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Abstract—ower consumption is a major challenge for mas-
sive deployment of wireless sensors in internet of things (IoT)
networks. This paper studies the use of analog joint source-
channel (AJSCC) mappings in low-power sensing schemes. In
particular, we propose a novel triangular mapping geometry as
a low-complexity dimension reduction mapping. The proposed
triangular mapping is employed for analog compression of
multiple sensor readings into one signal, and thus, limits the need
for power-hungry analog-to-digital conversion and processing at
the sensing nodes. A comprehensive performance analysis of the
proposed triangular mapping in terms of the mean squared error
(MSE) performance is provided analytically and verified numer-
ically. The problem of mapping adaptation to different source
distributions is also studied. Moreover, the proposed triangular
mapping is adopted in an energy scheduling problem in which
the sensing nodes schedule their use of the received powers
at different time instants and adjust the mapping parameters
accordingly with the goal of minimizing the sum distortion at the
receiver. We present a fast low-complexity algorithm for optimal
energy scheduling and verify its performance in comparison
with commercial convex optimization solvers. It is shown that
the proposed mapping provides a very good MSE performance
compared to the AJSCC benchmarks despite having a much
lower complexity circuit implementation.ower consumption is a
major challenge for massive deployment of wireless sensors in
internet of things (IoT) networks. This paper studies the use
of analog joint source-channel (AJSCC) mappings in low-power
sensing schemes. In particular, we propose a novel triangular
mapping geometry as a low-complexity dimension reduction
mapping. The proposed triangular mapping is employed for
analog compression of multiple sensor readings into one signal,
and thus, limits the need for power-hungry analog-to-digital
conversion and processing at the sensing nodes. A comprehensive
performance analysis of the proposed triangular mapping in
terms of the mean squared error (MSE) performance is provided
analytically and verified numerically. The problem of mapping
adaptation to different source distributions is also studied.
Moreover, the proposed triangular mapping is adopted in an
energy scheduling problem in which the sensing nodes schedule
their use of the received powers at different time instants and
adjust the mapping parameters accordingly with the goal of
minimizing the sum distortion at the receiver. We present a
fast low-complexity algorithm for optimal energy scheduling and
verify its performance in comparison with commercial convex
optimization solvers. It is shown that the proposed mapping
provides a very good MSE performance compared to the AJSCC
benchmarks despite having a much lower complexity circuit
implementation.P
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I. INTRODUCTION

W IRELESS sensors form an important building block
of the Internet of Things (IoT). In fifth-generation

(5G) IoT networks, the bottom physical layer is dedicated to
wireless sensors and is referred to as the sensor layer [1].
They are widely viewed as the bridge between the physical
world and the cyber world [2]. IoT relies on wireless sensors
in numerous real-world applications such as environmental
monitoring, healthcare, smart transportation, and smart agri-
culture [1]. In these applications, wireless sensors are expected
to enable smart monitoring and control while minimizing
human interaction. With the IoT growing and sensors being
installed at massive rates, the need for self-sustainable IoT
sensors has drastically increased. Limiting human interaction
is of particular importance in order to maintain sustainability
and minimize the maintenance costs on one hand. On the
other hand, some applications may involve sensors deployed
in an unreachable or hazardous environment; for example,
implants in human bodies, chemical reactors, extreme weather
conditions, or providing emergency response to disasters [3].

Battery usage remains as the major issue facing self-
sustainable IoT sensors. Consequently, giving rise to the
question whether it is possible to power these sensors without
the need for conventional battery recharging/replacement or
not. An appealing possibility is to rely on energy harvesting
from ambient sources such as solar, vibrational, thermal and
electromagnetic energy. However, ambient energy harvesting
depends on the environment and does not provide control
of the amount of energy delivered to the sensors [4]. Con-
trolling the amount of available energy at the sensor node
becomes of great importance in critical data transmission
where availability needs to be guaranteed, like in health care
applications or industrial control applications (e.g., industry
4.0). For this reason, wireless power transfer (WPT) has
emerged as a promising controllable alternative to ambient
energy harvesting. In WPT, a dedicated power transmitter is
used to send RF power to the energy harvester with the goal
of guaranteeing a minimum amount of energy transfer. The
power transmitter could take the form of a multi-antenna base
station [5], [6], unmanned aerial vehicle (UAV) [7]–[9], or an
on-body access point [10], [11].

A. Related Work

In order to rely on WPT and energy harvesting for powering
IoT sensors, an essential requirement is to minimize their
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power consumption and to optimize their performance for a
given energy budget as considered in this paper. Analog joint
source-channel coding (AJSCC) has recently been proposed
for minimizing the power consumption of IoT sensors by
limiting the use of power-hungry analog-to-digital converters
at the sensor nodes [12]–[17]. Within this framework, AJSCC
is used to compress1 the reading of two or more sensors into
one signal and transmit it through the wireless channel through
analog or hybrid analog-digital communication schemes.

Although the idea of AJSCC was introduced by Shannon
more than seventy years ago [19], no practical implementation
of AJSCC schemes has been presented in the literature until
very recently. To the best of the authors’ knowledge, [12] was
the first work to propose a low-complexity implementation
of AJSCC using analog circuit components. Prior to [12],
AJSCC was only implemented using software-defined radios
such as in [20]. Implementing AJSCC for image compression
using neural networks has recently been presented in [21].
However, neither software-defined radio nor neural networks
are suitable for implementation in a low-power sensing node.
The use of AJSCC for compression in a low-power sensing
node relies on low-complexity dimension reduction mappings
similar to those in [22]. In such mappings, N : 1 compression
is performed by projecting the source point (sensor readings)
into a space-filling curve (geometry) and then the length from
the origin of the curve to the projected point is used as
the encoded signal. So far, there is no general method to
design the geometry of the dimension reduction mappings
[18]. One method that is widely used in the literature is
to analytically approximate the results obtained from power-
constrained channel-optimized vector quantizers (PCCOVQ)
[23], [24]. An example for this method is the Archimedean
spiral mapping presented in [25] providing a performance
close to the optimal mapping in the case of 2:1 compression
of Gaussian sources (see [26]). The other approach relies on
doing some sophisticated guess work to introduce a mapping
geometry that can be described using an analytic function
while covering the source space efficiently and minimizing the
distortion error. Examples of such mappings can be found in
[22]. The rectangular mapping studied in [12] and proposed
for low-power sensors is another example of 2:1 mappings
based on space-filling curves. It can be viewed as a refined
version of the original one introduced by Shannon in [19]. The
circuit implementation of the rectangular mapping introduced
in [12] enabled more research on analyzing its performance
[14], [15], improving the circuit implementation [13], and
finding applications in wireless monitoring [16] and health
care [15]. Moreover, inspired by the rectangular mapping, an
alternative dimension reduction mapping based on MOSFET
I-V characteristics has been proposed and studied in [16], [17].

Although the use of AJSCC in wireless sensors aims at
exploiting energy harvesting as a source of power [12], [13],
[16], no existing work has discussed the link between the
harvested energy (the available power at the sensor node) and
the performance of the mapping. Moreover, to the best of the

1It is worth mentioning that AJSCC can also be used for dimension
expansion [18]. However, dimension reduction is more relevant in the context
of this work and for low-power sensors.

authors’ knowledge, no present work has investigated the use
energy scheduling to optimize the mapping performance over
time. Besides, the present literature on the use of AJSCC in
IoT sensors lacks the explanation on how the low-complexity
AJSCC mappings can exploit the different types of correlations
between the sensor signals to improve the performance in
terms of the distortion at the receiver node.

B. Contributions

In this paper, we first propose a novel triangular mapping
geometry as a low-complexity dimension reduction mapping
inspired by the rectangular mapping presented in [12]. We
provide a complete theoretical analysis of the proposed map-
ping and discuss its practical circuit implementation. We show
that the proposed triangular mapping maintains the same mean
squared error (MSE) performance as the rectangular mapping
in the high signal-to-noise ratio (SNR) scenario while having a
simpler circuit implementation. The proposed triangular map-
ping as well as the rectangular mapping can be considered to
fill the gap of implementing low-complexity AJSCC mappings
in low-power sensing schemes. Secondly, different methods to
improve the performance of the proposed triangular mapping
are presented. For example, by adapting the mapping to the
source distribution and/or the different types of correlation
existing between the source signals. To the best of the authors’
knowledge, this is the first work to consider low-complexity
implementable mapping adaptation methods. Finally, we study
the problem of optimizing the AJSCC mapping according to
the available harvested power at different time instants at the
sensor node. We assume that each sensor node is equipped
with a battery and is able to save power for later use. An
energy scheduling problem is then formulated with the goal
of choosing the optimal design parameters of the mapping
to minimize the sum distortion at the receiver node. A fast
low-complexity algorithm for optimal energy scheduling is
proposed. The presented energy scheduling algorithm can be
considered as the next step towards making it possible for the
upcoming technologies to exploit AJSCC in wireless powered
sensing schemes.

To summarize the above, the contributions of this paper can
be listed as follows:
• We propose and study a triangular mapping as a novel

low-complexity dimension reduction mapping. A theo-
retical analysis of the MSE performance of the proposed
mapping is provided and verified numerically.

• We discuss the real world circuit implementation of
the proposed triangular mapping showing significant ad-
vantages over a similar implementation that makes use
of the rectangular mapping in terms of implementation
complexity.

• We present different methods for improving the MSE per-
formance of the mapping such as adapting the mapping
to distribution of the input signals as well as exploiting
different types of correlation between the source signals.
We verify the performance improvement through sim-
ulations. In addition, practical implementation of these
improvement methods is also discussed.
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Fig. 1. Wirelessly powered sensors nodes communicating with (a) a base
station, (b) a UAV, (c) an on-body access point.

• We formulate an energy scheduling problem to optimize
the mapping parameters (i.e., its performance) accord-
ing to energy arrivals at the sensing node in a wire-
lessly powered sensors scenario. We propose a fast low-
complexity algorithm for optimal energy scheduling with
the goal of minimizing the sum MSE. The performance
of the proposed algorithm is verified in comparison with
commercial convex optimization solvers. We show by
simulations that the sum MSE can be significantly im-
proved when energy scheduling capabilities are exploited
compared to consuming the available energy instantly
without scheduling.

C. Outline

The rest of the paper is organized as follows: The system
model and the proposed triangular mapping are introduced
in Section II. Section III discusses the performance and
optimization of the proposed mapping. Section IV presents the
different techniques to improve the MSE performance of the
mapping according to the distribution of the input signals. The
problem of optimal energy scheduling is studied in Section V.
The simulations results are shown in Section VI. Conclusions
and future work are discussed in Section VII.

Notation: Vectors are represented by bold lower case letters.
Non-bold symbols represent scalars. The operator |.| with a
scalar argument represents the absolute value, with a vector
argument represents the Euclidean norm. xT refer to the
transpose of a vector. P {.} and E {.} denote the probability
and expectation operators, respectively. We let N

(
µ, σ2

)
be

a Gaussian distribution with mean µ and variance σ2. U [a, b]
represents a uniform distribution in the interval [a, b]. Q (·)
denotes the tail probability function of the standard Gaussian
distribution.

II. SYSTEM MODEL
A. Wirelessly Powered Sensor Network

In this paper, we are interested in the setup described in
Fig. 1 representing a system of wireless sensors at fixed
positions receiving power from a dedicated power transmitter
such as a multi-antenna base station (Fig. 1a), a UAV (Fig. 1b),
or an on-body access point (Fig. 1c). The transmitter in our
considered setup serves as a hybrid access point (HAP)
transmitting power and receiving information from the sensing

node. Similar setups for wirelessly powered communication
systems can be found in [7], [9], [11], [27]. We assume
a system of M sensing nodes each containing Ns sensors
connected together. Each sensing node is equipped with a bat-
tery, an energy harvester, and a single-antenna RF transmitter.
The HAP is equipped with Nt antennas and operates as a
power transmitter and an information receiver. We assume that
different frequencies are allocated to power transmission and
information reception to minimize interference. Although, in
practice, the sensing nodes may have hybrid energy harvesting
capabilities to harvest energy from other ambient sources as
well (e.g., solar or vibrational energy) [4], in this work, we
focus on controllable reception of power from the dedicated
power transmitter in this work. The sensors use the received
power to perform their measurements, compress their reading
into one signal using AJSCC, then the compressed signal is
sent from the sensing node to the HAP. The HAP sequentially
repeats this process for all the sensing nodes until it collects
the readings of the M nodes. Then, it starts from sensing
node#1 all over again.

B. Sensing Node

For simplicity, we assume at first that each sensing node
consists of Ns = 2 sensors. The extension to the case where
Ns > 2 is discussed in Appendix B. At each sensing node,
the readings of the two sensors are combined together and
compressed using a dimension reduction (2:1) mapping and
sent through the channel. A block diagram describing the idea
of dimension reduction is shown in Fig. 2. Here, the source
signals (sensor readings) are denoted by s = [s1 , s2]. In our
model, the sensor readings are assumed to be slowly varying
continuous analog signals with s1 following a marginal prob-
ability density function (PDF) p1 bounded2 within the range
[0, R1]. Similarly, s2 follows a marginal PDF p2 bounded
within the range [0, R2]. At each sensor node, a dimension
reduction mapping (represented by an encoding function f(s))
is applied to compress the source signals into one signal x
which is then used as input to the communication channel.

In this work, a triangular mapping is proposed as a simpler
alternative to the rectangular space-filling curve which is
introduced previously in the literature [12], [19]. The idea
of triangular mapping is illustrated in Fig. 3. It consists of
parallel lines all pointing towards the same direction. Here,
dimension reduction is achieved by projecting the pair of
source signals (s1, s2) onto the curve by finding the closest
point on the curve (as illustrated in Fig. 3). The projection is
then represented using the aggregate length of the curve from
the origin up to the mapped point (red lines in Fig. 3). The
rectangular mapping discussed in [12], [19] also consists of
parallel lines in a similar way to that shown in Fig. 3. However,
different from the proposed triangular mapping, the direction
of the parallel lines alternates at each level. Although the
difference between the geometry of both mappings is small,

2For PDFs with infinite boundaries (e.g., Gaussian distribution), the tail of
the PDF is truncated introducing some uncontrolled overload distortion. More
discussion on overload discussion can be found in Sec. III-A. Furthermore,
if the PDF extends to negative values, a simple translation of axis operation
can be applied to shift the boundaries to the positive value range.
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Fig. 2. Block diagram of the 2:1 dimension reduction mapping.
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Fig. 3. The proposed triangular mapping.

the triangular mapping results in a much lower complexity
circuit implementation as will be discussed later in this section.

In order to describe the encoding function analytically and
analyze the triangular mapping’s performance, we assume that
the number of parallel lines (levels) in the y-axis is denoted by
L and the length of each level in the x-axis is represented by d
(corresponding to a certain voltage value). Let the maximum
aggregate length of the mapping be described by γ = Ld.
The value of γ can be viewed as the maximum voltage that
can be obtained as an output of the triangular mapping due
to a power or voltage constraint. It follows that the encoding
function f(s) for 2:1 dimension reduction using the proposed
triangular mapping is expressed as

f4(s) = d

(
k +

s1

R1

)
, (1)

where k = round( s2∆ ) with ∆ being the spacing between
levels.

A block diagram describing the analog circuit implementa-
tion of the above encoding function is shown in Fig. 4. It con-
sists of two branches whose outputs are added together using
an analog adder to form the output of the AJSCC encoder.
The first branch consists of a voltage divider that divides its
input voltage of s2 by a tunable voltage ∆ and outputs the
integer part of the division. The output of the voltage divider
is then applied to an analog multiplier that multiplies it by
a variable voltage d. The multiplier’s output represents the
output of the first branch. In the second branch, the voltage of
s1 is applied to a voltage-controlled voltage source (VCVS)
whose output is directly proportional to its input with a tunable

Voltage 
Divider

∆

VCVS
(α )

Analog 
Multiplier Analog 

Adder

Encoder
Output

k

Fig. 4. Block diagram of the analog circuit implementation of the encoding
function.

proportionality constant (i.e., αs1). The output of the VCVS is
taken as the output of the second branch. In order to highlight
the differences from the rectangular mapping, we express
the encoding function of the rectangular mapping using our
notation as f�(s) = (1 − ζ)d

(
k + s1

R1

)
+ ζd

(
k + 1− s1

R1

)
with ζ = mod(k, 2). A key difference between the triangular
mapping encoding function and that of the rectangular map-
ping, is that the latter requires two different types of VCVS (di-
rectly and inversely proportional to their inputs). Moreover, it
requires an additional implementation of the modulo operation
(mod(k, 2)) to select the VCVS corresponding to each level.
Performing such modulo operation requires implementing a
multi-stage analog divider [13, Sec. IV], and hence, increases
complexity and power consumption. The advantages of the
triangular mapping in terms of the lower complexity circuit
implementation can be easily observed by comparing the block
diagram in Fig. 4 to that of the rectangular mapping in [13,
Fig. 5].

III. PERFORMANCE AND OPTIMIZATION OF THE BASELINE
MAPPING

In this section, we analyze the MSE performance of the
proposed triangular mapping considering different SNR sce-
narios. Then, different methods to optimize the parameters of
the mapping are discussed. For the analysis in this section, we
assume that the source signals are uncorrelated. Certain types
of correlation between the source signals will be taken into
account in Sec. IV-B.

A. MSE performance of the proposed 2:1 triangular mapping

Applying the encoding function in (1) to the source point
(s1, s2), the obtained mapped point (represented by the black
dot in Fig. 3) on the triangular mapping is denoted by (xs, ys).
Here, xs = d

R1
s1 is a scaled version of s1 to fit the length

of each level to the range R1 and ys = k∆ is the discretized
version of s2 with ∆ = R2

L−1 . The term ys can alternatively be
expressed as ys = s2 +λy , where λy is the quantization error
term due to discretizing s2. For a uniformly distributed source
and a uniform quantizer with fixed spacing ∆ [28, Ch. 5.4], the
quantization error term λy is a uniformly distributed random
variable in the range

[
−∆

2 ,
∆
2

]
. It follows that

|λy| =
∣∣∣s2 − round(

s2

∆
)∆
∣∣∣ , (2)
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with E
{
|λy|2

}
= ∆2

12 . This holds in good approximation even
for other distributions for sufficiently small ∆ [28, Ch. 5.4].

The encoded signal x = f(s) is then transmitted through the
channel. To decouple the analysis from the used modulation
format, we consider the equivalent real-valued baseband model
with an additive white Gaussian noise (AWGN) channel, i.e.,
y = x+n with n ∼ N

(
0, σ2

n

)
. Typically, for efficient wireless

power transmission, a strong LOS link exists between the HAP
and the sensor node [7], [29]. Therefore, it is reasonable to
assume perfect channel state information (CSI) knowledge at
the receiver (HAP) node. Following that assumption, matched
filtering can be applied to convert the single input multiple
output (SIMO) channel between the sensor node and the UAV
to its equivalent scalar channel and treat it in a similar way
to an AWGN channel [30]. At the receiver node, an estimator
is applied to the received signal to recover the pair of source
signals (ŝ1, ŝ2) = g(y). We assume that the decoder performs
the reverse mapping on the received signal using maximum
likelihood (ML) estimation. The ML estimator is defined as

(ŝ1, ŝ2) = arg max
s1,s2

P (y|s1, s2) . (3)

The distortion at the receiver in terms of the MSE is expressed
as

MSE = E
{
|ŝ1 − s1|2

}
+ E

{
|ŝ2 − s2|2

}
. (4)

Two sources of decoding error affect the MSE performance
of the ML estimator. First, when the noise perturbates the
received signal on the same level without stage crossing (no
jumping to an upper or lower level). Second, if the noise term
is large, stage crossing can occur in which the received signal
may jump to a lower level or an upper level depending on the
sign of the noise term. Jumping to the lower (higher) level is
referred to as left (right) stage crossing. Therefore, the overall
MSE expression in (4) can generally be decomposed into three
quantities as follows

MSE = MSEmid + MSErc + MSElc, (5)

where MSEmid is the MSE when no stage crossing exists (i.e.,
noise is not strong enough to jump from one level to the other).
MSErc is the MSE due to right stage crossing, and MSElc is
the MSE due to the left stage crossing.

When the condition − d
R1
s1 < n < d− d

R1
s1 is satisfied, the

noise term perturbates the received signal on the same level
without stage crossing. In such case, the received components
of the signal are xr = xs + n, and yr = ys. The estimated
signals using ML are given by ŝ1 = R1

d xr = R1L
γ (xs + n) =

s1 + R1L
γ n and ŝ2 = ys = s2 + λy . Consequently, MSEmid

can be expressed as

MSEmid =

(
R2

1L
2

γ2
E
{
|n|2

}
+ E

{
|λy|2

})
pm, (6)

with pm = P
{
− d
R1
s1 < n < d− d

R1
s1

}
. The above expres-

sion can be written in terms of the mapping parameters as
follows

MSEmid =

(
R2

1L
2

γ2
σ2
n +

1

12

R2
2

(L− 1)
2

)
pm, (7)

where pm = 1 −
(
P
{
n > d− d

R1
s1

}
+ P

{
n < − d

R1
s1

})
and can be expressed as

pm = 1−

(∫ R1

0

p1 (s1) Q

(
d− d

R1
s1

σn

)
ds1+

∫ R1

0

p1 (s1) Q

(
d
R1
s1

σn

)
ds1

)
. (8)

Jumping to the upper level occurs when n > d− d
R1
s1. In

this case, the estimation errors are ŝ1−s1 = e1r and ŝ2−s2 =
λy + e2r where |e1r| = |n− d| and |e2r| = ∆. Therefore, one
can express MSErc as

MSErc =
(
E
{
|e1r|2

}
+ E

{
|e2r|2

}
+ E

{
|λy|2

})
prc. (9)

Following the assumption of AWGN, the probability of right
stage crossing prc is given by

prc = P
{
n > d− d

R1
s1

}
=

∫ R1

0

p1 (s1) Q

(
d− d

R1
s1

σn

)
ds1.

(10)
Similarly, jumping to the lower level occurs when

n < − d
R1
s1. The estimation errors in such case are

ŝ1 − s1 = e1l and ŝ2 − s2 = λy + e2l where |e1l| = |n− d|
and |e2l| = ∆. Therefore, MSElc is expressed in a similar way
to (9) with the probability of left stage crossing plc given by

plc = P
{
n < − d

R1
s1

}
=

∫ R1

0

p1 (s1) Q

(
d
R1
s1

σn

)
ds1.

(11)
It follows that the overall probability of stage crossing is ps =
prc + plc.

From the above analysis, it can be noticed that pm, prc and
plc are highly dependent on the PDF of s1. Moreover, one may
intuitively deduce that stage crossing is likely to happen when
the mapped point of s1 lies on the boundaries. The probability
of occurrence of such event is minimized when the PDF of s1

is centralized around its mean and has a decaying tail (e.g.,
Gaussian PDF). Considering these types of bell-shaped PDFs,
the worst case for stage crossing occurs when s1 follows a
uniform distribution. In that case, the probability of mapping
s1 on the boundary is exactly equal to the probability of
mapping s1 on any other point on the line. Therefore, an upper
bound on the probability of stage crossing for bell-shaped
PDFs can be obtained by assuming s1 ∼ U [0, R1].

Lemma 1: The probability of stage crossing for bell-shaped
PDFs is upper bounded by

pup
s =

2σn

d
√

2π

(
1− e−

1
2 ( d

σn
)
2

+
√

2π

(
d

σn

)
Q

(
d

σn

))
.

(12)
Proof. See Appendix A.

The corresponding upper bound on the MSE part due to the
recovery of s1 is given by

MSEup
1 =

R2
1L

2

γ2
σ2
n pm + d2pup

s︸ ︷︷ ︸
MSEup

sc1

. (13)
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Similary, the upper bound on the MSE part due to the recovery
of s2 can be written as

MSEup
2 =

1

12

R2
2

(L− 1)
2 pm + ∆2pup

s︸ ︷︷ ︸
MSEup

sc2

. (14)

In our considered setup, due to the presence of a strong
LOS, it is reasonable to assume a high SNR with d2 � σ2

n. In
such scenario, the probability of stage crossing ps is negligible
and pm ≈ 1 as will be shown in Sec. VI. Consequently, the
overall MSE is given by

MSE ≈ MSEmid =
R2

1L
2

γ2
σ2
n +

1

12

R2
2

(L− 1)
2 . (15)

The closed form MSE expression in (15) is verified through
numerical simulations as will be discussed in Sec. VI. One
can notice that performance of the mapping depends on both
L and γ. Therefore, for a given value of γ, there exists an
optimal value of L that optimizes the performance under the
constraint given by dL = γ.

Remark 1: Since low-power sensing schemes are considered
in this work, the closed form MSE expression obtained from
ML decoding in (15) is used at the sensing node to optimize
the mapping parameters. Low-complexity computations at the
sensing nodes are essential to provide optimized yet simple
compression. It is worth mentioning that, in [31, Sec. VII],
it has been shown that the performance gap of applying
minimum mean squared error (MMSE) decoding to recover
data from compression mappings optimized for ML decoding
and those optimized for MMSE decoding is negligible. Our
conducted simulations verified these findings for our proposed
mapping. However, since MMSE optimization can only be
performed numerically with no closed form analytical expres-
sions, the details of MMSE optimization and decoding are out
of scope and are omitted from this work.

Remark 2: It should be pointed out that the obtained MSE
expression in (15) from the triangular mapping for the high
SNR case is exactly the same as that of the rectangular
mapping which can be found in [15, Eq. 5]. It can then be
deduced that the triangular mapping has the same performance
as the rectangular mapping despite having a much lower
complexity circuit implementation.

B. Optimization of the mapping

In this subsection, we discuss optimizing the parameters of
the triangular mapping with the goal of minimizing the MSE
(distortion) at the receiver. Two different ways of formulating
the optimization problem are discussed. The first formulation
deals with optimizing parameters of the mapping subject to
a power constraint with the goal of minimizing the MSE.
The other formulation discusses finding the parameters of the
mapping that minimizes the used power subject to an MSE
threshold.

1) Optimizing the mapping to minimize the MSE at the
receiver: Generally, it is more common to optimize compres-
sion mappings given an average power constraint instead of a
voltage constraint (e.g., constraint on γ). For that purpose,

the calculation of the quantity E
{
f2(s)

}
is required. We

assume, for the sake of tractability, that the source signals
follow a uniform distribution. Therefore, s2 ∼ U [0, R2]. By
definition of k = round( s2∆ ), it can be easily shown that
k is also uniformly distributed in [0, L− 1]. Consequently,
one can write E {k} = L−1

2 and E
{
k2
}

= (2L−1)(L−1)
6 .

For the proposed triangular mapping encoding function in (1),
E
{
f2(s)

}
is then expressed as

E
{
f2(s)

}
= d2

[
E
{
k2
}

+
2E {k}E {s1}

R1
+

E
{
s2

1

}
R2

1

]
(16)

=
d2L2

3
.

In the following sections of the paper, for simplicity, the
constant fraction 1/3 is omitted and γ2 = Pmax is assumed
as the power constraint at the encoder. It should be pointed
out that if the distribution of the source signals is different
from uniform, this constraint can be viewed as the maximum
encoding power instead of the average encoding power. The
optimal MSE for a given Pmax using triangular mapping is
obtained from solving the following optimization problem

min
L

(15)

subject to (dL)2 ≤ Pmax

. (17)

The above problem is jointly convex in (L , d) and can easily
be solved using convex optimization tools such as CVX [32].

2) Optimizing the mapping given an MSE threshold: An
alternative optimization problem can be formulated to obtain
the parameters of the mapping (i.e., L and d) that minimizes
the power subject to an MSE threshold ε as follows

min
L, d

d2L2

subject to MSE ≤ ε
. (18)

The above alternative optimization problem is also jointly
convex in (L, d) and can be solved using CVX. At this point,
we would like to stress that, in the considered wirelessly
powered sensors scenario, the formulation described in (17)
is more applicable. However, the alternative formulation is
presented here for the sake of completeness and in order to
study the effect of changing L and d on the MSE performance.

IV. IMPROVING THE TRIANGULAR MAPPING TO MINIMIZE
DISTORTION

In this section, we consider different techniques to improve
the distortion performance of the proposed mapping. We first
study mapping adaptation to the PDFs of the source signals
assuming that they are uncorrelated. Then, different types
of correlation between the source signals are studied and
exploited to improve the distortion of the mapping. Through
this section, we refer to the MSE at the receiver as the
distortion and denote it by D. Although the studies conducted
in this section are in the context of the proposed triangular
mapping, they are actually applicable to other types of AJSCC
mappings.



7

A. PDF-adaptive Quantizer for improving the distortion error

In the previous section, the triangular mapping was assumed
to have uniform spacing between levels (i.e., ∆). In fact,
this assumption achieves the best performance if s2 follows
a uniform distribution. However, if s2 follows a different
probability distribution other than uniform, the use of non-
uniform quantization can possibly improve the distortion error
performance. One can intuitively think of allocating different
number of levels to different regions of the PDF depending
on the probability distribution. That is to say, more levels are
allocated to regions of higher probability. The distortion part
due to the quantization error in this case is given by

Dqs2
=

NR∑
i=1

Ps2∈ Region iDqi , (19)

where Dqi is the quantization error in region i and NR is the
number of regions.

The above discussion is well-known within the frame work
of quantization. Non-uniform quantizers such as the Lloyd-
max iterative algorithm are typically used in that context of
finding the optimal quantizer for a given PDF [28], [33], [34].
However, the Lloyd-max algorithm finds the optimal quantizer
(it outputs the optimal decision thresholds) for a given number
of levels. In our setup, the goal is to find the optimal number
of levels which minimizes the distortion. Therefore, we use
an adaptive quantizer inspired by the Lloyd-max algorithm.
In such adaptive quantizer, the decision threshold is fixed at
the center between each two consecutive levels. The number
of quantization levels in different regions varies differently
according to the PDF.

An example to illustrate the adaptive quantizer is shown in
Fig. 5. Here, we assume s2 follows a Gaussian distribution. In
this case, the further from the mean, the lower the probability
of s2. The PDF of s2 decays as we move from the 1σ
region to the 3σ until it approaches zero beyond the 3σ
region. Therefore, it is reasonable to put more levels in the
1σ region and decrease the number of quantization levels in
the regions of lower probability of occurrence of s2. In the
considered example illustrated in Fig. 5, the total distortion
due to quantization consists of: the granular distortion which
can be controlled with the number of quantization levels, and
the overload distortion due to the infinite boundaries of the
Gaussian distribution. Due to the decaying tail probability after
the 3σ region and the uncontrollable nature of the overload
distortion, we set our focus on improving the average granular
distortion.

To improve the average distortion in the 3σ region, we
divide it into three3 sub-regions (defined at 1σ, 2σ and 3σ).
Each region has a different number of quantization levels. In-
side each region, the quantization levels are equally separated
by ∆i with i ∈ {1, 2, 3} as shown in Fig. 5. In this case,
the average distortion due to quantization denoted by Davg is
expressed as

Davg =Ps2∈ Region 1D∆1 + Ps2∈ Region 2D∆2

+ Ps2∈ Region 3D∆3 , (20)

3The idea is applicable to divisions into more than three sub-regions.

𝜎−𝜎−2𝜎−3𝜎 2𝜎 3𝜎

∆1

∆2

∆3

Granular distortion

Overload

distortion
Overload

distortion

Fig. 5. An example of non-uniform quantization in the Gaussian source case.

where Ps2∈ Region i represents the probability that the source
signal lies in region i and is obtained from the probability
distribution function of s2. It has been shown in [28, Ch. 5.4]
that, for high resolution uniform quantization, the quantization
error is independent of the input distribution and is equal to
∆2

12 . Therefore, the total average distortion (i.e., MSEtot) can
be written as

Dtot =
1

12

(
Ps2∈ Region 1∆2

1 + Ps2∈ Region 2∆2
2

+Ps2∈ Region 3∆2
3

)
+
R2

1

d2
σ2
n. (21)

Here, the total number of levels is equal to L1 + L2 + L3.
An optimization problem can be formulated to minimize (21)
subject to the constraint on the maximum power that is given
by d2(L1 +L2 +L3)2 ≤ P . The optimization problem in this
case is still convex in Li ∀ i and d and can be solved using
CVX.

The above described adaptive quantizer can be implemented
by adding an analog comparator connected to s2 in Fig. 4
in order to determine the region. The output of comparator
then selects one of three branches each containing a voltage
divider and an analog multiplier with ∆i and d, respectively.
The output of the selected branch is added with the bottom
branch coming from s1 as before.

B. Exploiting Different types of correlation between sensor
signals in refining the compression mapping

1) Temporal correlation: In this subsection, we assume that
a temporal correlation exists between the source signals. Such
correlation can exist if the sensor readings are slowly varying
with respect to the timestamps over which they are recorded.
In this paper, we model the temporal correlation by a first-
order Markov process [35] as follows

si,t = αsi,t−1 +
√

1− α2wt−1, i = 1, 2 ∀t = 1, 2, . . . ,
(22)

where |α| < 1 represents the correlation coefficient and wt
is an independent and identically distributed process such that
wt ∼ (0, σ2

w) whereas si,0 is the initial reading of sensor i
and is independent of wt. It should be pointed out that the
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Memory Predictor Predictor Memory

Fig. 6. Using differential coding with triangular mapping.

problem of AJSCC for a temporally correlated source has
been discussed previously in the literature, for example in [36]
(see also the references therein). However, different from the
existing work in the literature, we do not discuss finding the
optimal design of AJSCC to exploit the temporal correlation
between the source signals. Instead, we study how to adapt our
proposed low-complexity triangular mapping to these types of
correlation to improve its distortion error performance.

We propose the use of differential coding [28, Ch. 7] com-
bined with triangular mapping in order to exploit the temporal
correlation. The resulting improvement in the distortion at the
receiver is investigated. The proposed scheme is illustrated
in Fig. 6 and described as follows. The encoder is assumed to
have memory of the previous sensors’ readings and is equipped
with a linear predictor. Instead of applying the triangular
mapping encoding function (i.e., f(.)) on st, the encoding
function is applied to et. We define et = (e1,t e2,t)

T as the
innovation at time t. At time t, the encoder calculates the
quantity4 αst−1 based on its memory of st−1 using the linear
predictor. Then, it calculates the innovation as follows

ei,t = si,t − αsi,t−1, i = 1, 2. (23)

The calculated values of e1,t and e2,t are mapped into the
triangular mapping generating xt which is then transmitted
through the channel. The mean of ei,t is calculated using (22)
and (23) as follows

E {ei,t} = E {wt−1} = 0, ∀t = 1, 2, . . . . (24)

Similarly, the variance of ei,t is equal to
(
1− α2

)
σ2
w. Typ-

ically, this indicates that the input to the encoding function
now has a smaller mean and variance than the original source
signals. Therefore, at time t, the power available at the encoder
which is reflected by the number of levels and the length of
each level in the triangular mapping will be focused on smaller
range of values, and thus, the mapping resolution increases.

At the receiver, similar to the encoder, the decoder is as-
sumed to have memory of the previous estimated readings and
equipped with a linear predictor. The decoder first estimates
the AJSCC coded signal êt. If an additive Gaussian noise is
assumed here, the triangular mapping is chosen to cover the

4For negative correlation (i.e., α < 0), the encoder calculates −αst−1

instead.

range [−2σw
√

(1− α2), 2σw
√

(1− α2)] for each of e1 and
e2. Therefore, we can express

E
{
|êt − et|2

}
=
(
1− α2

)( (4σw)
2
σ2
n

d2
+

(4σw)
2

12 (L− 1)
2

)
.

(25)
After estimating the value of êt, the decoder utilizes the
temporal correlation to calculate ŝt using

ŝt = êt + αŝt−1. (26)

One can express êt as

êt = st − αst−1 + q, (27)

with q being the reconstruction error vector5. From (26) and
(27), the end-to-end distortion can be expressed as

E
{
|ŝt − st|2

}
= α2E

{
|ŝt−1 − st−1|2

}
+
(
1− α2

) [ (4σw)
2
σ2
n

d2
+

(4σw)
2

12 (L− 1)
2

]
. (28)

The above analysis shows how triangular mapping can be
combined with differential coding in order to exploit the tem-
poral correlation between the source signals in improving the
distortion. A convex optimization problem can be formulated
to minimize (28) as a function of d and L subject to a power
constraint similar to that discussed in the previous sections.
A further improvement can be achieved when the method in
(20) is applied to encode et. It is worth mentioning that the
differential coding described in this subsection is beneficial in
the low SNR scenario because it minimizes the error due to
stage crossing.

2) Correlation between source signals: So far, in the pre-
vious subsection, we considered that the source signals are
correlated in time. In this subsection, we consider that the
sensor readings (s1 and s2) are correlated and discuss the
effect of this correlation on our proposed triangular mapping.
In general, for linear correlation models, one can find a linear
decorrelating transformation which is basically a rotation.
AJSCC for correlated sources has been discussed in [22],
[35], [37]. In [35], PCCOVQ algorithm was used to obtain
JSCC mappings in the case of correlated source signals.
It has been found that the optimal mapping is a rotated
version of the mapping in the uncorrelated case. This fact
has also been pointed out in [22], [37]. In order to model
the correlation between the source signals, we assume that
E {s1s2} = ρσs1σs2 . To efficiently maximize the source space
(the blue dots in Fig. 7) covered by the triangular mapping, the
mapping is rotated with an angle β as shown in Fig. 7. The
rotation is performed to encode the decorrelated parts of the
source signals. The rotation of axis obtained by applying the
transformation

(
s′1
s′2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
s1 − µ1

s2 − µ2

)
+

(
µ1

µ2

)
cosβ,

(29)

5Note that E
{
|q|2

}
= E

{
|êt − et|2

}
. In addition, it is worth mention-

ing that q is orthogonal on both st and ŝt.
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Fig. 7. Rotation of the mapping to decorrelate the sources.

with
β = tan−1ρ, (30)

µ1 = R1

2 and µ2 = R2

2 in the case of uniformly distributed
s1 and s2. After applying the rotation of axis in (29), the
decorrelated source points (s′1 and s′2) are encoded using the
triangular mapping in the same way as described in Sec. II-B.
The resulting MSE expression after rotation of axis becomes

MSERot =
(R1 cosβ)

2
L2

γ2
σ2
n +

1

12

(R2 cosβ)
2

(L− 1)
2 . (31)

It can noticed that the MSE resulting from the rotation of
mapping is lower than the case of no rotation due to the
factor cosβ. We would like to point out that, for the case of
correlated source signals that are also correlated in time, the
mapping is first rotated to decorrelate the sources, and then
the temporal correlation is exploited, for example by applying
the differential coding to s′1,t and s′2,t.

In order to avoid the complexity in implementing the
sinusoidal functions using analog circuits, one can implement
a number of predefined rotations as scaling factors to s1 and
s2. These predefined rotations should be switchable according
to the correlation between s1 and s2.

V. AJSCC FOR SENSORS WITH ENERGY SCHEDULING
CAPABILITIES

In a wirelessly-powered sensor scenario such as the one con-
sidered in this paper, each sensing node utilizes its harvested
power to optimize the parameters of the mapping with the goal
of minimizing the distortion error at the receiver. Typically,
each sensor node is equipped with a battery to operate its
circuitry and to carry out the measurement and the encoding
processes. In this section, we assume that each sensor node is
capable of scheduling and managing its harvested power over
time. Energy management policies have been studied before
in the context of maximizing the throughput of wirelessly-
powered communication nodes such as in [38] and references
therein. However, to the best of the authors’ knowledge, this
is the first work within the framework of low-power sensors

Ƹ𝑠1

Ƹ𝑠2
g 𝑦

𝑠1
𝑠2

𝑥

𝑛

𝑦
𝑓 ҧ𝑠, 𝑢𝑖

𝑃𝑖

𝑢𝑖=𝑃𝑖 − 𝑒𝑖

Fig. 8. Block diagram of AJSCC with energy scheduling.

that considers the problem of energy scheduling in optimizing
low-complexity AJSCC dimension reduction mappings with
the goal of minimizing the distortion at the receiver.

As described in Fig. 8, at each time instant i, a power Pi is
assumed to arrive at the sensing node from the HAP through
energy harvesting. Furthermore, we assume a linear energy
harvesting model at the sensor node6 meaning that harvested
power at the sensor node is a fixed fraction of the incoming
RF power at each time instant (i.e., Pi = ηPRF), with η
being the energy harvester efficiency. At each time instant,
we assume that a power ei ≥ τ is reserved to energize the
sensor circuitry with τ being the minimum power required to
operate the sensor circuit. Consequently, the available power
for the encoder is given by ui = Pi−ei (i.e., d2

iL
2
i = Pi−ei).

In this section, we assume that the sources are uncorrelated.
This is due to the fact that uncorrelated sources represent the
worst case MSE performance. Therefore, the MSE at time i
can be expressed as

MSEi =
L2
iR

2
1

(Pi − ei)
σ2
n +

1

12

R2
2

(Li − 1)
2 . (32)

In the case of correlation between the source signals, the
expressions in (25) and (31) can replace the one in (32). The
mapping optimization problem at each instant i is written as

min
Li, ui

MSEi

subject to ui ≤ Pi − τ ∀ i = 1, ..., N
(33)

In order to obtain a feasible solution, the harvested power Pi is
assumed to be always greater than or equal τ to avoid the event
of energy shortage7 at the sensor node. The above problem
formulation assumes that power arriving at the ith time instant
can only be used instantaneously (i.e., no power can be saved
in the battery for later use). However, as discussed above, the
encoder at the sensing node may exploit the presence of the
battery to schedule energy for later use. This is beneficial for
the total distortion (sum MSE) over the whole time horizon in
the case of low power arrival instants. We further assume that
the sensor node knows a priori the power arrivals for the time
frame N . This is done by the HAP at the beginning of each

6A linear energy harvesting model is a reasonable assumption if the input
power to the harvester is in the range of hundreds of µwatts [39] or if a
single-tone signal is used for WPT.

7One might as well assume that the sensor node relies on other energy
harvesting sources to operate its circuit.
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time frame in the training and channel estimation phase. In
that phase, the HAP is assumed to perform channel estimation
and decision on how to allocate its available power for the
different sensor nodes during the time frame N following its
optimized trajectory. The HAP stores the power transmission
codebook and sends it to the sensor node in this training phase.
The optimization problem at the sensor node with energy
scheduling capability is given by

min
Li, ui

∑N
i=1

L2
iR

2
1

ui
σ2
n + 1

12
R2

2

(Li−1)2

subj
∑m
j=1uj ≤

∑m
j=1 (Pj − τ) ∀m = 1, ..., N

(34)

In the above formulation, we assume that the battery size B
is sufficiently greater than the maximum possible saved power
(B ≥ arg maxi Pi − τ ). This is equivalent to assumption of
unlimited-sized battery in [38].

Since ui and Li are both greater than zero, the objective
function is jointly convex in (ui, Li). In addition, the con-
straint set is convex as it is composed of linear constraints.
Hence, the above optimization problem is a convex opti-
mization problem with unique minimizers u∗ and L∗, where
u∗ = [u1, u2, ..., uN ]

T and L∗ = [L1, L2, ..., LN ]
T . We define

the Lagrangian function for the above optimization problem
as follows

J(Li, ui, λi) =

N∑
i=1

(
L2
iR

2
1

ui
σ2
n +

1

12

R2
2

(Li − 1)
2

)
−

N∑
l=1

λl

 l∑
j=1

uj−
l∑

j=1

(Pj − τ)

. (35)

The additional complementary slackness condition is

λl

 l∑
j=1

uj−
l∑

j=1

(Pj − τ)

 = 0, l = 1, ..., N. (36)

The necessary and sufficient KKT conditions are given by

∂J

∂Li
=

N∑
i=1

(
2LiR

2
1

ui
σ2
n −

1

6

R2
2

(Li − 1)
3

)
= 0, (37)

∂J

∂ui
=

N∑
i=1

(
−L

2
iR

2
1

u2
i

σ2
n − λi

)
= 0, (38)

l∑
j=1

(uj − (Pj − τ)) ≤ 0 l = 1, ..., N, (39)

λl ≥ 0 l = 1, ..., N. (40)

From (37), one can write the relation between Li and ui as

Li (Li − 1)
3

=
1

12

R2

R2
1σ

2
n

ui. (41)

It should be noted that any power vector with
∑N
j=1uj <∑N

j=1 (Pj − τ) is suboptimal because the objective function
is monotonically decreasing in ui.

Proposition 1: For a fixed Li, the objective function in
(34) is Schur convex in ui. Therefore, the optimal power

allocation vector u∗ = [u1, u2, ..., uN ]
T that minimizes the

objective function is the most majorized feasible power vector
[40, Sec. V], [41].

Since 1
x is convex for x ≥ 0, the objective function in

(33) is convex in ui. Therefore, it is also Schur convex [41].
The optimal power vector u∗ is the most majorized feasible
power vector, i.e., u∗ � u for all feasible u. As discussed in
[40, Sec. 5], the uniform power vector is majorized by every
other feasible vector. This means that, if the vector of constant
powers ui =

∑N
i=1(Pi−τ)

N is feasible, then it is majorized
by any other feasible vector and optimally solves (34), i.e.,
the optimal ui tends to be as constant as possible over time.
However, due to the causality of power arrivals, the constant
power vector may not be in the feasible set (i.e., power arriving
at later time instants cannot be used before their arrivals).

The energy scheduling problem presented in (33) can easily
be solved using a convex optimization solver such as CVX.
However, since a low-power sensor node is considered in our
scenario with limited computational resources, it is favorable
to save time and complexity resulting from the use of CVX.
For this reason, we propose Algorithm 1 to find the optimal ui.
Then, the relation in (41) is applied to obtain the corresponding
Li. The proposed algorithm is compared to CVX in terms
of the average computational time needed to execute each in
Sec. VI (see Table I) indicating a much faster performance for
Algorithm 1.

We would like to point out that tuning the mapping pa-
rameters (d and ∆) over time can be done by connecting
their corresponding voltages in Fig. 4 to a tunable voltage
divider circuit which can easily be implemented using variable
resistors.

Algorithm 1 Optimum power scheduling algorithm.
1: Initialize: i = 1
2: While i ≤ N do:
3: set j = i
4: While j ≤ N
5: if Pi ≥ Pj , set j = j + 1
6: else break
7: set um =

∑j−1
k=i(Pk−τ)

j−i ∀m = 1, .., j − 1
8: set i = j
9: Compute Li from ui using (41) ∀i = 1, .., N

10: Return u and L
11: End

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our pro-
posed triangular mapping and verify the presented analytical
expressions in the paper. Moreover, we show simulation results
for the mapping improvement techniques discussed in Sec. IV
as well as the energy scheduling problem presented in Sec. V.
Throughout this section, we assume that the noise power σ2

n is
1× 10−9 (i.e., −60 dBm) and R1 = R2 = 1 unless otherwise
is mentioned.
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Fig. 10. Study of the upper bound on the probability of stage crossing pup
s

vs. the number of levels and available power.

A. Verifying the MSE performance of the proposed triangular
mapping

We start by showing that the probability of stage crossing
can be neglected for if d2 � σ2

n as discussed in Sec. III-A. In
Fig. 9, we show a study of the upper bound on the probability
of stage crossing (pup

s ) in (12) vs. σ2
n/d

2. It can be observed
that, as long as σ2

n � d2, the probability of stage crossing is
negligible. In addition, the analytical expression for pup

s given
in (12) is validated through comparison with the numerical
evaluation of the expressions in (10) and (11) as shown in
Fig. 9.

In Fig. 10, a study of pup
s vs. both the available power (P )

and the number of levels (L) is conducted. It can be noticed
that as P increases, pup

s becomes negligible. On the other
hand, for a fixed power, pup

s increases if the number of levels
becomes large. This is because as L increases under a fixed
power constraint, d becomes smaller, and thus, pup

s increases.
Finally, we verify the analytical MSE expression for the

high SNR case given in (15). For that purpose, we assume
s1 and s2 are uniformly distributed with R1 = R2 = 1
and γ = 50. A study of the different components of the

MSE vs. the number of levels (L) is conducted in Fig. 11.
For each value of L, ten thousand realizations of s1 and s2

were generated and the average numerical MSE for recovering
s1 and s2 was computed. A comparison of the numerical
simulation of the MSE and that obtained using the analytical
expression is presented in Fig. 11. An excellent agreement
between the numerical and the analytical MSE computation
can be noticed. Moreover, one can notice that the error in
recovering s2 decreases as L increases due to the minimization
of the quantization error. However, the error in recovering
s1 increases as L increases because the value of d becomes
smaller.
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Fig. 11. Comparison of the analytical MSE expressions vs. numerical
simulations.

B. Results for optimizing the mapping parameters for mini-
mizing the MSE

In this subsection, we compare the optimal MSE perfor-
mance for a given power P for different types of mapping;
the proposed triangular mapping, linear coding [42], and
Archimedean spiral [18], [25], [43]. The importance of con-
ducting such comparison is due to the fact that linear policies
serve as a benchmark and are the easiest to be implemented.
The optimal solution for the triangular mapping is obtained
from solving (17) while the optimal linear coding solution is
obtained from [42, Sec. V] and that of the Archimedean spiral
is obtained from [18].

We assume that s1 ∼ N (0, 1) and s2 ∼ N (0, 1).
The triangular mapping is chosen to cover the region
[−3σs, 3σs] (i.e., [−3, 3]). The optimized MSE computed
as 1

2E
{
|ŝ1 − s1|2

}
+ 1

2E
{
|ŝ2 − s2|2

}
vs. Pmax is plotted

in Fig. 12 for linear, triangular and spiral mapping. It can
be observed that triangular mapping highly outperforms the
optimal linear mapping. This is because in 2:1 compression
using linear mapping, the optimal decoder choose to recover
one source signal correctly all the time while the other signal is
recovered randomly or set to zero [22], [42]. Furthermore, the
proposed triangular mapping maintains a good performance
compared to the spiral mapping taking into account the much
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Fig. 12. Comparison of the optimal MSE performance vs. Pmax for the
proposed triangular mapping, linear coding and spiral mapping.
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Fig. 13. (a) Study of the optimal voltage per level d vs. the MSE threshold
ε. (b) Study of the optimal number of levels L vs. the MSE threshold ε.

lower implementation complexity. We would like to empha-
size that the optimal performance of the proposed triangular
mapping in a high SNR scenario is exactly the same as that
of the rectangular mapping in [14] as previously pointed out
in Remark 2.

In Fig. 13(a) and Fig. 13(b), the MSE threshold (ε) is varied
and the results of the optimization problem in (18) given by d
and L are plotted for uniformly distributed s1 and s2 with P =
1 mW and σ2

n = 1×10−6. One can notice that as the threshold
decreases, the values of L and d increase. Increasing L and d
results in increasing the encoding power (P = E

{
f2(s)

}
).

C. Applying the proposed triangular mapping to real IoT data
sets

Here, we apply our proposed triangular mapping as well
as the linear and the spiral mapping to the data in [44].
The considered data is obtained from sensors deployed in an
agriculture field to monitor volumetric water (VW) content
and the temperature of the soil. The measurement setup is
described in [45]. We applied our mapping to the measurement
data obtained during the month of April 2016 with sensors
positioned at 0.6 mm depth at location CAF007. VW content
measurements are used as s1 while the temperature measure-
ments are used as s2. The calculated mean of s1 and s2 is

0 2 4 6 8 10
10-2

10-1

100

101

Fig. 14. Optimized MSE for data from agriculture sensors in [44].

0.2814 and 11.1468, respectively. The variance is 3.274×10−5

and 2.7359 for s1 and s2, respectively. The distribution of
each sensor’s data is approximated to a Gaussian distribution.
For different available powers assumed at the sensing node,
the optimal choices of L and d are obtained by solving the
optimization problem in (17). A plot of the optimized MSE
for the above described data vs. the available power is shown
in Fig. 14. It can be noticed that the MSE value decreases with
increasing the available power at the sensing node. Although
spiral mapping shows a slightly better MSE performance than
the proposed triangular mapping, the MSE performance of the
proposed triangular mapping is still good taking into account
its much lower complexity implementation.

D. Results for improving the MSE performance of the pro-
posed mapping

1) Applying PDF-adaptive quantizer: As discussed pre-
viously in Sec. IV-A, uniform quantization is optimal for
a uniformly distributed source. However, for other types of
distributions, the use of non-uniform quantizers would result
in a better performance. In order to verify this, we here assume
that s1 and s2 are zero-mean Gaussian random variables with
unit variance, the optimization problem of minimizing Dtot
given in (21) subject a power constraint P is formulated and
solved using CVX in order to evaluate the performance of the
non-uniform quantizer. In Fig. 15, we compare the average
distortion resulting from non-uniform quantization case and
that of the uniform quantization (i.e., L divided equally in
all regions) for a fixed power. It can be noticed that the
non-uniform quantization can improve the performance of the
mapping. For a fixed value of power, the adaptive quantizer
achieves a better distortion compared to the case of using a
uniform quantizer over the whole source range. In other words,
for a given distortion, the use of a non-uniform quantizer
can provide a power saving ≈ 20% as can be observed from
Fig. 15.

2) Exploiting temporal correlation: In order to validate the
improvement achieved by the differential coding scheme in
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Fig. 15. Comparison of the MSE resulting from non-uniform quantization
and uniform quantization vs. power.
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Fig. 16. Comparison of the optimized MSE with and without exploiting
temporal correlation in the mapping.

Sec. IV-B1, we assume that σ2
w = σ2

s1 = σ2
s2 = 1/12, α =

0.7 and t = 3. The total distortion over time given by (28)
optimized for different values of P is plotted in Fig. 16. We
observe that, for a fixed P , the use of differential coding to
exploit the temporal correlation between the source signals can
significantly improve the MSE performance of the proposed
mapping.

3) Rotation of the mapping: In order to evaluate the effect
of mapping rotation on the MSE performance in case of corre-
lated sources, we vary the number of levels for a fixed power of
P = 5 mW and plot the MSE performance for different values
of correlation coefficients (ρ) in Fig. 17. For each value of ρ the
mapping is rotated and the MSE is calculated. It can be noticed
that rotating the mapping enhances the performance of the
mapping in terms of the MSE at the receiver. Moreover, one
may notice that, in the case of no rotation, the MSE increases
for the values of L > 25. This is because Lopt ≈ 25 for

P = 5 mW and R1 = R2 = 1. However, when the mapping
is rotated, the ranges of s1 and s2 change as described in (31),
and thus, the optimal of L is different (i.e., higher). It can
also be concluded from Fig. 17 that the stronger correlation
between the source signals the more the improvement in the
MSE.
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Fig. 17. Effect of the rotation of the mapping on improving the distortion
error studied in terms of MSE vs. the number of levels L.

E. Results for AJSCC with Energy Scheduling Capabilities

Here, we evaluate the performance of the proposed mapping
when the sensing nodes are capable of saving power and
scheduling it for later use. We assume N = 6 time instants
with no correlation existing between the source signals, τ = 0
and σ2

n = 1×10−6 . We let s1 and s2 be uniformly distributed
with R1 = R2 = 1. In Fig. 18, the optimized sum MSE
with and without energy scheduling are compared for different
power profiles. Here, the optimized sum MSE for each case is
plotted vs. the total incoming power over the whole time frame
N . The considered power profiles are random, monotonically
increasing, and monotonically decreasing power arrivals. It can
be observed that the maximum gain from energy scheduling is
obtained when the power profile is monotonically decreasing.
On the other hand, in the case of a monotonically increasing
power profile, there is no gain from energy scheduling because
all of the power arriving at time instant i will be used with no
energy scheduling for all cases. It can be deduced that the use
of energy scheduling can optimize power usage for a desired
distortion level.

In Fig. 19, we compare the solution of the energy scheduling
problem obtained from CVX and the solution obtained using
Algorithm 1 in the case of a monotonically decreasing power
profile and N = 6. It can be observed that Algorithm 1 results
in the same performance as CVX. Furthermore, the execution
time8 for both solutions is presented in Table I highlighting
the fast performance of the proposed algorithm compared to
CVX.

8Simulations are implemented in MATLAB R2017b and tested on a single
CPU with an Intel Core i7 processor at 2.6 GHz, 16 GB RAM and Windows
10.
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Fig. 18. Comparison of the sum MSE with per instant power constraint and
energy scheduling over time N = 6 instants.

TABLE I
EXECUTION TIME COMPARISON FOR N = 6

Solver CVX Algorithm 1
Average execution time (s) 2.85 0.003
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Fig. 19. Comparison of the solutions of the energy scheduling problem
obtained from CVX and Algorithm. 1 for N = 6.

Finally, we study the improvement in the MSE perfor-
mance when energy scheduling is exploited together with
the existing correlation between the source signals. For that
purpose, we assume that N = 8 and that the source signals
are correlated with ρ = 0.8. In Fig. 20, the optimized sum
MSE vs. the total incoming power is compared for the cases
of no energy scheduling, exploiting energy scheduling, and
exploiting energy scheduling together with correlation between
sources. One can easily observe the significant improvement
in the MSE performance when both energy scheduling and
correlation are exploited.
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Fig. 20. Comparison of the sum MSE with and without energy scheduling
over time N = 8 in case of correlated source signals with ρ = 0.8.

VII. CONCLUSION

A low-complexity dimension reduction mapping has been
proposed in this paper, namely the triangular mapping. The
proposed mapping can be exploited in wirelessly powered
sensor nodes in IoT due to its simplicity and implementability
using analog circuits. Performance analysis of the proposed
mapping in terms of the optimized distortion has been pro-
vided. Adaptation of the mapping to the source distribution
as well as different correlations between sensor signals have
been discussed and shown to improve the distortion. Moreover,
the ability to schedule energy at the sensing node was shown
to to improve the performance of the mapping in terms
of the total distortion over time. The proposed triangular
mapping in addition to the energy scheduling algorithm and
the corresponding contributions of this paper form a solid base
for implementing a real world wirelessly powered sensing
node for IoT applications. Finding alternative compression
mappings that are implementable using analog circuits is still
an open area for research. Investigating optimal mappings and
MSE performance bounds for non bell-shaped distributions
can be studied as a future extension for the work presented
in this paper. Moreover, the problem of energy scheduling
in AJSCC with stochastic energy arrivals and time varying
channels is appealing for future investigation.
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APPENDIX

A. Proof of Lemma 1

The upper bound on plc given in (11) is obtained by
assuming s1 ∼ U [0, R1]. Therefore, one can write

pup
lc =

1

R1

∫ R1

0

Q

(
d
R1
s1

σn

)
ds1

=
1√
2π

1

R1

∫ R1

0

∫ ∞
d
R1

s1
σn

e−
x2

2 dx ds1. (42)

Let x = d
R1

s1
σn
z. Then, we get

pup
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1√
2π

1

R1

∫ R1

0

d s1
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1

e
−
(
d
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· z22 dz ds1. (43)

Assume y = d
R1σn

s1. Consequently,
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2π
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∫ d
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0
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1

e−y
2· z22 dz dy

=
1√
2π

σn
d

∫ ∞
1

∫ d
σn

0

ye−y
2· z22 dy dz
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I

 dz. (44)

Integrating I by parts and substituting, one can get
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(45)

A similar expression for puprc can be obtained using (10) which
completes the proof.

B. Extension to Ns : 1 mapping

Here, we discuss the extension of our proposed triangular
mapping to higher-order dimension reduction. Higher-order
dimension reduction mappings were first studied in [46], in
particular, 3:1, 4:1 and 3:2 extensions to the spiral mapping.
However, no specific method to determine the geometry of
these mappings was presented. An alternative approach was
presented in [43] where cascading of two layers of 2:1 com-
pression was used to achieve 4:1 compression. Nevertheless,
the performance of the cascaded mappings was found to be
worse than the direct 4:1 mapping geometry proposed in [46].
We here follow the method used in [14], [15] to extend the
2:1 rectangular mapping to Ns : 1 dimension reduction. The
3:1 triangular compression mapping is shown in Fig. 21 as an
example. It is obtained by creating parallel planes along the
z-axis, each containing a copy of the 2:1 triangular mapping.
The parallel planes are separated by a distance of ∆2. Similar,
to the 2:1 case, the source point (s1, s2, s3) is approximated
to the closest point on the curve and the accumulated length of
the curve starting from the origin is transmitted. In this case, s2

y

x

z
Fig. 21. Extension of the triangular mapping to 3:1 dimension reduction
mapping.

is quantized into L1 levels and s3 is quantized into L2 levels
(planes). The extension to Ns : 1 mappings can be obtained
in a similar fashion where the readings of si ∀ i 6= 1 are
quantized while the reading of s1 is transmitted continuously.
The MSE performance at the decoder for the higher-order
triangular mapping can be expressed in the same way as the
higher-order rectangular mapping [14], [15] which is given by

MSENs ≈
R2

1

Ns−1∏
j=1

L2
j

γ2
σ2
n +

Ns−1∑
j=1

1

12

R2
j+1

(Lj − 1)2
. (46)

he optimal parameters of the higher-order triangular map-
ping are obtained in a similar way as (17) by solving the
following convex optimization problem

min
L1,...,LNs

(46)

subject to
Ns−1∏
j=1

L2
jd

2 ≤ Pmax

. (47)

It is worth mentioning that the higher-order triangular map-
ping can easily be implemented by adding parallel branches
similar to that of s2 to the block diagram in Fig. 4. Moreover,
the contributions of our paper, namely the techniques for
improving the MSE perfomance as well as energy scheduling
extend to the high-order mapping case in a straight forward
fashion.
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