
logs. In the same year, Miller et al. [62] proposed four main

techniques to provide proper vectorized features for the
use of ML-based detectors. Other recent approaches are
presented by Karbab et al. [50], where the authors implement
a natural language processing methodology, and Ijaz [44],
who shows a comparison between the accuracy obtained
by dynamic features versus static features (retrieved thanks
to static analysis approaches). Jindal et al. [49] developed
an end-to-end malware detection tool based on techniques
borrowed from the field of text classification.

Xiong et al. [87] performed a set of experiments to detect
malicious network traffic, where non-skilled users can
communicate with the framework and provide feedback with
respect to their feeling about the regularity of network activity.
Researchers have also studied the use of graphical visual-
ization techniques to represent malware samples and help
analysts recognize specific behaviors and features [38, 72, 81].

More recently, in 2016, Yakdan et al. [88] proposed a work
about enhancing decompilers from a malware analyst point of
view. In the same year, Miller et al. [62] showed an innovative
way to integrate the human analysts into an automated malware
analysis pipeline that increased the detection rate by 12%.
Ugarte Pedrero et al. [82] have also asked malware analysts
to manually label previously-unknown malware clusters.

While today most of the analysis is delegated to machines,
part of the job (in particular the interpretation of the analysis
results) is still performed by malware analysts [82].

Wong et al. [95] interviewed 21 malware analysts to
understand the different aspects of this profession. The main
results of their study are a taxonomy that classifies malware
analysts into three different groups based on their high-level
objectives, the identification of five common workflows when
an analyst decides to analyze a malware sample in detail, and
the factors they consider when setting up a dynamic analysis
system. The key difference between our work and the latter is
that we conducted a user study on binary classification, while
their semi-structured interview yielded observations about the
goals and workflows in analyzing samples already classified
as malicious. Therefore, we argue that our work should be
considered complementary, and, as we will show below, we
have confirmed some observations.

Very few works in the system security area have compared
experts and novices in the context of malware analysis. In
2015, Hibshi et al. [40] conducted a study in which they
assessed the role of the experience in the decision-making
model of experts and novices for vulnerability mitigation in
the source code. The effects of knowledge and expertise in
security are also the topic presented by Ben-Asher et al. [19],
where the authors develop a simple intrusion detection system
to study how individuals with different backgrounds identify
malicious events. More recently, Votipka et al. [84] carried
out a set of interviews about how experts approach reverse
engineering problems, while Mantovani et al. [58] studied
the different strategies adopted by expert and beginner reverse
engineers during the analysis of x86 disassembly code: a
typical static reverse engineering task that is often part of the
malware analysis process. Finally, several user studies about
phishing have been conducted to examine how individuals

with different levels of experience react to malicious web
pages [63, 97], aiming at building a mental model of the
investigated subjects when performing phishing-related tasks.

Researchers in the program comprehension community
often compare expert and novice subjects outside the security
field when reading the source code to capture the role of
expertise and the adopted abstractions [22, 30, 36, 56, 86].

3 Methodology

Our study requires access to a large and diverse set of malware
analysts. To remove biases introduced by the training provided
in a given workplace or by the workflow adopted by all
analysts in the same group, we wanted our participants to
come from a broad range of companies and have different
day-to-day activities.

To accommodate these constraints and collect participants
from all over the world, we decided to implement a web-based
platform specifically designed to conduct our experiments.
Moreover, we decided to adopt a gamification approach be-
cause scientific studies found that it has a positive motivational
effect on individuals and their overall performances [37, 69].
Therefore, our platform implements a custom game, which
we call Detect Me If You Can! (DMIYC, from now on). From
a gaming perspective, the typical design elements used in
DMIYC are points and a leader board. Points provide a
way to numerically represent a player’s outcome [85] while
leader boards rank players according to their relative success,
thus measuring them against a specific success criterion and
showing who performed best in a certain activity [25].

While a useful tool to create social pressure that can increase
the player’s level of engagement [21], the leader board can
also introduce tension and stress in the participants. To soften
this aspect, the participants of our game were completely
anonymous, and players were only identified by their arbitrary
usernames. Moreover, the player’s position on the leader
board was only visible when the entire game was completed.

It is worth emphasizing that our study is not dedicated to
organizing a competitive gaming scenario for human subjects
or between human analysts and machine intelligence. In fact,
players need to independently select the features required to
reach their own decisions without knowing or interfering with
other participants’ scores while playing the game.

The study was piloted in collaboration with other members
of our group, who helped us improve the game’s rules and the
GUI. Moreover, the game included an initial demo phase to
ensure each player was familiar with the rules and interface.

3.1 Game Rules
DMIYC players must correctly classify the higher number of
samples, some of which are malicious and some benign, using
as few features as possible. Our objective is to understand
which features humans inspect before reaching a decision.
When an analyst first encounters a new sample in our game, she
has no prior knowledge of its nature. However, the more she

analyzes its different characteristics, the more (in some sort
of mental bayesian process) she updates her belief of whether
the program is benign or malicious. While she might never
be entirely convinced, once she reaches sufficient confidence
about her decision, she would classify the sample and move
on to the next one. To capture this process, we decided to
present each sample with an initial blank report. The player
is then instructed to add new features to the report by choosing
them from a pre-defined catalog until she has gained enough
information to make a confident binary classification.

DMIYC is divided into 20 rounds, and a player has 20
potential points for each round; however, each new set of
features added to the report decreases the potential points by
one, while if the player buys an “empty” feature (e.g., a sample
without network activity), no points are subtracted. We set
the cost of a feature to prevent players from clicking on every
piece of information without any specific order and precisely
capture which set of features are preferred by a given user.

If the sample is correctly classified, the player gets the
remaining potential points; otherwise, no points are given
in case of a wrong classification. Since there are 15 sets of
features to choose from in each round, and the score starts
from 20, the game guarantees that every correct answer always
scores a positive amount of points between 5 and 20. The
final score is computed by summing up all points obtained in
each round multiplied by the number of correct answers (to
increase the importance of correct classification). This makes
19 ·20 ·20= 7600 the highest possible score, corresponding
to 19 points (because the player must buy at least one feature)
for every 20 rounds in which the player has answered all 20
times correctly. As described in Section 4, we removed from
our analysis the players who submitted at least one answer
without inspecting any feature (some beginners who probably
decided not to complete the assignment).

Given that the score, the number of correct answers, and
the leaderboard are only visible at the end of the experiment, a
participant has no additional information to optimize her strat-
egy based on the result of other participants. For this reason,
we did not employ any particular game-theoretical design.

Finally, to mimic the professional pressure that analysts
encounter in their career, we added an overall limit of 60
minutes to complete the task over 20 samples, corresponding
to three minutes per sample on average. In comparison,
Ugarte-Pedrero et al. [82] reported that professional malware
analysts often classify samples based on static and dynamic
features in less than 30 seconds.

3.2 Game UI
A shortened version of the user interface of DMIYC is
depicted in Figure 1. The control panel on the left of the game
UI contains information about the game’s progress, including
the sample counter compared with the total number of samples
to classify, the remaining time, and how many features the
player has already added to the current report.

The sidebar also shows the list of available features, divided
into two main groups: static and dynamic. The interface shows

Figure 1: Shortened User Interface of “Detect Me If You Can!”

in green the features already added to the report and those that
the player has not inspected in gray. Finally, a strike-through
name means that the player has already tried to buy that feature,
but it turned out to be empty. The top of the UI contains the
player’s two main buttons to classify the current sample as
either malicious or benign, while the central part of the screen
shows the current report. The ‘Basic Properties’ feature is
collapsed in the picture, while ‘Network’ and ‘Runtime DLLs’
are expanded. This functionality is useful when the player
deals with verbose outputs.

3.3 Features
Our game uses all features that are generally extracted from
the file (static features) or the runtime behavior collected
by a malware analysis sandbox (dynamic features). We
summarized the complete list of features available to DMIYC
players in Appendix 10.2.

Static captures different aspects of the file extracted by
parsing the Portable Executable (PE) format file. PE is the
format used by Microsoft Windows operating systems to store
executables, object code, and DLLs. Our study is focused on
PE because it is the most common file format of malware [7]
in the desktop/server ecosystem.

Authenticode is a Microsoft code signing technology de-
signed to guarantee the origin and integrity of an executable.
Once an executable is signed, its code cannot change without
breaking the envelope integrity. In this way, the user is guaran-
teed that the only code they are executing is created by the soft-
ware publisher that signed it. Hence, the Signature feature con-
tains the signer’s certificate and if the certificate is valid or not.

The Header Metadata feature gathers together PE header
info and metadata, like the target architecture (32 or 64 bit), the
compilation timestamp, the release version, copyright strings,
number of sections, and the total entropy of the file. A PE file
consists of many headers and sections that tell the dynamic
linker how to map the file into memory. For example, usually
the .text section, which holds program code, is mapped as
execute/readonly, and the .data section, holding global vari-

ables, is mapped as no-execute/readwrite. The Section feature
contains all this information, plus the entropy of each section.

Software frequently depends on the functions exposed by
the operating system. Windows exports most of its functions,
called Application Programming Interfaces (API), required
for these interactions in Dynamic Link Libary (DLL) files.
Executables import and call these functions typically from
various DLLs that provide different functionality. The
functions an executable imports from other files (mostly
DLLs) are called imported functions or, in short, imports.

The resources required by the executable file, such as icons,
menu, dialog, etc., are stored in the resource section .rsrc of
an executable file. Often, attackers store additional binary, de-
coy documents, and configuration data in the resource section,
so examining the resource can reveal valuable information
about a binary. The Resources feature contains the information
of the resource section’s entries, plus each resource’s entropy.

Strings are ASCII and Unicode-printable sequences of
characters embedded within a file. Extracting strings can
give clues about the program functionality and indicators
associated with a suspect binary. Strings feature contains,
indeed, the strings extracted from the binary, and they can
contain references to filenames, URLs, domain names, IP
addresses, shell commands, registry keys, etc.

Finally, our static features also include results from VirusTo-
tal engines, namely VT Labels. VirusTotal aggregates many an-
tivirus products and online scan engines. Therefore, its reports
contain how many engines analyzed the sample and how many
classified the sample as malicious with the corresponding label.
Detection labels by antivirus engines can be seen as a serializa-
tion of the tags an engine assigns to the sample, for example,
the family name, the class of malware (e.g., ransomware, spy-
ware, adware), file properties (e.g., packed, themida, bundle)
and behaviors (e.g., spam, ddos, infosteal). Moreover, we also
included the VT Submission History, which includes the first
time it was submitted, and the submission names, i.e., a list con-
taining the filename of the sample whenever it was submitted.

Dynamic features are extracted from the execution of the
target sample in a controlled environment that logged all the
interactions between the sample and the operating system.
In this case, the names of the feature are self-explanatory:
Network traffic summarized in UDP, TCP and HTTP;
Processes created, terminated, or invoked shell commands;
Services started, stopped or created; any modification to
Windows Registry keys; Mutexes created or opened; File
System operations (files read, written, and deleted); and the
list of Runtime DLLs, i.e., dynamic libraries loaded at runtime.

3.4 Game Samples
We choose the samples to include in our experiments among
real-world benign and malicious PE files. Each sample was
submitted to VirusTotal, and the game information was
extracted from its static and dynamic reports (we did not
consider samples with an empty dynamic report). For the sake
of precision, given the fact that Virus Total offers different

Table 1: Samples of the game

Sample M|G Malware Family Description
1 M hematite file infector
2 M kryptik trojan
3 M onlineio adware
4 G - Dell Backup & Recovery
5 G - TeamViewer
6 M sysn dropper
7 G - Google Chrome installer
8 M nanolocker ransomware
9 M doomjuice worm
10 M zbot spyware
11 G - Fallout 4 component
12 G - custom Autohotkey
13 M nitol backdoor
14 G - DOSBox
15 M zbot packed spyware
16 M nanocore RAT
17 G - WinDirStat
18 G - Java Update Checker
19 G - Media Player Classic
20 M zdowbot keylogger downloader

dynamic reports from different sandboxes, we rely on the
results generated by VirusTotal Jujubox [11]. Each report
was also anonymized to prevent players from guessing the
correct answer just by searching on the internet, for example,
by looking for the sample’s hash. We selected 11 malware
and nine goodware; the list is summarized in Table 1, in the
same order as they appear to the players. The rationale behind
our choice was to create a representative dataset of the most
common types of malware with their typical behaviors, while
the goodware is composed of carefully verified third-party
benign applications. Moreover, we verified that each sample
report contained sufficient indicators of whether it was benign
or malicious. For instance, sample #17 (WinDirStat, a disk
usage statistics viewer) report contains many file operations,
which might confuse it with ransomware, although all
operations are read, and the sample does not write any files. On
the other hand, sample #3 is signed, but the signature is invalid.

To mimic the scenario in which analysts need to classify
previously-unknown samples based on their features (and
not just on the AV labels), we removed the antivirus features
for all except four reports. Among the remaining four, two
were correctly classified by the antiviruses (one benign and
one malicious), and one was a benign file misclassified as
malicious. The last was a zbot (sample number 15) repacked
with the PEtite file compressor. In this case, we manually reset
all the antivirus engines’ results to create a case of a malicious
file with zero detection. In this way, we tried to reproduce a
typical scenario in which malware authors re-release a new
version of their software in a compressed form to bypass static
signatures. Our game also includes another version of the
zbot family (sample number 10), this time unpacked.

Finally, sample number 12 was custom-developed by us.
It is a benign program that uses AutoHotKey (AHK) [2],

a popular Windows scripting language that provides easy
keyboard shortcuts and software automation. AHK is used
by benign software but also, as reported by Trend Micro
researchers [5, 10], by malware detected in the wild. What
makes this sample interesting from a classification point of
view is that the PE executables generated by AutoHotkey rely
on Windows APIs to intercept events by using a hooking tech-
nique, the same also employed by some keyloggers. We did
not develop a dummy example but a complete tool with useful
functionalities: our program was designed to associate special
key shortcuts to open different websites in the default browser.

It is important to note that all reports contained enough
information to perform a correct classification, and we ensure
that all signs of malicious behavior or harmless activity were
captured in the respective features (e.g., we did not include
malicious files that did not work correctly).

4 Participants

To recruit a sufficient number of participants with different
backgrounds and expertise levels, we invited the participants
by means of an invitation key that we sent to specific groups of
candidates. Our experts have been recruited among companies
and academic researchers in the malware analysis field,
while novices were recruited among master students and
beginner CTF players. Our participants are employed in seven
renowned cybersecurity companies (a minimum of three to
five participants for each company), while students (MSc and
Ph.D.) and researchers were recruited from four universities
located in two different countries. However, it is important to
stress that we ensure that each participant we invited had some
background in malware analysis. Apart from those who work
in the sector, academic researchers have written papers related
to malware analysis, students have attended at least a course
on malware classification, and CTF players had experience
reversing Windows malware.

More specifically, we generated different invite keys for
the different groups. Then, when accessing the website for the
registration, the participants had to enter some information
about their job type, age, and years of experience in malware
analysis. The reason we did not just rely on self-evaluating
questions to classify experts or novices is that participants
may adjust their answers to portray themselves as more
or less skilled if they are concerned with the interviewer’s
perception [42, 80]. However, the fact that our novices are
beginners has been confirmed by the fact that they reported
dedicating zero years to malware analysis.

Cumulatively, we collected 145 registrations to the website,
but we discarded 13 users who did not complete the game.
Furthermore, we also removed the 35 players who did not
show a sufficient amount of meaningful and reasonable
activity, e.g., the ones who provided an answer in one or more
rounds without watching any feature. We did not warn players
about those post-processing controls as we wanted to use
this information to identify those who were not genuinely
interested in our experiment. Finally, 110 players were

Table 2: Data required for the registration

Job

Student Researcher Industry Other

Experts - 7 27 4
Novices 72 - - -

Age

[20-25] [26-30] [31-40] [40+]

Experts - 7 21 10
Novices 61 13 - -

Years of experience

[0] [1-3] [4-6] [7-9] [10+]

Experts - 13 11 9 5
Novices 72 - - - -

considered eligible, divided into 72 novices and 38 experts.
We summarize the results from the registration of each

player in Table 2. When the job does not match any of the
proposed categories (namely: student, academic researcher,
and industry), we label it as Other. Consequently, such a
division reflects the participants’ age, with a broad group of
people, most likely the students, aged 20-25. Remarkably,
in our final dataset of experts, 9 participants have worked in
malware analysis for 7-9 years, and five have worked in this
field for more than ten years.

Human Study and Ethical Aspects – The methods
adopted in this research are consistent with our institution’s
ethical guidelines, and the data collection and storage are com-
pliant with the law in which our institution resides. All partic-
ipants were informed about the purpose of our study and gave
their explicit consent to take part in our experiment and to pro-
vide their age and employment information (no name or other
personally identifiable information was collected in our study).

5 Analysis of humans’ results

For each statistical test that we executed in this section, we
collected the resulting p-values, and we used the Bonferroni
correction method to correct them with an input α of 5e−2.
In the Bonferroni correction method, α determines the
type-I error (rejecting the null hypothesis while it is actually
true). All p-values we report in the rest of the paper already
take into account this correction. It is worth noting that the
conclusion of a hypothesis test in our study, i.e., whether a null
hypothesis should be rejected, is drawn based on the statistical
significance unveiled by the samples collected in the game.
Lastly, we use σ and M to denote respectively the standard
deviation and the median.

Table 3 reports a summary of the results of the 110 human
players, grouped by their skill level. If we consider the average
time needed to complete the game, the final score, and the
number of correct answers, experts outperform novices,

Table 3: An overall view of the results

Metric Experts Min Max Avg Std Median
Novices

Time E 7:48 56:48 29:04 08:53 26:51
N 8:14 59:58 44:31 10:05 46:32

Score E 2310 5339 4103 742 4329
N 1072 6042 3072 1054 2991

Right Answers E 13 19 16.1 1.4 16
N 8 19 13.7 2.4 14

Total E 42 165 82.0 35.1 70
Used Features N 37 146 81.7 27.5 68.5

Unique E 7 16 13.4 2.6 14
Used Features N 7 16 14.1 2.1 15

unsurprisingly. On average, experts took less time (29 minutes
versus 44), scored more points (4103 versus 3072), and
answered more questions correctly (16.1 versus 13.7). Since
the classification is binary, even when the analyst is unsure
about the nature of a program, she would still have at least
a 50% probability of choosing the right category by chance.
In fact, the standard deviation of the number of novices’
correct answers (whom we expect to rely more on luck) is
considerably higher than among experts (2.4 vs. 1.4).

Therefore, we performed a Welch’s t-test to assess whether
any statistically-significant difference exists between the
two groups when considering I) the time needed to complete
the game, II) the final score, and III) the number of correct
answers. We assumed as a null hypothesis that there was no
difference between the two groups, performed the test, and
obtained a t-statistic value of I) -9.4, II) 6.4, and III) 5.8. The
three values were supported by a p-value < 1e− 3, which
allows us to reject the null hypothesis and conclude that there
are statistically significant differences in how the two groups
of participants performed in our experiment.

On the contrary, if we look instead at the total and the
unique number of features used by the two groups, we found
no statistically significant difference (p-value > 1e− 3). In
other words, both experts and novices used a similar amount
of features to reach a decision for each sample. Despite this,
experts completed the game considerably faster than novices.
In fact, if we look at the time spent on each feature, experts
looked at each newly acquired information for an average of
11 seconds before either taking a decision or acquiring a new
feature (σ=17, M=6). This time increases to 20 seconds for
novices (σ= 30, M = 10), showing that inexperienced users
take more time to spot the relevant part of an analysis report.

Finally, none of the 110 humans was able to classify all 20
samples correctly, and experts have an average accuracy of
80%. The line that separates malware from goodware can be
very thin and, as we will see later in this section, some cases
can easily deceive even the experts’ eyes, especially when par-
ticipants did not have the entire report at their disposal. In fact,
even the five experts with 10+ years of experience in malware
analysis misclassified 〈2,2,2,3,3〉 samples, respectively.

We also tested whether there was a correlation (Pearson)
between years of experience and results (score or number
of correct answers), and we found no statistically significant

Table 4: Correct answers when dealing with T/F P/N

Sample� 2 4 17 15
Type TP TN FP FN
Class Malicious Benign Benign Malicious
VT Matches 10 0 5 0

Experts 29/31 (93%) 27/29 (93%) 23/28 (82%) 28/28 (100%)
Novices 59/64 (92%) 57/63 (90%) 20/61 (32%) 49/61 (80%)

correlation.

5.1 VirusTotal Impact
In Section 3.4 we described how we have deliberately included
in our game four samples with altered VirusTotal engines’
reports to study how our participants react in response to
correct and incorrect antivirus engine results.

The results, computed only on the users who have looked
at the AV labels feature, are summarized in Table 4. Both
experts and novices obtained good results when dealing with
correct AV detections. However, the accuracy of novices
significantly decreased when the antivirus reports were
misleading, particularly for the benign file with five detections.
Experts were less affected by this, probably because they
are more aware that both false positives and false negatives
are pretty frequent in VirusTotal. In fact, in 93% of the cases,
expert analysts correctly flagged sample 4 as a benign sample.
However, the behavioral analysis reports many file readings,
and we manually inserted some misleading AV labels implying
that it is generic ransomware. Nevertheless, the false positive
(sample 17) is WinDirStat, an open-source graphical disk
usage analyzer; as a matter of fact, its FileSystem feature
does not show any writings on files as real ransomware (e.g.,
nanolocker, sample 8) would do. Surprisingly, all the experts
correctly classified the false negative (sample 15), showing
that this type of error does not affect their decision-making,
while the same cannot be said for the false positive.

5.2 Self Evaluation
At the end of the exercise, we asked each participant to indicate
the number of samples that they found difficult to classify and
for which the user was unsure about the final choice.

Overall, experts have wrongly classified on average 4.0
(σ=1.4, M=4) samples, and they reported to be unsure about
3.6 (σ=3.2, M=4) of their answers. Novices have responded
incorrectly for 6.3 (σ= 2.4, M = 6) samples while reporting
being unsure about 6.7 (σ = 6.1, M = 5.5) answers. It is
interesting to note that, on average, the number of mistakes
is lower than the number of samples that users found difficult
to classify. We can expect some of those complex cases to be
classified correctly by luck. However, roughly half of the par-
ticipants (49% of experts and 54% of novices) overestimated
their performance by providing many wrong answers greater
than the number of samples they were unsure about the choice.
In one extreme case, one expert made seven mistakes while
reporting to be unsure about only three of her choices.

2 7 20 6 10 13 15 9 18 5 19 8 16 4 3 17 14 12 1 11
Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Di
ffe

re
nc

e
be

tw
ee

n
pe

rc
en

ta
ge

s

Figure 2: Comparison of correct answers experts/novices

5.3 Samples Difficulty
As we already mentioned in Section 3, we intentionally
selected samples of different complexity for our experiment.
Based on the experts’ results, we can identify three classes: 10
samples were classified correctly by over 90% of the experts,
seven samples were classified correctly by 70-90% of the
experts, and three samples posed severe problems to most of
our participants. These samples, one malicious and two benign
(number 1, 11, 12 in Table 1), were, in fact, misclassified by
over 60% of our experts.

One is a file infector, which could explain why its report
may contain signs of both malicious and benign behaviors. The
second is part of a popular videogame, a category that often em-
ploys obfuscation techniques often associated with malicious
files. The last is an executable we generated using AutoHotKey
to create shortcuts to open different URLs in the browser – and
that therefore requires intercepting keyboard events.

Figure 2, inspired by the finance candlestick chart, shows
for each sample the difference in classification accuracy
between experts and novices (the orange line corresponds
to cases in which experts answered more correctly than
novices and the blue line vice versa). The samples are sorted
in descending order with respect to the correct answers of
the experts. We also plotted two dashed lines to indicate the
90% and 70% thresholds we used to differentiate samples’
difficulty and the sample’s number (in direct correspondence
with Table 1) in the X-axis is in red for malware and green
for goodware. The graph shows that for most of the samples,
experts outperformed novices. In two cases (samples 10 and 4),
the novices had a slight advantage, which became much more
significant for two out of three problematic samples, probably
because most experts were misled and responded consistently;
instead, novices were not sure and responded more randomly.

5.4 Feature Ranking
The main goal of our work is not to measure how well
humans perform at malware classification but, in particular,
to understand which features they rely upon for making their
decisions. Therefore, we computed how often our participants

Netw
ork

VT L
ab

els

Pro
ces

ses

File
Sy

ste
m

Sig
na

tur
e

Reg
istr

y

VT H
isto

ry

Se
rvi

ces

Im
po

rts
Str

ing
s

Hea
de

r

Mute
xe

s

Dyn
DLLs

Se
cti

on
s

Reso
urc

es

Feature

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ho
w

m
an

y
tim

es
 it

 h
as

 b
ee

n
se

en
Experts
Novices

Figure 3: Features prevalence

used a given feature during the game. We recall that a player
is not aware whether a feature is present or not until she clicks
on it (as described in Section 3), therefore in this particular
discussion, we are considering the features irrespective of their
presence or absence, but by the fact that the player decided
to look at them. The result, which is one of the main findings
of this study, was quite surprising: independently of their level
of expertise, all players relied on the same set of features.

The complete list of features with their prevalence for
experts and novices is shown in Figure 3; the features marked
with a dagger (†) are the dynamic ones. Percentages are
computed over the total number of classified samples, i.e., 760
for the 38 experts and 1440 for the 72 novices. The features
are ordered by the prevalence among experts.

We also investigated the five most frequent entries for
experts and novices, broken down for the samples that
were classified correctly and those that were misclassified
(summarized in Table 7 in the Appendix 10.1). All lists
are strikingly similar irrespective of the correctness of the
classsification. For the experts are: †Network, VT labels,
†Processes, †FileSystem, and Signature. While for novices:
VT labels, †Network, Signature, †Processes, and †FileSystem.

Even if VT labels was only present on 4/20 samples,
participants often tried to consult it. We remind the reader
that at the beginning of the round, the player could not know
if it was an empty feature or not until she tried to click on it.
Therefore, we counted whether the feature was present or not
because in this measurement, we are interested in the number
of times the player wanted to view a specific feature.

By observing Figure 3, static file features (i.e., related to the
PE file format and therefore without considering VT-relative
features) are more often located on the right side of the graph,
thus suggesting a human tendency to focus on the dynamic
behavior. The Welch’s t-tests supported this intuition (p-values
< 0.001), but just for experts, who relied more heavily on
dynamic features between the two groups (static file/dynamic
behavior – t-statistic value of -3.92). In Section 7 we will show
how this was the exact opposite for ML algorithms.

5.5 Malware Vs. Goodware

Looking at Figure 2, it seems that the goodware (character-
ized by green numbers on the X-axis) is more shifted to-
wards the right side of the graph, thus suggesting that our
participants had more trouble classifying them w.r.t. malware
(red numbers). Therefore, for each class (experts/novices), we
counted how many times they misclassified each group (mal-
ware/goodware). First, we measured their distribution, and
we found that experts, on average, misclassified 1.7 (σ=1.0,
M=1) malicious samples and 2.3 (σ=2.3,M=2) benign ones.
Novices, instead, 2.8 (σ=1.6, M=2) and 3.9 (σ=1.7, M=3).

When Ugarte Pedrero et al. [82] asked malware analysts to
help them classify previously unknown clusters, they noticed
that malicious samples required less effort to classify than
benign applications. Therefore, we further investigated and
measured the average time spent and the number of watched
features while analyzing each misclassified sample. However,
maybe because there was a maximum amount of time to
complete the game, on average, we did not notice a significant
difference in the time: experts spent roughly 80 seconds per
sample and novices 120 seconds, regardless of the sample’s
nature. While for the number of watched features, on average,
experts used 14.8 (σ=11.1, M=12) features when analyzing
malware and 17.4 (σ = 11.3, M = 15) for goodware. For
novices the difference was less pronounced, 11.2 (σ = 1.6,
M=10) and 12.6 (σ=2.9, M=11) respectively.

We performed a Welch’s t-test to assess whether any
statistically-significant difference exists between the two
groups (malware/goodware in this case) when considering I)
the number of misclassified samples, II) the average time spent
on each misclassified sample, and III) the number of watched
features when they misclassified a sample. We assumed as
a null hypothesis that there was no difference between the
two groups and performed the test, and we repeated the tests
for each class (novices/experts). The results we obtained
allow us to draw the following conclusions. I) Novices made
more errors classifying goodware (t-statistic -2.8, p-value
< 1e− 3), II) for both classes, analyzing goodware took no
longer than malware (p-values > 1e − 3), and III) experts
used more features when analyzing goodware (t-statistic -0.6,
p-value <1e−3). The last point seems particularly reasonable
because, in order to be confident that a sample is benign, one
has to rule out all possible ‘signs’ of malicious behavior.

6 Machine Learning Players

Quite surprisingly, we found a consensus among humans about
the key features used for malware classification, independently
of their background and experience level. We further introduce
the machine learning-based classifiers and compare their
modus operandi with human experts. It is crucial to point out
that we excluded two features, VT labels and VT history, when
dealing with ML players because we used them to select and
label the malware/goodware samples to form our benchmark
dataset. Therefore, they must be removed to avoid overfitting

the ML models. In total, ML players have 13 features at their
disposal, while humans have 15.

6.1 Benchmark Dataset
We created a well-balanced dataset for training and validation
by downloading 21,944 VirusTotal complete reports of PE
executables. We only selected the reports that contain a
complete behavioral analysis of the sample, which VirusTotal
obtains by running the samples in Jujubox [11] sandbox.

For malware, we randomly selected samples submitted to
VirusTotal between 2018 and 2020 and classified them as mali-
cious by more than 21 antivirus engines, as suggested by [59].
We ensured that no malware families were over-represented in
our dataset using AVClass [73]. In total, we obtained a set of
10,972 malicious samples, in which the most frequent family
had 125/10,972 occurrences (namely the 1.1% of the dataset).

We took a conservative strategy to build a goodware dataset
based on the fresh installation of all the community-maintained
packages (ensuring a rigorous moderation review process in
order to avoid pollution) of Chocolatey [4] in a clean machine
running Windows 10. After all, packages were installed, we
extracted all the executable files present on the hard disk;
therefore, our dataset contains a combination of third-party and
Windows system files. Finally, we removed from our goodware
dataset the files with more than three detections on VT. This
allowed us to discard borderline cases (i.e., benign files with
characteristics very similar to malware) found in Chocolatey’s
repository (e.g., hacking and scanning tools). Using this
procedure, we have collected 10,972 goodware, and about 95%
(10,374/10,972) of the samples in this set have zero detection.

6.2 Choice of ML-based Classification Models
Most of the features contained in the VT report are categorical.
Therefore, we vectorized all VT sandbox reports based on
the encoding scheme recently proposed by [44, 49, 62]. For
completeness, in Appendix 10.3 we provide all the necessary
details for the reproducibility of our work, and we will
also share the source code used to conduct this experiment
alongside all our dataset reports. We report this content in the
Appendix because we used state-of-the-art approaches, and
it is not a core contribution of our paper.

The literature contains various ML-based malware
classification methods using static and dynamic analysis
features. In [14, 29, 39, 43, 47, 51, 64, 70, 71, 92–94, 96],
traditional models, e.g. Decision Trees (DT) and Random
Forests (RF), were applied to the static analysis features.
Advanced models, such as Deep Neural Networks [52, 68],
treated raw binaries as gray-scale images and employed
computer vision methods for malware classification. Recently,
Graph Neural Network (GNN) [15, 20, 89] was applied to
control flow graphs of malware. Long Short-Term Memory
(LSTM) [41], Gated Recurrent Units (GRU) [23], and
Recurrent Neural Nets (RNN) [49] were used over dynamic
analysis reports containing features, e.g., system call traces,
network activities, changes to the registry, and file actions

executed by malware for malware classification. The success
of these approaches confirms the applicability of ML-based
approaches in extracting useful features of malware.

Our goal is to explain the contributions of the features
extracted from static/dynamic analysis reports (described in
Section 3.3) in Machine-Learning based malware classifica-
tion. We opted for two popular Machine Learning models. The
first is Random Forest [43, 47, 64, 70, 71, 94]. The other model
is Convolution Neural Network (CNN) [13, 52, 90, 91]. The
use of CNN is summarized in the Appendix. In our study, we
first compress the categorical attributes into low-dimensional
numerical embedding vectors, i.e., word2vec embeddings
(as seen in Word2Vec [61]). The embeddings are treated as
features of the CNN-based classifier. We use RF and CNN
as two different players in the game, providing diversified
perspectives of the classification boundary. RF uses the greedy
tree-branch split strategy to divide the feature space and locate
the classification boundary. In contrast, CNN inclines to
directly fit the classification boundary in high-dimensional
feature space by minimizing the correntropy loss. While the
two ML players achieve high accuracy, their results are not
always consistent. One may misclassify samples correctly
classified by the other and vice versa.

6.3 Validation
We first evaluate the performances of the two ML players over
the 21,944 training samples via a 5-fold cross-validation (CV)
test. After that, we apply the ML models trained using the
21,944 samples to the 20 game samples. The CV test’s role
is to evaluate the ML player’s classification accuracy using
the encoded features.

In each fold of the CV test, we randomly select 80% of the be-
nign and malicious samples to tune the model parameters of the
ML players. The remaining 20% samples are used as the test
set to evaluate the classification accuracy. The train-test split is
repeated five times. We use the averaged and standard deviation
of the AUC-ROC to measure the overall performance metric,
as given by Table 8 in the Appendix, due to the space limit.

The reported AUC-ROC scores are achieved by utilizing
500 trees for Random Forest. For the CNN-based model, we
choose a 4-layered CNN architecture implemented using Py-
Torch. The first layer is a word2vec embedding module, which
compresses the categorical attributes in a static- or dynamic-
analysis-based VT report into a 528 dimensional embedding
vector. The second layer is composed of the first convolution
filters with a size of 20 and the number of the output channels as
4. Following the convolution operation, a max pooling function
is enforced over the convolution output. The third and fourth
layers are given as fully connected layers to linearly transform
the pooled convolution responses to a 64-dimensional and
2-dimensional vector, respectively. Finally, a sigmoid function
is adopted to produce the decision score in [0,1] of the binary
classification. The averaged AUC scores of the RF and CNN-
based participant derived from the test are 0.9962 and 0.9950,
indicating the effectiveness of the two models in capturing
the feature-label correlation in the classification task.

7 Humans vs. Machines

Consistently with the observation in the CV test, the two ML
players produce similar accuracy during the game. Both of
them misclassified the game sample 3 (malicious) and 17
(benign). Besides, the RF-based players misclassified the
benign game sample number 12. In contrast, the CNN-based
player misclassified the malicious game samples 4 and 15.
RF-player achieved slightly better accuracy than the average
human expert (17/20), while the CNN-based acted like the
average expert (16/20).

Sample 17 is a curious case because we used it to study
how humans reacted to false positives, and, in a bizarre turn
of events, both ML players made a false-positive decision.
We remind the reader that ML players had no access to VT
information, and among the 18 experts who did not inspect
VT-related features, five (33%) made the same mistake.

Sample 3 is malware that directs to a malicious domain
(71.t.oneline[.]io). Although we have no data to prove
that humans did an internet search (we have set no limits on
this), all experts who have correctly classified this sample have
looked at the Network feature. Human subjects can proactively
introduce additional knowledge beyond the training data set to
help their decision-making. On the other hand, the ML-driven
models are constrained by the statistical associations in the
training data. Thus, without checking the domain’s malicious-
ness, the ML models fail to recognize the file correctly.

Besides, most of the misclassified game files by the ML
players and the human subjects are different. Only sample 12,
misclassified by 57% of the experts, is also misrecognized by
the RF-based model. This shows that humans and ML players
do not share the same idea of what constitutes a difficult
sample to classify.

The unveiled difference is related to the human’s ability
to change the decision strategy depending on the situation.
Indeed, according to cognitive psychology research [66], the
human decision is usually made based on an ensemble of
logical rules and concepts, such as permissions, obligations,
prohibitions, and heuristics. On the one hand, human subjects
can adjust the decision policies on a case-by-case basis,
according to the available information. On the other hand,
once trained, ML models are restricted to using the same set
of features adopted by the learning paradigm. They cannot
flexibly extend the feature space to enrich the description of
the suspicious files, as the human subjects did in the game. As
a result, different ML models would generate similar classifica-
tion boundaries with the same training samples. Furthermore,
the ML models are likely to fail without sufficient supporting
information on the feature, whereas the human subjects can
look for additional evidence to extend their knowledge base.

7.1 Feature Ranking
We adopt SHAP [12] as a model-agnostic model explanation
tool to measure the contribution of each type of feature
encoded from the VT reports. SHAP [78] computes the
Shapley value of each type of feature and ranks the features

Table 5: Ranked features by the two ML players and experts

RF CNN Expert Humans

1 Resources Resources †Network
2 †Services Sections †Processes
3 Header Metadata †Network †FileSystem
4 †Network †Runtime DLLs Signature
5 Signature Header Metadata †Registry
6 †Runtime DLLs Signature †Services
7 Strings †Services Imports
8 Sections †FileSystem Strings
9 Imports Strings Header Metadata
10 †Mutexes †Registry †Mutexes
11 †Registry †Mutexes †Runtime DLLs
12 †FileSystem Imports Sections
13 †Processes †Processes Resources

in descending order. A higher Shapley value denotes stronger
relevance of the corresponding feature in the malware clas-
sification task. The Shapley value origins from game theory
and extends to evaluate feature-wise contributions in a given
learning task [31]. It is represented as the weighted average
of the marginal contribution of a feature concerning a machine
learning model as in Definition II.2 and Definition II.3 in [32].

Note that Random Forest also has a built-in feature im-
portance evaluation tool, i.e., recursively feature elimination
using out-of-bag error (OOB) evaluation. Nevertheless, the
OOB-based feature importance measurement inclines to
overestimate the importance of high-cardinality categorical
variables. This makes not trustable the OOB-based feature
importance computation in our study. Table 5 shows the ranked
features in descending order according to the feature-wise
Shapley scores derived from SHAP and expert humans (with-
out considering the VT labels/history features as discussed in
Section 6). The features marked with a dagger (†) are dynamic.

The first finding is that the two ML players share similar
important features in the classification task. Resources,
†Network and Header Metadata appear in the top 5 features
for both ML players according to the feature-wise Shapley
values, despite the difference of learning mechanisms of RF
and CNN. Interestingly, also †Network and Signature appear
within human experts’ top five features.

It can also be noted that the two ML players prefer static
features rather than the dynamic ones that are favored by
human subjects. In the first half of the ranking (1-7), human
participants have chosen five dynamic features and two static.
In the second half (8-13), the two ML players have chosen
two static features and four dynamic ones. In fact, ML players
made significant use of static analysis features, and, amazingly,
PE Resources is the most crucial for ML algorithms while the
least important for both human experts and novice players.

As humans, we have tried to understand why ML models
prefer these features with an in-depth look at the reports, and
when necessary, we manually inspected the sample. We found
that malware tends to: embed executables/DLLs or big raw
data among resources, some PE header metadata contains
random strings or non-ASCII characters, does not sign or use
invalid signatures, and uses sections with non-standard names.

Some of our samples also had these three peculiarities; for
example, in the same order discussed above, samples number
6, 20, 3, and 15. Respectively, the 96%, 89%, 61%, and 91% of
expert humans who classified correctly those samples did not
watch Resources, Header Metadata, Signature and Sections.
As it turns out, humans and machines agree that Signature is a
crucial feature, while for the remaining static features, humans
did not need them to make a correct classification.

While more research works may be needed to underpin
the actual reason behind such differences between humans
and machines, two possible explanations come to mind. First,
dynamic attributes are not always present in all the reports.
Over the 21,944 malware and goodware samples, 83% of
them have at least one dynamic feature containing missing
values (i.e., NULL value). It is worth noting that such missing
features are ordinary; a program does not need to use all the
operating system’s capabilities. For example, ransomware just
needs to interact with the file system and the network, while
a browser has no apparent need to create services.

In contrast, static features are rarely missing. Misob-
servations in the dynamic features weaken the statistical
feature-label association and therefore downgrade the
usefulness of the dynamic features in the ML models. This
is also related to the difference in the decision logic of
humans [66, 83] and ML-based models [26]. Human subjects’
judgments are made based on a combination of heuristics
and rules. Missing some features/attributes does not prevent
human subjects from pursuing complementary rules to reach
a correct conclusion. Nevertheless, the ML-based models,
though they are usually superior in capturing the complex
statistical correlation, they do not encode the causality
reasoning rules [26]. Consequently, ML-based models are
more prone to misobservations in training data than humans.

The feature encoding is more complicated for dynamic
attributes, often containing semantically rich categorical
data types (w.r.t. static features containing more numerical
features). To handle the high dimensional and sparse one-hot
encoded representation of these categorical features, the
Word2Vec technique [60] was developed to compress the one-
hot encoded features into a low-dimensional embedding space.
Nevertheless, missing features induce unneglected negative
impacts on the representation stability of the Word2Vec based
embeddings [46, 60], which can cause model overfitting as
a consequence. It has been a challenging and open problem
to handle incomplete observations of discrete features.

Second, the feature space of the ML models cannot be
enriched in an on-the-fly manner by incrementally collecting
additional evidence of the security incidents. We witnessed this
limit by analyzing sample 3, misclassified by both ML-based
players. Another example is the game file 16, which resolves
the domain phone2347.ddns[.]net: a human subject can
easily note that it is a dynamic DNS resolver, while ML does
not have access to this knowledge. Moreover, by checking only
the Gibberish Score used in our encoding process (see Ap-
pendix A for more details), the domain is not random enough
to be categorized as automatically generated. However, it still
looks suspicious to the human subjects’ eyes; overall, not what

an analyst would expect from a sample that has nothing to do
with phone calls. This is additional semantic information that is
difficult for an automated ML algorithm to capture proactively.

7.2 Game Replay with the ML players
The comparison is still not fair enough: the ML players had
access to ALL features for each sample, while human experts
had to progressively select only a subset of them. This raises
a new question: If the ML players were to use the same set of
features used by the human subjects in the game, how would
they perform? To answer this question and help us better unveil
the difference in decision-making between human subjects
and ML models, we conducted two new experiments. In the
first, we selected the five most used features according to their
frequency among human experts’ gameplay records. In the
second, we extended the list to the top seven (except for the
VirusTotal features as discussed in Section 6.2).

We then use only these features as the input to the two ML
players and retrain them with the 21,944 file samples. After
that, we went over each round played by the top five human
experts, and we asked the retrained ML models to classify the
game samples involved in the rounds played by the top five
experts as per the following settings.

We give the retrained ML players the same features that each
human expert used in the game for each selected game sample.
To perform a fair comparison, we only selected those game
samples where the features used by the top human experts were
all within the range of the most used 5 and 7 features selected
to train the classifiers. Consequently, both the human experts
and the ML players involved in the replay test had access to
the same feature pool for each game sample. This limited our
experiments to 8 game samples for the five-feature experiment
and 13 game samples for the seven-feature experiment. It is
possible that individual human experts use only a fraction
of the most used 5 and 7 features when they play the game.
Given a game sample i, for the features in the top-ranked
list that were not used by the human subject, we consider
them as missing features in the input to the ML models for
classifying this sample. To handle the missed feature values,
both RF and CNN-based models first conduct imputations by
completing them with the most frequently observed values
in the corresponding feature dimensions. Then the classifiers
are applied over the completed input feature vectors.

At first, for the two ML players using only the 5 and 7
features, we conducted the 5-fold CV test on the 21,944
samples to check the overall accuracy of the ML players
with the restricted feature space. We then apply the retrained
models with the top 5 and 7 features over the 20 game samples
and report the number of misclassified game files. Table 9 in
Appendix.10.6 reports the average and standard deviation of
the ROC-AUC scores produced by the restricted ML models
in the 5-fold CV test. While the overall accuracy of the two
ML players is lower than when trained using all features, the
ROC-AUC remains high. With the top 7 features, RF and
CNN reach an ROC-AUC value of 0.95 and 0.97 respectively.

Table 6 reports the number of the correctly classified game

Table 6: Game Replay Accuracy w.r.t. ML players

Methods Top 5 features Top 7 features

RF 4/8 5/13
CNN 3/8 5/13

Human Experts 8/8 13/13

samples by the two ML players in the replay test. In the
table, we use x/y to denote that x game samples out of the
whole y samples are correctly classified. Interestingly, the
game classification accuracy dropped significantly when
the ML players replayed experts’ games. First, the game
performance of the two ML players is worse than a random
guess. In contrast, human experts did a perfect job, with all
the samples correctly classified. Second, the accuracy score
with the top 7 features was even worse than that derived with
the top 5 features (e.g., 4/8 v.s. 5/13 for the RF model). The
main reason is that there were many more missing feature
values in the seven features, which caused the performance
deterioration of the ML models. In contrast, human experts
rarely used more than three features in their choices.

The cause of the performance degradation is twofold. First,
human experts do not necessarily use all the features for deci-
sions. As discussed before, human experts’ judgment is made
based on their own set of heuristics and rules learned from
prior knowledge and experience of malware analysis prac-
tices [66,83]. In the game replay test, 80% of the human experts
used no more than three features while reaching the correct mal-
ware classification. 50% of them used less than five features. In
contrast, with fewer features used, the less information the ML
models can employ to learn the statistical association between
features and labels. The classification accuracy over the game
samples of both ML models thus becomes significantly lower
than using the complete feature set. Second, while human
experts can use partially observed information for their infer-
ence, any test inputs with incomplete features to a trained ML
model inevitably harm the model’s accuracy. The ML-driven
models are thus less usable compared to manual investigation
if training data and/or testing data are partially observed.

8 Key Takeaways

We conducted the first empirical study comparing humans
(experts and novices) with machine intelligence in malware
classification based on sandbox reports.

First, we found that both experts and novices base their
decisions on the same set of features, with a slight difference
in the order. As expected, the critical difference is that experts
can provide a more accurate and fast classification with
the same information. This finding holds among experts
from different companies and countries and students from
different universities. Moreover, we also found that humans
and machines agree that network traffic and a valid signature
are among the most important features.

Second, novices make the majority of mistakes during
goodware classification. In fact, experts analyze more features

when dealing with benign samples, confirming a recent
observation [82] regarding the fact that benign files are the
hardest to classify correctly for analysts because analysts have
to rule out all possible malicious indicators. This difficulty
with goodware for novices is probably due to the fact that
they might be well-trained at detecting signs of potentially
malicious behavior, while finding the absence of such signs
is much more error-prone. Therefore, we need to improve
this aspect during teaching. On the other hand, ML classifiers
are designed to capture the data distribution of both benign
and malicious samples in the feature space. It implies that the
classification boundary established by ML classifiers may also
help capture the common profiles of goodware; therefore, ma-
chines know distinctive traits for goodware and malware. We
also found no agreement between human players and machine
learning algorithms about which samples are more difficult
to classify, and this fact suggest that machines and humans
have complementary skills and a lot to still teach to each other.

Third, experts classify samples by using less than 1/3 of
the available features, with a clear preference for dynamic
attributes. Also, interviews of a recent work [95] bolsters the
fact that malware analysis is trending towards behavior-based
detection, because this can protect against undiscovered mal-
ware samples and remain effective for more extended periods
of time [6]. This reflects the difference between human and ma-
chine intelligence. A human’s decision depends on a flexible
combination of candidate heuristics. Misobservations of the
features do not prevent human experts from trying alternative
heuristics. However, missing observations and a lack of seman-
tic understanding of the features weaken the trustworthiness of
the machine intelligence’s decision. Echoed by other previous
studies [44,49], how to properly extract semantically meaning-
ful logic is still a challenging task for ML models. As recently
proposed in [35, 76], one potentially promising approach that
could be used to address this issue could be the integration
of generative models, such as AutoEncoder, into the classifiers
and the use of causality inference in the decision process. The
goal is to produce a semantically meaningful reconstruction of
missing features and encourage exploring causality relations
between features to deliver explainable classification. While
these are exciting research directions, we emphasize once
again that for our study, we used only state-of-the-art feature
vectorization strategies, as described in Section 6.2.

Fourth, human analysts can consolidate the decision beyond
the given behavioral reports by collecting additional evidence
and knowledge. The process of proactive knowledge enriching
is much more complex for ML models because the training
strictly follows the definition of the feature space, which
makes the derived models a passive process of knowledge
encoding. By comparison, human subjects can strengthen their
classification by checking suspicious records with additional
information sources, even if the time limit imposed in our
game limited this process to not much more than a quick query
to a search engine. However, even if this is an inherent problem
of ML, this particular case highlights the importance of
enhancing ML models with open-source intelligence results.

Fifth, none of the human participants or computer algo-

rithms were able to classify all the 20 game samples correctly.
Human experts classified correctly on average 16.1±1.4 with
a median of 16, i.e., an average accuracy of 80%. This number
is further supported by the median value of the number of
choices experts reported being unsure of, which is 4. Even if
some samples were specifically crafted to reflect complex real-
world situations (e.g., false positive/negative for AV products),
we manually selected the samples to ensure that malicious
or harmless activity indicators were always captured in the
reports. However, it was fascinating to observe that the False
Positive case posed many difficulties even to experts, while
no expert made any mistakes on the False Negative – among
those who looked at VT’s labels. As FPs could irreparably
damage the system functionality, as has happened several
times before [1, 3, 9], antivirus companies pay close attention
and perform extensive tests to reduce their number. Analysts,
on the other hand, are accustomed to new malware variants
and thus pay close attention to FNs, whereas in the presence of
a positive AV match they tend to believe the machines’ verdict.

As a last point, the results of this work can have a significant
impact on the human-computer interaction for malware
analysis during the review of sandbox reports. The computer
must make all the data collected through OSINT available to
human beings. Considering the domain name we discussed
in Section 7 as an example, if the human had seen that it was
a domain associated with malicious activity, he would have
immediately known it was malware. Then, the use of ML mod-
els that precisely indicate what are the most significant parts of
the features that helped classify the sample (RF for example)
would help the human to point out which static malware parts
are critical to the machine, so that she can focus on the behavior
and bridging the cognitive gap seen throughout this paper.

9 Limitations and Conclusions

We introduced some design choices into the experimental
setup, which may have caused biases in the final outcome as
well as may have prevented us from unveiling further findings.

The granularity of the data collected with our web-based
platform did not allow us to understand further the exact com-
ponent of the feature that ignites the spark in the human mind.
However, we argue that it is difficult to achieve such granu-
larity. A sufficiently precise eye tracking device could provide
excellent accuracy, but the experiment cannot be conducted
remotely. As an alternative, the use of a restricted focus viewer
to capture the part of the screen a user is currently focusing on
is a standard methodology in comprehension experiments [48].
However, it would significantly impact the participants’ speed,
and it would require more time to conduct the experiments.

As Mantovani et al. [58], we did not offer money or goods
to participate in this study because many participants were
not allowed to receive compensation for their effort, and
we did not want to discriminate among different classes of
users. However, for some students involved in the study, the
experiment gave them credits for their malware analysis exam,
and experts voluntarily participated in the game.

The features list presented in the sidebar of our web UI
always follows the same ordering, and it might have introduced
a bias in the way our participants visited the features. However,
we underline that by comparing the features list in the web-UI
with the top-5 used features of table 7 only a tiny part of these
follow the order of the UI list. Moreover, we introduced this
design choice to mimic the VT interface that was needed not to
affect the user experience and usability, especially for experts
who work mainly with that interface.

Since we wanted to study existing ML solutions (and not
design a new one for our experiments), we based our dynamic
feature vectorization approach on what was described in
recent papers [14, 39, 49, 96]. However, our tests show that
more research is needed in this area (in accordance with [44]):
dynamic features usually generate a very sparse representation
that can lessen the stability of classification, especially when
dynamic features contain misobservations. This is a possible
reason why the classification performance deteriorates if we
train an ML model on the same dynamic features chosen by hu-
mans. In general, the performance of ML-based classification
and the features favored by the ML model depend significantly
on the choice of the model and the training dataset.

Finally, expert analysts in our study likely misclassified
some samples because of the game mechanics. For example,
the cost of buying features might have reduced the accuracy;
however, this has affected both experts and novices. In
any case, our goal was to study which features were used
more often by humans and compare them with those of
machine learning algorithms. We want to stress that real-world
classification is much more challenging, involving reports that
did not capture the relevant features of the program or samples
that did not run correctly in the sandbox, thus resulting in
incomplete information. To cope with that, as extensively
discussed in [82] and [95], malware analysts may use various
techniques, including manual reverse engineering.

In the spirit of open science, we release 1 the source code we
used to create the ML players (a tool to vectorize VirusTotal
reports) and our game (that could have exciting teaching
applications). While we cannot share the complete VirusTotal
reports due to legal restrictions, we share the hashes of the
samples we used in our dataset.

Acknowledgements

We sincerely thank the anonymous reviewers for their
constructive feedback that has helped to improve this paper
significantly, and Slasti Mormanti for his tireless support to
our research group.

This work has benefited from a government grant managed
by the National Research Agency under France 2030
with reference “ANR-22-PECY-0007,” and the European
Research Council (ERC) under the Horizon 2020 research and
innovation program (grant agreement No 771844 BitCrumbs).

1https://gitlab.eurecom.fr/saonzo/DetectMeIfYouCan_ML

https://gitlab.eurecom.fr/saonzo/DetectMeIfYouCan_ML

References
[1] Antivirus software webroot bricks pcs by deleting windows system

files. https://liliputing.com/2017/04/whoops-antivirus-so
ftware-webroot-bricks-pcs-deleting-windows-system-fi
les.html, Accessed September 20, 2022.

[2] Autohotkey, the scripting language for windows. h t t p s :
//www.autohotkey.com/, Accessed September 20, 2022.

[3] Catastrophic avira antivirus update bricks windows pcs. https:
//www.theregister.com/2012/05/16/avira_update_snafu/,
Accessed September 20, 2022.

[4] Chocolatey, the package manager for windows. h t t p s :
//chocolatey.org/, Accessed September 20, 2022.

[5] Credential stealer targets us, canadian bank customers. https://ww
w.trendmicro.com/en_us/research/20/l/stealth-creden
tial-stealer-targets-us-canadian-bank-customers.html,
Accessed September 20, 2022.

[6] How antivirus softwares are evolving with behaviour-based malware
detection algorithms. https://analyticsindiamag.com/how-an
tivirus-softwares-are-evolving-with-behaviour-based-
malware-detection-algorithms/, Accessed September 20, 2022.

[7] M-trends 2020. https://content.fireeye.com/m-trends/rpt
-m-trends-2020, Accessed September 20, 2022.

[8] Malware statistics. https://www.av-test.org/en/statistics/
malware/, Accessed September 20, 2022.

[9] Panda antivirus mistakenly flags itself as malware, bricks pcs. https://
www.zdnet.com/article/panda-antivirus-mistakenly-flags
-itself-as-malware-breaks-pcs/, Accessed September 20, 2022.

[10] Potential targeted attack uses autohotkey and excel. https:
//www.trendmicro.com/en_us/research/19/d/potential-ta
rgeted-attack-uses-autohotkey-and-malicious-script-e
mbedded-in-excel-file-to-avoid-detection.html, Accessed
September 20, 2022.

[11] Revamping in-house dynamic analysis with virustotal jujubox sandbox.
https://blog.virustotal.com/2019/10/in-house-dynamic
-analysis-virustotal-jujubox.html, Accessed September 20,
2022.

[12] Shapley additive explanations. https://shap.readthedocs.io/en
/latest/index.html, Accessed September 20, 2022.

[13] Rakshit Agrawal, Jack W. Stokes, Karthik Selvaraj, and Mady Mari-
nescu. Attention in recurrent neural networks for ransomware detection.
In ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3222–3226, 2019.

[14] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail
Trofimov, and Giorgio Giacinto. Novel feature extraction, selection and
fusion for effective malware family classification. In Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
CODASPY ’16, page 183–194. Association for Computing Machinery,
2016.

[15] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
Learning to represent programs with graphs. In International
Conference on Learning Representations, 2018.

[16] Blake Anderson Anderson, Daniel Quist, Joshua Neil, Curtis Storlie,
and Terran Lane. Graph-based malware detection using dynamic
analysis. Journal in Computer Virology, 7:247–258, 2011.

[17] Srilatha Attaluri, Scott McGhee, and Mark Stamp. Profile hidden
markov models and metamorphic virus detection. Journal in computer
virology, 5:151–169, 2009.

[18] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving the
efficiency of dynamic malware analysis. In Proceedings of the 2010
ACM Symposium on Applied Computing, pages 1871–1878, 2010.

[19] Noam Ben-Asher and Cleotilde Gonzalez. Effects of cyber security
knowledge on attack detection. Computers in Human Behavior,
48:51–61, 2015.

[20] David Bieber, Charles Sutton, H. Larochelle, and Daniel Tarlow.
Learning to execute programs with instruction pointer attention graph
neural networks. NeurIPS 2020, abs/2010.12621, 2020.

[21] Juan C Burguillo. Using game theory and competition-based learning to
stimulate student motivation and performance. Computers & education,
55(2):566–575, 2010.

[22] Jean-Marie Burkhardt, Françoise Détienne, and Susan Wiedenbeck.
Mental representations constructed by experts and novices in object-
oriented program comprehension. In Human-Computer Interaction
INTERACT’97, pages 339–346. Springer, 1997.

[23] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua
Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. CoRR, abs/1412.3555, 2014.

[24] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding linux malware. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 161–175. IEEE, 2018.

[25] Christian Crumlish and Erin Malone. Designing social interfaces:
Principles, patterns, and practices for improving the user experience.
" O’Reilly Media, Inc.", 2009.

[26] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging
machine learning and logical reasoning by abductive learning. In
Advances in Neural Information Processing Systems, volume 32, pages
2815–2826, 2019.

[27] SL Shiva Darshan, MA Ajay Kumara, and CD Jaidhar. Windows
malware detection based on cuckoo sandbox generated report using
machine learning algorithm. In 2016 11th International Conference on
Industrial and Information Systems (ICIIS), pages 534–539. IEEE, 2016.

[28] Yuxin Ding, Xuebing Yuan, Ke Tang, Xiao Xiao, and Yibin Zhang.
A fast malware detection algorithm based on objective-oriented
association mining. Computers and Security, 39:315 – 324, 2013.

[29] Parvez Faruki, Vijay Laxmi, M. S. Gaur, and P. Vinod. Mining control
flow graph as api call-grams to detect portable executable malware.
In Proceedings of the Fifth International Conference on Security of
Information and Networks, SIN ’12, page 130–137. Association for
Computing Machinery, 2012.

[30] Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. Mental represen-
tations of programs by novices and experts. In Proceedings of the
INTERACT’93 and CHI’93 conference on Human factors in computing
systems, pages 74–79, 1993.

[31] Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley
values: incorporating causal knowledge into model-agnostic explain-
ability. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1229–1239. Curran Associates, Inc., 2020.

[32] Daniel Fryer, Inga Strümke, and Hien Nguyen. Shapley values for
feature selection: The good, the bad, and the axioms, 2021.

[33] Daniel Gibert, Carles Mateu, and Jordi Planes. Hydra: A multimodal
deep learning framework for malware classification. Computers and
Security, 95:101873, 2020.

[34] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon Vicens. Using
convolutional neural networks for classification of malware represented
as images. Journal of Computer Virology and Hacking Techniques,
15:15–28, 2019.

[35] David Grangier and Iain Melvin. Feature set embedding for incomplete
data. In Proceedings of the 23rd International Conference on Neural
Information Processing Systems - Volume 1, NIPS’10, page 793–801,
Red Hook, NY, USA, 2010. Curran Associates Inc.

[36] Leo Gugerty and Gary Olson. Debugging by skilled and novice
programmers. In Proceedings of the SIGCHI conference on human
factors in computing systems, pages 171–174, 1986.

[37] Juho Hamari, Jonna Koivisto, and Harri Sarsa. Does gamification
work?–a literature review of empirical studies on gamification. In
2014 47th Hawaii international conference on system sciences, pages
3025–3034. Ieee, 2014.

https://liliputing.com/2017/04/whoops-antivirus-software-webroot-bricks-pcs-deleting-windows-system-files.html
https://liliputing.com/2017/04/whoops-antivirus-software-webroot-bricks-pcs-deleting-windows-system-files.html
https://liliputing.com/2017/04/whoops-antivirus-software-webroot-bricks-pcs-deleting-windows-system-files.html
https://www.autohotkey.com/
https://www.autohotkey.com/
https://www.theregister.com/2012/05/16/avira_update_snafu/
https://www.theregister.com/2012/05/16/avira_update_snafu/
https://chocolatey.org/
https://chocolatey.org/
https://www.trendmicro.com/en_us/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html
https://www.trendmicro.com/en_us/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html
https://www.trendmicro.com/en_us/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms/
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms/
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms/
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.zdnet.com/article/panda-antivirus-mistakenly-flags-itself-as-malware-breaks-pcs/
https://www.zdnet.com/article/panda-antivirus-mistakenly-flags-itself-as-malware-breaks-pcs/
https://www.zdnet.com/article/panda-antivirus-mistakenly-flags-itself-as-malware-breaks-pcs/
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://www.trendmicro.com/en_us/research/19/d/potential-targeted-attack-uses-autohotkey-and-malicious-script-embedded-in-excel-file-to-avoid-detection.html
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html

[38] KyoungSoo Han, Jae Hyun Lim, and Eul Gyu Im. Malware analysis
method using visualization of binary files. In Proceedings of the 2013
Research in Adaptive and Convergent Systems, pages 317–321. 2013.

[39] Mehadi Hassen and Philip K. Chan. Scalable function call graph-based
malware classification. In Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, CODASPY
’17, page 239–248. Association for Computing Machinery, 2017.

[40] Hanan Hibshi, Travis Breaux, Maria Riaz, and Laurie Williams.
Discovering decision-making patterns for security novices and experts.
Inst. for Softw. Research., Carnegie Mellon Univ., Pittsburgh, PA, Tech.
Rep. CMU-ISR-15-101, 2015.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[42] Allyson L Holbrook, Melanie C Green, and Jon A Krosnick. Telephone
versus face-to-face interviewing of national probability samples with
long questionnaires: Comparisons of respondent satisficing and social de-
sirability response bias. Public opinion quarterly, 67(1):79–125, 2003.

[43] Xin Hu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin. Mutantx-s:
Scalable malware clustering based on static features. In Proceedings
of the 2013 USENIX Conference on Annual Technical Conference,
USENIX ATC’13, page 187–198. USENIX Association, 2013.

[44] Muhammad Ijaz, Muhammad Hanif Durad, and Maliha Ismail. Static
and dynamic malware analysis using machine learning. In 2019 16th
International bhurban conference on applied sciences and technology
(IBCAST), pages 687–691. IEEE, 2019.

[45] Daisuke Inoue, Katsunari Yoshioka, Masashi Eto, Yuji Hoshizawa, and
Koji Nakao. Automated malware analysis system and its sandbox for
revealing malware’s internal and external activities. IEICE transactions
on information and systems, 92(5):945–954, 2009.

[46] Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and
Michael S. Lauer. Random survival forests. The Annals of Applied
Statistics, 2(3):841 – 860, 2008.

[47] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis
for malware detection. In International Conference on Information
Processing 2011, volume 157, pages 51–59, 2011.

[48] Anthony R Jansen, Alan F Blackwell, and Kim Marriott. A tool for
tracking visual attention: The restricted focus viewer. Behavior research
methods, instruments, & computers, 35(1):57–69, 2003.

[49] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long,
Christopher Kruegel, and Giovanni Vigna. Neurlux: Dynamic malware
analysis without feature engineering. In Proceedings of the 35th Annual
Computer Security Applications Conference, page 444–455, 2019.

[50] ElMouatez Billah Karbab and Mourad Debbabi. Maldy: Portable,
data-driven malware detection using natural language processing and
machine learning techniques on behavioral analysis reports. Digital
Investigation, 28:S77–S87, 2019.

[51] Joris Kinable and Orestis Kostakis. Malware classification based on
call graph clustering. Journal in Computer Virology, 7:233–245, 2011.

[52] Bojan Kolosnjaji, Ghadir Eraisha, George Webster, Apostolis Zarras,
and Claudia Eckert. Empowering convolutional networks for malware
classification and analysis. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 3838–3845, 2017.

[53] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert.
Deep learning for classification of malware system call sequences. In
Australasian Joint Conference on Artificial Intelligence, pages 137–149.
Springer, 2016.

[54] Deguang Kong and Guanhua Yan. Discriminant malware distance
learning on structural information for automated malware classification.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1357–1365, 2013.

[55] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521:436–444, 2015.

[56] SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim,
JaeBum Jung, GiChun Nam, and HeuiSeok Lim. Comparing program-
ming language comprehension between novice and expert programmers
using eeg analysis. In 2016 IEEE 16th International Conference on
Bioinformatics and Bioengineering (BIBE), pages 350–355. IEEE, 2016.

[57] Liu Liu, Bao-sheng Wang, Bo Yu, and Qiu-xi Zhong. Automatic
malware classification and new malware detection using machine learn-
ing. Frontiers of Information Technology & Electronic Engineering,
18(9):1336–1347, 2017.

[58] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide
Balzarotti. Re-mind: a first look inside the mind of a reverse engineer. In
31st USENIX Security Symposium (USENIX Security 2022). USENIX
Association, August 2022.

[59] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio
Merlo, and Davide Balzarotti. Prevalence and impact of low-entropy
packing schemes in the malware ecosystem. In Network and Distributed
System Security (NDSS) Symposium NDSS 20, 2020.

[60] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Yoshua Bengio
and Yann LeCun, editors, 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013.

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[62] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar,
Tony Wu, George Yiu, et al. Reviewer integration and performance
measurement for malware detection. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 122–141. Springer, 2016.

[63] Daisuke Miyamoto, Takuji Iimura, Gregory Blanc, Hajime Tazaki,
and Youki Kadobayashi. Eyebit: Eye-tracking approach for enforcing
phishing prevention habits. In 2014 Third International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), pages 56–65. IEEE, 2014.

[64] Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, Nathalie
Japkowicz, and Yuval Elovici Elovici. Unknown malcode detection
via text categorization and the imbalance problem. In 2008 IEEE
International Conference on Intelligence and Security Informatics,
pages 156–161, 2008.

[65] Saeed Nari and Ali A Ghorbani. Automated malware classification based
on network behavior. In 2013 International Conference on Computing,
Networking and Communications (ICNC), pages 642–647. IEEE, 2013.

[66] Jean Oh Oh, Felipe Meneguzzi, and Katia Sycara. Chapter 11 -
probabilistic plan recognition for proactive assistant agents. In Gita
Sukthankar, Christopher Geib, Hung Hai Bui, David V. Pynadath, and
Robert P. Goldman, editors, Plan, Activity, and Intent Recognition,
pages 275 – 288. 2014.

[67] Jonas Pfoh, Christian Schneider, and Claudia Eckert. Leveraging
string kernels for malware detection. In Proceedings of International
Conference on Network and System Security, pages 206–219, 2013.

[68] Edmar Rezende, Guilherme Ruppert, Tiago Carvalho, Fabio Ramos, and
Paulo De Geus. Malicious software classification using transfer learning
of resnet-50 deep neural network. In The16th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages
1011–1014, 2017.

[69] Michael Sailer, Jan Ulrich Hense, Sarah Katharina Mayr, and Heinz
Mandl. How gamification motivates: An experimental study of
the effects of specific game design elements on psychological need
satisfaction. Computers in Human Behavior, 69:371–380, 2017.

[70] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar
Hashemi, and Ali Hamze. Malware detection based on mining api calls.
In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, page 1020–1025. Association for Computing Machinery, 2010.

[71] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G. Bringas.
Opcode sequences as representation of executables for data-mining-
based unknown malware detection. Information Sciences, 231:64 – 82,
2013. Data Mining for Information Security.

[72] Josh Saxe, David Mentis, and Chris Greamo. Visualization of shared
system call sequence relationships in large malware corpora. In
Proceedings of the ninth international symposium on visualization for
cyber security, pages 33–40, 2012.

[73] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero.
Avclass: A tool for massive malware labeling. In International
Symposium on Research in Attacks, Intrusions, and Defenses, pages
230–253. Springer, 2016.

[74] Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt. M alrec: compact
full-trace malware recording for retrospective deep analysis. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 3–23. Springer, 2018.

[75] Toshiki Shibahara, Takeshi Yagi, Mitsuaki Akiyama, Daiki Chiba, and
Takeshi Yada. Efficient dynamic malware analysis based on network
behavior using deep learning. In 2016 IEEE Global Communications
Conference (GLOBECOM), pages 1–7. IEEE, 2016.

[76] Marek Smieja, undefinedukasz Struski, Jacek Tabor, Bartosz Zieliński,
and Przemysław Spurek. Processing of missing data by neural networks.
In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 2724–2734, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[77] Curtis Storlie, Blake Anderson, Scott Vander Wiel, Daniel Quist, Curtis
Hash, and Nathan Brown. Stochastic identification of malware with
dynamic traces. Annuals of Applied Statistics, 8:1–18, 2014.

[78] Erik Strumbelj. Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems,
41:647–655, 2014.

[79] Bo Sun, Akinori Fujino, Tatsuya Mori, Tao Ban, Takeshi Takahashi,
and Daisuke Inoue. Automatically generating malware analysis reports
using sandbox logs. IEICE TRANSACTIONS on Information and
Systems, 101(11):2622–2632, 2018.

[80] Roger Tourangeau and Ting Yan. Sensitive questions in surveys.
Psychological bulletin, 133(5):859, 2007.

[81] Philipp Trinius, Thorsten Holz, Jan Göbel, and Felix C Freiling. Visual
analysis of malware behavior using treemaps and thread graphs. In
2009 6th International Workshop on Visualization for Cyber Security,
pages 33–38. IEEE, 2009.

[82] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. A
close look at a daily dataset of malware samples. ACM Transactions
on Privacy and Security (TOPS), 22(1):1–30, 2019.

[83] J Van der Pligt. Decision making, psychology of. In International Ency-
clopedia of the Social and Behavioral Sciences, pages 3309 – 3315. 2001.

[84] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster,
and Michelle L Mazurek. An observational investigation of reverse
engineers’ processes. In 29th USENIX Security Symposium (USENIX
Security 2020), pages 1875–1892, 2020.

[85] Kevin Werbach and Dan Hunter. The gamification toolkit: dynamics,
mechanics, and components for the win. Wharton School Press, 2015.

[86] Susan Wiedenbeck, Vikki Fix, and Jean Scholtz. Characteristics of the
mental representations of novice and expert programmers: an empirical
study. International Journal of Man-Machine Studies, 39(5):793–812,
1993.

[87] Huijun Xiong, Prateek Malhotra, Deian Stefan, Chehai Wu, and Danfeng
Yao. User-assisted host-based detection of outbound malware traffic. In
International Conference on Information and Communications Security,
pages 293–307. Springer, 2009.

[88] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew
Smith. Helping johnny to analyze malware: A usability-optimized
decompiler and malware analysis user study. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 158–177. IEEE, 2016.

[89] Jiaqi Yan, Guanhua Yan, and Dong Jin. Classifying malware represented
as control flow graphs using deep graph convolutional neural network. In
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 52–63, 2019.

[90] Chun Yang, Yu Wen, Jianbin Guo, Haitao Song, Linfeng Li, Haoyang
Che, and Dan Meng. A convolutional neural network based classifier for
uncompressed malware samples. In Proceedings of the 1st Workshop on
Security-Oriented Designs of Computer Architectures and Processors,
SecArch’18, page 15–17, New York, NY, USA, 2018. Association for
Computing Machinery.

[91] Chun Yang, Jinghui Xu, Shuangshuang Liang, Yanna Wu, Yu Wen,
Boyang Zhang, and Dan Meng. Deepmal: maliciousness-preserving
adversarial instruction learning against static malware detection.
Cybersecurity, 4:2523–3246, 2021.

[92] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang,
and Min Zhao. An intelligent pe-malware detection system based on
association mining. Journal in Computer Virology, 283(5), 2008.

[93] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and
Min Zhao. Sbmds: an interpretable string based malware detection
system using svm ensemble with bagging. Journal in Computer
Virology, 283(5), 2008.

[94] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. A
survey on malware detection using data mining techniques. ACM
Comput. Surv., 50(3), June 2017.

[95] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M
Blough, Elissa M Redmiles, and Mustaque Ahamad. An inside look
into the practice of malware analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
3053–3069, 2021.

[96] Ding Yuxin and Zhu Siyi. Malware detection based on deep learning
algorithm. Neural Comput. Appl., 31(2):461–472, 2019.

[97] Olga A Zielinska, Allaire K Welk, Christopher B Mayhorn, and Emerson
Murphy-Hill. Exploring expert and novice mental models of phishing.
In Proceedings of the human factors and ergonomics society annual
meeting, volume 59, pages 1132–1136. SAGE Publications Sage CA:
Los Angeles, CA, 2015.

10 Appendix

10.1 Most used features
In Table 7 we report the five most frequent entries for experts
and novices broken down for the samples that were classified
correctly and those that were misclassified.

Table 7: Most used five features

All Correct Misclassified

E
xp

er
ts

†Network †Network †Network
VT labels VT labels VT labels
†Processes †Processes †Processes
†FileSystem †FileSystem †FileSystem
Signature Signature Signature

N
ov

ic
es

VT labels VT labels VT labels
†Network †Network †Network
Signature Signature †Processes
†Processes †Processes Signature
†FileSystem †FileSystem †FileSystem

10.2 List of the features in DMIYC
The list of features, divided into static and dynamic, available
to DMIYC players.

Static Properties: Virus Total Labels, Virus Total Submis-
sion History, Signature, Header Metadata, Sections, Imports,
Resources, Strings.

Dynamic Behavior: Network, Processes, Services,
Registry, Mutexes, File System, Runtime DLLs.

10.3 Feature Vectorization
We present more details about how we performed feature
vectorization (see Section 6.2).

First, we must introduce how and why, we used a Gibberish
Score (GScore, in short) – gibberish means spoken or written
words that have no meaning. Sandbox reports are rich with
strings, like process names, file paths, and URLs, and legiti-
mate ones are often meaningful names because such strings
come from good programming practices where a name should
make people understand why it exists, what it does, and how it
is used. Hence, in addition to well-known practices for feature
vectorization discussed above, we also involve our GScore that
works as follows. We built a Markov Chain of character to
character transition probabilities from the words in the English
dictionary, files and folder names of a clean Windows instal-
lation, and the top 500 domain names of the Alexa ranking. To
calculate the GScore of a given string, we walk through the
Markov Chain and compute the product of the transition prob-
abilities. Hence, our GScore is a function that takes a string
and returns a real number between 0 and 1 (not included), i.e.,
GScore : String→ (0,1). A high - close to 1 - GScore means
that it is very likely that it is a meaningful string, while a lower -
close to 0 - GScore indicates a high chance of a gibberish string.

Moreover, we make another little digression to explain how
we managed the file paths, i.e., a file system location. When
dealing with disk accesses, the sample under analysis transfers
data between the main and a target file in the persistent memory.
Even starting a process or dynamically loading a DLL involves
disk access to retrieve the executable or the DLL. Since we
encounter file paths very frequently, we have generalized the
way we handle them. Given a string containing the file path,
we consider the: parent folder, extension, and GScore of the
file name. The parent folder suggests if the file resides in a
reliable folder, like the system ones, while the extension on the
Windows operating system defines the file type (e.g., .exe for
executables). We consider the parent folder and the extension
as categorical, while the GScore as numerical.

We discuss below the techniques we used to convert
static and dynamic features into numerical feature vectors.
Raw static and dynamic analysis reports are encoded into
computable feature vectors to train Machine Learning based
models in the malware classification task. Most of the raw
attributes in the reports are categorical variables without an
ordinal relationship. We follow a one-hot encoding scheme for
each of these attributes: we first count all the unique categories
that one such attribute can carry. Then each attribute is trans-
formed into a bit vector, with each bit representing a possible
category. One bit in the vector is set to 1, only if the attribute
takes the corresponding category value. Otherwise, it is set
to 0. We conclude by illustrating the remaining details about
the feature encoding scheme for each feature class below.

Signature. We treat the signers (e.g., Microsoft, Dell, Google,
etc.) as a categorical attribute, and we also dedicate one bit
to indicate if the signature has been verified or not.

Header Metadata. First, we consider the section’s name
containing the entry point and the sub-system (if it is a
command line or a GUI executable, and the target architecture)
as categorical features. The timestamp, the size of the file, and
the size of possible overlay data are used as numerical features.

Sections. We compute the summary statistics 2 of the size and
entropy scores for each section, considering them as numerical
features. Instead, we consider the names of the sections as a
categorical feature.

Imports. For each entry, we merge the DLL’s name with
the function’s name, and we consider this new string as a
categorical feature.

Resources. We compute the summary statistics2 of the
entropy scores as numerical features. Besides, we consider
the string that indicates the type of resource as categorical.

Strings. We filter all the string, using regular expressions, and
we keep: URLs, registry keys, file paths, and domain names.
Then, each remaining string is treated as a categorical attribute,
while we calculate the summary statistics2 of the GScores of
the extracted strings.

2We refer to summary statistics to indicate min, max, average, median, and
standard deviation of a series of numbers.

Network. We count the number of UDP, TCP, and DNS con-
nections as numerical features separately while considering
TCP and UDP ports as categorical. For each domain involved
in the DNS protocol, we consider the top-level domain as
categorical, while we compute the summary statistics2 of the
GScores on the remaining domain name.

Processes. We count the number of the injected, created,
terminated, and shell commands as separated numerical
features. Moreover, if we encounter a file path, we manage
it as a categorical attribute as described before.

Services. We count the number of created and stopped
services; for each service, we consider the summary statistics2

of the GScores of the service names and each of the names
as categorical.

Registry. Actions on the Windows registry can be summarized
in: ‘set’ and ‘delete.’ Each action operates on a certain key;
hence, we treat the keys involved in set and delete action
separately, considering them as categorical.

Mutexes. We consider the count the number of mutexes
created or opened (opening a mutex is often used to check if it
exists), and the summary statistics2 of the GScores calculated
on mutex names as numerical, while mutexes’ name as
categorical.

File System. There are three types – written, read, and deleted
– of operations on a file path; thus, we consider them separately.
For example, for every written file, we have the parent folders,
the extensions, and the summary statistics2 of the GScores of
the file names.

Runtime DLLs. Processes can load dynamically DLLs, and
they can also control the location from which a DLL is loaded
by specifying a full path. Therefore, we count separately how
many DLLs are loaded: without specifying a path, a path
within the Windows system folder, a path outside system
folders. Then, every file path is treated as a categorical attribute
in our standard way.

10.4 Validation of the ML participants
We first evaluate the classification performances of the two
ML-based participants over the 21,944 training samples via
a 5-fold cross-validation (CV) test. After that, we train the two
classifiers with the 21,944 training samples and apply the final
models to the 20 game samples. The cross-validation test’s
role is to evaluate the ML algorithms’ classification capability
when using the encoded feature vectors as input features.

In each fold of the CV test, we randomly select 80% of
the benign and malicious samples from each class of the
training data set in order to tune the model parameters of
the ML participants. The remaining 20% samples are used
as the validation set to evaluate the classification accuracy.
We choose AUC-ROC score to evaluate the classification
accuracy with well-balanced training and testing samples. The
train-test split is repeated for five times. We use the averaged
and standard deviation of the AUC-ROC scores to measure
the overall performance metric as given in Table.8.

Table 8: 5-fold cross-validation test of the ML participants

Random Forest Convolution Neural Network
AUC-ROC 0.9962(4.324e-4) 0.9950(1.225e-4)
TPR with FPR=1% 0.9427(3.120e-4) 0.9386 (1.542e-4)

10.5 Choice of ML-based Malware Classifiers
The literature is full of ML-based classification methods ap-
plied to static and/or dynamic analysis reports of malware sam-
ples [14,16,17,28,29,39,43,47,51,64,67,70,71,77,92–94,96],
for both malware detection and malware family classification.

In our study, we opted for two popular Machine Learning
models. The first is Random Forest.According to previous
works [14, 16, 29, 39, 43, 47, 51, 64, 70, 71, 92, 94], Random
Forest can provide accurate detection using both static and dy-
namic analysis-based features. As a tree-structured classifica-
tion mechanism, Random Forest can by-design handle the cate-
gorical attributes in the static/dynamic analysis reports, which
can not be applied as a direct input to many other ML models,
such as Support Vector Machine and Deep Learning models.
The other model is Convolution Neural Network (CNN). As a
modern machine learning model, CNN has been applied in the
use of malware detection [13, 52, 90, 91], the first two [52, 90]
transfer the binaries into gray images by treating bytes as the
intensity values of each pixel. Then CNN is deployed to dif-
ferentiate malware from benign executables in a similar way
as in image classification [55]. [13] builds a CNN-based de-
tector using the API call traces extracted from the dynamic
analysis of malware. In our study, we use CNN with the categor-
ical features provided in the VirusTotal reports. We first com-
press the categorical attributes into low-dimensional numeri-
cal embedding vectors, i.e., word2vec embeddings (as seen in
Word2Vec [61]). The embedding vectors are treated as features
of the CNN-based detector. Another related topic [15, 20, 89]
is to apply Graph Neural Networks (a CNN extension to graph-
structured data) on control flow graphs of malware. However,
these GNN-based methods require the complete chain of oper-
ations to constitute the graph-structured feature representation,
which are not provided in the VT reports.

10.6 CV test results using the restricted
feature space

Table 9 reports the average and standard deviation of the
ROC-AUC scores produced by the restricted ML models in
the 5-fold CV test.

Table 9: ML players with the restricted feature space

Methods Top 5 features Top 7 features

RF 0.9554 (3.1013e-4) 0.9747 (9.7544e-4)
CNN 0.9410 (1.5000e-4) 0.9598 (1.0327e-4)

	Introduction
	Related Work
	Methodology
	Game Rules
	Game UI
	Features
	Game Samples

	Participants
	Analysis of humans' results
	VirusTotal Impact
	Self Evaluation
	Samples Difficulty
	Feature Ranking
	Malware Vs. Goodware

	Machine Learning Players
	Benchmark Dataset
	Choice of ML-based Classification Models
	Validation

	Humans vs. Machines
	Feature Ranking
	Game Replay with the ML players

	Key Takeaways
	Limitations and Conclusions
	Appendix
	Most used features
	List of the features in DMIYC
	Feature Vectorization
	Validation of the ML participants
	Choice of ML-based Malware Classifiers
	CV test results using the restricted feature space

