
A video conference system under MPEG-4;
Overview of Face Animation in MPEG-4;

and
Study of the compliance level of Eurecom's Face Animation-

Teleconferencing System

Ana C. Andrés del Valle, Jean-Luc Dugelay, Danielle Pélé

March 2001

Joint Research Report
Eurecom: RR-2001-053

FTR&D: FT/BD/DIH/HDM/11/DP

2001 INTERNAL REPORT EURECOM - FTR&D

- 4 -

TABLE OF CONTENTS

MPEG-4 GENERAL SYSTEM OVERVIEW 6
Architecture: Scene description and object description 7
BIFS: coding audio-visual objects and scenes 9

1. BIFS-Command: 9
2. BIFS-Anim: Streaming animators 9

CURRENT FACE CLONING AND ANIMATION TECHNIQUES UNDER MPEG-4 COMPLIANCE 11
Geometric modeling: 11

Our models versus MPEG-4 definition of a face model 12
Global head motion estimation 13
Analysis-synthesis of local expressions 15

APPLICATIONS 18
POSSIBLE FRAMEWORK FOR A VIRTUAL TELECONFERENCE 18
Visual Part: 18

Setting up the session (3 simultaneous users as an example): 19
Procedure during the teleconference session: 19

Audio Part: 20
Example of a possible implementation: 21

ANNEX A 22

ANNEX B 33

DATA ABOUT THE STANDARD 34

MAIN GOALS OF THE STANDARD 34
Specifications for Synthetic Video Objects 34

Types of Synthetic Video Objects 34
2D/3D Mesh Compression 35
Definition & Animation Parameter Compression 35
Texture Mapping 36
Text Overlay 36
Image and Graphics Overlay 36
View-Dependent Texture Scalability 37
Geometrical transformations 37
Video Object Tracking 37

FACE ANIMATION 38
MPEG-4 AND FACE ANIMATION 38

DESCRIPTION OF THE FACE OBJECT 38
FACE OBJECT DECODING AND OUTPUT 54

INTEGRATION INTO MPEG-4 SYSTEMS 59
BIFS Syntax for Face Animation 59

2001 INTERNAL REPORT EURECOM - FTR&D

- 5 -

FaceDefMesh 60
MPEG-4 PROFILES AND LEVELS FOR FACE ANIMATION 72

ANNEX C 75

BIBLIOGRAPHY 77

2001 INTERNAL REPORT EURECOM - FTR&D

- 6 -

MPEG-4 GENERAL SYSTEM OVERVIEW

MPEG-4 standardizes the transport of coded audio, video and user-defined data. It adds
to MPEG-1 and MPEG-2 the concepts of audio-visual object and scene description. In
fact, MPEG-4 does not think about the data to transport in terms if its nature (video,
audio,...) but in terms of what it represents. This new approach allows the mixing of
different media in the same environment. For example, synthetic 3D and 2D objects can
be correctly blended with natural backgrounds because MPEG-4 provides the means to
precisely define the objects and their behavior in the scene. A video stream is not longer
a sequence of frames to be coded and transported but a number of elements to wisely
code and to concretely situate in a specific scene.

Several standard languages already integrate the concept of scene description; that is
the case of VRML. MPEG-4 improves their performance by adding the ability to stream
the data (we do not need to download the whole scene to see some action), providing
ways of synchronization (important for the audio-video coherence) and allowing the
setting of different timings for each element (therefore permitting the downloading of an
object before it is used).

The concept of audio-visual object implies:

1. interaction with the content;
2. reusability of the content and
3. content-based scalability.

For many of the new applications merging from the multimedia technology, these three
concepts are important. Taking as an example a virtual teleconference we can estate:
• The user should be able to interact with the conference scene to arrange it as his/her

wish (1);
• he should also have the means to store what he has seen (2) and we want to be able

to set the system depending on the available resources (3).
• This is done by allowing client interaction with the scene and a client-server feedback

interaction.

2001 INTERNAL REPORT EURECOM - FTR&D

- 7 -

Architecture: Scene description and object description

Multiplexed Streams

Interactive Audiovisual
Scene

Elementary Streams

Composition and Rendering

Display and
User

Interaction

Transmission/Storage Medium

(RTP)
UDP

IP

H223
PSTN

DAB
Mux

Delivery
Layer

FlexMux FlexMux

DMIF Application Interface

SL SLSL SL ... Sync
Layer

Elementary Stream Interface

AV Object
data

Scene
Description
Information

Object
Descriptor

... Compression
Layer

SL

SL-Packetized Streams

(PES)
MPEG-2

TS

AAL2
ATM

Upstream
Information

SL

SL

FlexMux

...

An Interactive Audiovisual Scene is created through the composition and rendition of
different objets that we extract from the Compression Layer. In this layer we find the
Object Descriptors, the Scene Description Information, Audio-Visual Objects Data and
other Upchannel Information (feedback from the user). For each one of these
components an elementary stream is needed. To create a scene and start working with

2001 INTERNAL REPORT EURECOM - FTR&D

- 8 -

it, we need at least the Scene Description Information stream. Underneath the streams
we find the Sync Layer, which is the sole mechanism of implementing timing and
synchronization in MPEG-4. Then the Delivery Layer ensures MPEG-4 capability of
using a wide range of delivery systems such as MPEG-2 Transport Streams, UDP over
IP, ATM AAL2, etc.

The initial object descriptor, a derivative of the object descriptor, is crucial for accessing
the MPEG-4 content. In the initial object descriptor we usually find a pointer on to the
scene description stream and another on to an object descriptor stream. This object
descriptor stream usually transports the object descriptors for the elementary streams
that are referred to by some of the components in the scene description. We can “reuse”
an initial object descriptor by transporting it as an object descriptor stream from another
scene. By nesting initial object descriptors we create indexing points of the complete
scene.

The Scene description is the coding of information that describes the spatio-temporal
relationships between the various audio-visual objects present in the complete content.
This coded information defines the spatial and temporal position of the objects, their
behavior and the interactivity features available to the user. The scene description
contains pointers to object descriptors when it refers to a particular audio-visual object.

The teleconference framework that we have set in section Applications could be
designed following the MPEG-4 standard in the following way:

DS – Descriptor Stream

** It establishes de initial situation of the
clones, user interactivity.
The amount of audio objects will be
eventually determined. A priori, we could
assign an audio stream per clone.

TERMINAL RECEIVED SCENE DS

Background DS

Clone #N DS

Natural Audio 1 DS ##

Clone #1

Scene DS**

.........

Background has to
be discussed

Representation

2001 INTERNAL REPORT EURECOM - FTR&D

- 9 -

BIFS: coding audio-visual objects and scenes

MPEG-4 specifies a binary format for scenes (BIFS) that is used to describe scene
composition information. Elements of the scene and the relationships among them form
the scene graph that must be coded for transmission. The nuclear graph elements are
the nodes that describe audio-visual primitives and their attribute. It can be thought as a
superset of VRML. Although it does not provide some of VRML’s capabilities, MPEG-4
provides better means for animation than VRML. As a main difference we point out that
BIFS is a binary format whereas VRML is a textual format.

BIFS encodes scene components, it is used as a scene updating mechanism and it
allows scene components to be animated.

BIFS and VRML scenes are both composed of a collection of nodes arranged in
hierarchical tree. Each node represents a group or transforms an object in the scene and
consists of a list of fields that define the node’s behavior. All nodes have labels to be
recognized. An important feature of the node is that node fields have default values; this
way we can avoid the sending of non-useful information. We can also find the ROUTEs,
which are connections that assign the value of one field to another field.

Some nodes can contain other nodes as fields. MPEG-4 has a rigidly typed collection of
nodes that specifies exactly which ither nodes can be contained inside other ones.
Nodes can be reused without having to be redefined.

1. BIFS-Command:

To load action information over the time MPEG-4 uses the BIFS-Command protocol and
the elementary stream that carries it is called BIFS-Command stream. BIFS-Commands
can have four main functionalities: scene replacement, node/filed/route insertion,
node/value/route deletion, and node/field/value/route displacement.

2. BIFS-Anim: Streaming animators

When heavy animation in needed or we seek better compression rates using BIFS-
Command is not suitable. In those cases MPEG-4 provides the BIFS-Anim tool as an
alternative for streaming the animation. The BIFS-Anim framework works as follows:

• The BIFS scene is loaded with objects that have been defined (DEF) and they have
an unique node ID

• The animation mask is loaded, containing the list of nodes and fields to be animated
• The animation stream itself is streamed, containing animation frames in time-

stamped access units.

The values for the BIFS-Anim can be initial values (I) or predicted values (P). These
values are further arithmetically coded to give high compression.

BIFS provides support at the scene level for MPEG-4 facial animation. A special set of
BIFS nodes expose the properties of the animated face. Nevertheless, even if these

2001 INTERNAL REPORT EURECOM - FTR&D

- 10 -

special nodes are not used a clone can always be taken as a 3D mesh which is being
animated through general BIFS-Anim.

This is an example of a very simplified BIFS 3D object scene description. The Transform
Nodes describe what kind of interaction and movement the 3D object will have. The 3D
coord. node includes the list of 3D coordinates that build the 3D object. The Texture
coord. node has the list of the related 2D coords. of the mesh nodes onto a texture file.
This texture could also be a 2D object. BIFS structures can be nested in order to build
more complex 3D objects. BIFS-Anim streams can be used to animate the object. For
example, it could point to a Transform Node and by changing one of its values produce a
translation.

MPEG-4 defines the syntax to be used to describe the scene. The nodes and the fields
inside the nodes have a unique identification name that ultimately maps onto a binary
representation. For instance, all BIFS scenes shall begin with a node of type
SFTopNode; Layer2D, OrderedGroup, Group or Layer3D are just some
examples of this kind of node. MPEG-4 also provides some specific nodes and fields
for face animation related to the Face Object, for example: FaceDefTransform node
defines fields rotation, scale or translation of a Transform node of
faceSceneGraph. Its binary representation is:

FaceDefTransform

FaceDefTransform SFWorldNode
SFFaceDefTransformNode

0100111
1

Field name Field type DEF id IN id OUT id DYN id [m, M] Q A
FaceSceneGraphNod
e SF3DNode 000

FieldId SFInt32 001
RotationDef SFRotation 010 [-I, +I] 10
ScaleDef SFVec3f 011 7
TranslationDef SFVec3f 100 1

ROOT

Transform Nodes

3D Coord. Texture Coord.

Texture File
BIFS-Anim

2001 INTERNAL REPORT EURECOM - FTR&D

- 11 -

CURRENT FACE CLONING AND ANIMATION TECHNIQUES UNDER MPEG-4 COMPLIANCE

Our clone animation system has been built taking into account the following constraints:

1. The face analysis and synthesis frame-rates, and the image processing delays,
should be as low as possible;

2. The synthetic clones can be rendered from any point of view, and a full 3D model is
needed (not only the frontal part of the face);

3. The face cloning system should operate without colored marks taped on the
performer’s face;

4. It should deal with unknown lighting conditions and background;
5. The motions and rotations of the user should not be restricted in front of the camera;
6. Finally, the clones should be visually realistic.

The clone animation has been developed in two parts: the global motion estimation and
the analysis-synthesis of local expressions. Both parts rely on the high realism of the 3D
head models or clones. Our goal is to reach near-real time performance. The use of a
realistic model lets graphics hardware translate the information of 3D shape into the 2D
image plane, and we only work at the image level, using little 3D information from the
model and therefore decreasing the amount of processing related to geometry.

Next sections describe the relationship of our clone animation system to the MPEG-4
standard in terms of current compliance and future adaptation. This study covers the 3D
model geometry used and each of the animation parts.

Geometric modeling:

We are currently using range data obtained from cylindrical geometry Cyberware(TM)

finders to build person dependent realistic face models. This method is expensive and
needs specialized hardware (laser scanners, advanced computers, etc.)

A complete clone is generated from the Cyberware(TM) data set by deforming an initial
sphere mesh to approximate the face geometry. The model is refined by selecting those
areas where more modeling precision is desired (eyes, mouth,...).

Our animation system is model independent in the sense that the nature of the clone
does not influence the results of the animation. There is only one requirement: having
enough number of primitives to provide enough lighting normals, which are crucial for
the illumination compensation, discussed in section «Global head motion estimation». It
should also look as realistic as possible because our animation techniques count on the
clone’s resemblance to the user.

Currently we are studying 3D data acquisition using inexpensive techniques to substitute
the Cyberware(TM) scanners. We believe that the adaptation of a generic face model to
given pictures could not give suitable results with our animation algorithms. Present work
involves developing a system to obtain 3D shape data using inexpensive and easy to
use equipment. This process provides the 3D coordinates from several images of a light
grid projected onto a head.

2001 INTERNAL REPORT EURECOM - FTR&D

- 12 -

Our models versus MPEG-4 definition of a face model

The MPEG-4 standard includes the Face Object and the Body Object as specific well-
defined 3D objects, and adds for them possible animation techniques, although it leaves
the designer a great degree of freedom to build the animation system.

MPEG-4 does not provide a specific 3D model to be used. It only specifies a face model
in its neutral state, a number of feature points or face description parameters (FDP) on it
as reference points, and a set of face animation parameters (FAP), each corresponding
to a particular action deforming the face from its neutral position. It also provides the
means to “teach” a decoder how a face object should be animated with the use of Face
Animation Tables (FAT) and Face Interpolation Table (FIT).

MPEG-4 specifies 84 FDP and they should be located in determined positions because
FAPs animate taking as a reference those positions. FAP Units (FAPU) are also given
as fixed distances of specific points of our model in neutral state. FAPU allow animation
to be relative and therefore model independent.

Our head clones are not MPEG-4 compliant a priori, since they do not meet any of the
requirements: there are no concrete location of FDPs and no definition of FAPU. Despite
this, the great number of primitives they have makes relatively easy to arrange the
nodes so they comply with the specific FDPs; from the FDPs the FAPU can be directly
computed. The minimum amount of nodes that a face model should have are 50
(number of animated FDPs), although there should be al least 500 to give pleasant
results. Our models currently have much more nodes; it is a requirement to obtain good
realistic clones.

3D models generated from scanned data do not usually represent the inner part of the
mouth therefore just after being designed our models do not have either teeth or tongue.
To implement these parts, crucial for animating the clone while speaking, we have to
manually ‘cut’ the head mesh along the lips middle line and introduce a cylinder shaped
plane onto which we have textured the teeth and the tongue. This solution does not
really match MPEG-4’s description of teeth and tongue. Regarding the teeth, there is no
much trouble since the standard only defines 4 FDPs that are not affected by FAPs. On
the other hand MPEG-4 has thought about the tongue as a 3D active object therefore it
has given it 4 FDPs that are situated in 3D space and affected by FAPs. The standard
provides means of defining actions like showing out the tongue or stressing a very
concrete phoneme that uses the tongue (i.e. /l/). All the FAPs related to the tongue
movements are inside group 6, ANNEX B contains more details. In section Analysis-
synthesis of local expressions we discuss this point more in depth arguing the reasons
to have such a model and exposing possible solutions to fit into MPEG-4.

Usually, an MPEG-4 terminal that is able to decode FAP streams has its own proprietary
model to animate. It is foreseen the use of other models and therefore the possibility of
downloading customized 3D head models using an FDP node. MPEG-4 uses a way to
describe the 3D/2D scenes through scene graphs (based on VRML syntax). A node is a
part of this graph where some object, characteristic of an object or action is described. In
this scene graph we find the static geometry of the face model in its neutral state. The
surface properties and the animation rules have also to be provided. The animation rules
are given using FAT. Our models are not defined in a scene graph and do not follow a

2001 INTERNAL REPORT EURECOM - FTR&D

- 13 -

VRML-like structure. Nevertheless converting the data of our clones into VRML has
already been performed; therefore we consider that it should not be a problem to build
an MPEG-4 scene graph out of them. FAT will be more difficult to determined since our
animation techniques (synthesis of expressions) are not entirely based on the physical
movement of mesh nodes or morphing.

FATs define how a model is spatially deformed as a function of the amplitud of the
FAPs. Three BIFS nodes provide this functionality: FaceDefTable, FaceDefTransform
and FaceDefMesh. These nodes are considered to be part of the face model. Using
faceDefTransform nodes and faceDefMesh nodes, the FaceDefTable specifies, for a
FAP, which nodes of the scenegraph are animated by it and how.

MPEG-4 also outlines the possibility of only providing a limited number of FDPs and
‘adapt’ the proprietary model to them. Our system does not include any model
adaptation since our first priority is high realism and adapting could generate undesirable
results. MPEG-4 also points out that in case of not being able of ‘adapting’, ‘calibrating’
or ‘generating’ a model from the FDPs with a minimum quality guarantied the decoder
should ignore those specifications and run its proprietary model with its animating rules.
This last one is the ideal situation of our head animation system.

At the moment, our models are just a head-neck entity. Future plans include joining them
with the upper part of the body so they create a pleasant and ‘real’ representation of a
person. There is no intention yet of animating the upper part of the body. At this point we
will have the option of taking it as a body object or just a 3D mesh. It seems quite clear
that only for the upper part of the body and if not complicated interaction is expected (for
instance, it only follows head translations and rotations) taking it as a 3D mesh should
be enough. Determining this point is out of the scope of this report.

In compliance with MPEG-4 we could also look at our model from another completely
different perspective. We could think of it as just a 3D general mesh to be animated. In
such a case, none of the requirements to be considered a face object would be
necessary, but we would not be able to take advantage of the special treatment 3D head
models have in the standard. It is a matter of research and deeper study to decide
weather the first approach, which seems the most direct, is better or worse than the
second one, which is more general. The use of one approach or the other will finally be
decided on the animation techniques we use and their behavior under an MPEG-4
system.

By applying techniques that do not rely on the 3D nature of the model we keep MPEG-4
philosophy of model independence. Several tests have successfully been carried out to
see the performance of the global head motion tracking algorithms with models
constructed with low cost realistic modeling techniques.

Global head motion estimation

The global head motion estimation uses an analysis-synthesis cooperation. The
designed system proceeds as follows:

1. Initialization:

2001 INTERNAL REPORT EURECOM - FTR&D

- 14 -

During this step the user aligns its head with her/his model and the program runs a
3D illumination compensation algorithm to estimate the lighting parameters that will
reduce the photometric differences between the synthetic clone and the real head in the
user environment.

2. Main loop:

• A Kalman filter predicts the head’s 3D position and orientation for time t.
• The synthetic model generates an approximation of the way the real face will appear

in the video at time t.
• Patterns of contrasted facial features (eyes, eyebrows, nostrils,...) are extracted and

matched with the users facial features in the real video frame.
• The system passes the 2D coordinates to the Kalman filter, which estimates the

current head’s 3D position and orientation. From here we go back to the starting
point.

With this analysis-synthesis cooperation we are able to obtain six parameters, the 3 that
represent the translation and the 3 that represent the rotation, following the X, Y, Z axes
of the model synthetic world.

These parameters have a partial equivalence as FAPs in MPEG-4.

In the face object there is an FAP group called head rotation (7) that contains the 3
FAPs that define the rotation of the head. These rotations are relative to the perspective
of the head model (having as point (0,0,0) the center of the model), and they are
described as follows:

Head_pitch (48) [unit: AU] [Bidireccional] [start: down]
Head_yaw (49) [unit: AU] [Bidireccional] [start: left]
Head_roll (50) [unit: AU] [Bidireccional] [start: right]

An AU (Angle Unit) is equivalent to 10-5 radians.

For the 3 translation parameters there is no equivalence. In fact, the translation is
applied to the entire head and therefore could be treated as a Transform Node situated
above the head object in the complete scene graph. This translation is seen as a
transform on the object and not as a specific movement of some nodes. For MPEG-4 the
rotation of the head does not include the neck (as it happens in real life) whereas in our
system the rotation is also applied to the neck. The exact animation of the joint head-
neck will be considered when adding the upper part of the body.

If our clone is considered just a 3D object or a composition of 3D objects no special
treatment will be needed. The use of Transform Nodes on top of the parts that we want
to animate (in our system the global motion means the animation of the entire head as a
unit) should ensure a correct behavior.

2001 INTERNAL REPORT EURECOM - FTR&D

- 15 -

Analysis-synthesis of local expressions

We use view-based analysis techniques to estimate facial expressions. Their limitation
mainly stays in the low number and the quality of training keyframes obtained by real
users. Our approach is to replace the real user by the highly realistic clone during the
training process so we obtain better training conditions for the system. The current
implementation can only distinguish expressions from the front view of the user;
nevertheless, to extend this technique to other views is more a matter of computer and
programming skills than theoretical development.

The complete system follows these steps:

1. Training:

Using a person-dependent clone, we optimally sample the visual space of facial
expressions, via an animation database (defined by our own FAPs), to produce a
synthetic image database. We reduce this image database to a set of vectors that
characterize the facial expression via a simple correlation mechanism, which gives a
compact parameterization vector (λλλλ). At last, a clone-dependent estimator learns the
relationship between the FAPs and the λs.

2. Analysis of an unknown expression:

After the synthetic clone trains the system, the analysis procedure extracts the
corresponding features, parameterizes them with their eigenfigures (λ) and interprets
them with the corresponding estimator (giving out FAPs)

3. Synthesis of facial expressions:

For the FAP synthesis we use more than one technique:

a) Mesh morphing: Also called mesh morphing, it consists of interpolating the
positions of the mesh vertices between extreme facial expressions. This
technique is used to animate the eyelids and the mouth.

b) Animation of tecture coodinates: This technique consists in sliding the texture on
top of the mesh without changing the model shape. It has been very convenient
for the animation of the eyebrows.

c) Texture displacements: We alter the cylindrical texture mapped onto the mesh
vertices at rendition time to produce further animations. We use this technique to
control the eye movements. We are also using this technique to implement the
model’s teeth and tongue by overlapping several texture portions on a plane just
behind the model’s lips. As stated when discussing the compliance of our 3D
clone with MPEG-4, this procedure doesn’t provide means to articulate the
tongue the way MPEG-4 permits. On the other hand, this solution has the
advantage of being more realistic than using generic primitives accounting for the
teeth and the tongue of an individual person.

d) exture blending It is possible to blend several textures together to produce a new
one. For example, you can fade wrinkles into the model texture at a low cost in

2001 INTERNAL REPORT EURECOM - FTR&D

- 16 -

terms of real-time animation, instead of hard-coding them in heavy spline-based
meshes.

All these techniques are standard-independent which means that they only represent a
way to synthesize FAPs as fast and realistically as possible.

Our current system was built not taking into account MPEG-4 definition of FAPs. These
are the FAPs we have designed:

H_movement_LeftEye (1)
V_movement_LeftEye (2)
H_movement_RightEye (3)
V_movement_RightEye (4)
V_movement_LeftHalf_LeftEyebrow (5)
V_movement_RightHalf_LeftEyebrow (6)
V_movement_LeftHalf_RightEyebrow (7)
V_movement_RightHalf_RightEyebrow (8)
H_movement_RightHalf_Mouth(9)
H_movement_LeftHalf_Mouth(10)
V_movement_LowerTeeth(11)
V_movement_LeftHalf_Mouth(12)
V_movement_RightHalf_Mouth(13)
V_movement_LeftHalf_UpperLip(15)
V_movement_RightHalf_UpperLip(16)
V_movement_LowerLip(17)

Compared to the 63 (68 – Viseme – Expression – 3 rotations) FAPs that the MPEG-4 standard
provides, our list has a fairly small number of defined actions. Some of our FAPs content
more than just one MPEG-4 FAP action. Studying in depth the options we have and how
to better relate our concept of FAP to the one MPEG-4 defines can give more versatility
to the system. Look at ANNEX A for more details on how our FAPs are mapped on
MPEG-4 FAPs.

MPEG-4 allows the modeling and animation of cartoon-like characters by introducing
exaggerated values for the FAPs. Our system is conceived to generate realistic
animation. Analysis and synthesis are thought in separate but intimately related parts
and no experiment has been set to see how our system behaves when introducing
unexpected λ values.

Taken as a 3D object, our system would possibly lose part of its strength because
several of our synthesis techniques are not so easy to translate into MPEG-4 commands
or actions. MPEG-4 tools for animating scene objects, whether they are BIFS-Command
or BIFS-Anim, are meant to animate by changing the values of fields of concrete nodes
(for instance, a Transform Node). Regarding 3D meshes those values could be the 3D
coordinates of the mesh nodes, to indicate their new situation. Some of our synthesis
techniques do not rely on mesh movements but on texture displacements. A priori,
coding all the information that is related to such techniques would imply much more
effort if implemented with BIFS-Anim than if we keep it transparent to the decoder by
using FAPs. The animation of the clones will always be somewhat dependent on the
techniques we use. It would be necessary a well-structured and correct definition of our
Face Object and its characteristics if a 100% MPEG-4 compliance is sought.

2001 INTERNAL REPORT EURECOM - FTR&D

- 17 -

All main image processing should be integrated into the encoder leaving the network
little data to transport. The training process can be seen as the setting up of the
program, it is only needed once in the system life and it is a completely isolated process.
It only gives the reference database for analysis-synthesis of the expressions, and that is
an initial part of the system database. This is someway related to the notions FAT and
FIT under MPEG-4. For a concrete model concrete animation rules can be defined.

The difference between FAT and FIT is that an FAT defines the way some FAPs should
act upon the face object (movements of the vertices, type of transform, etc.) and FIT
define the way to interpolate the values of some FAPs out of the values of previously
defined and animated FAPs. FIT are very helpful to decrease the number of FAP to send
when specifying animation for a concrete head model. For instance, the top inner FAPs
can be sent to determine the top outer lip FAPs. FAPs for one eye can be used to
animate the other one in case of symmetry. We can assume symmetry in all those cases
where only the FAPs of one of the eyes are sent (and no weird behavior is permitted).

Future work in the face expression animation part includes:

• improving the current face animation system (mostly in the database generation and
retrieval) to get better results;

• defining and narrowing face animation parameters to gain control over the
movements (taking advantage of the use of the clones in the training process);

• developing a more automatic way of training the system to ease the current one
which requires a lot of manual work;

• looking into new ways of synthesized face expressions and introduce the ones that
have already developed into the system∗ ;

• blending the face expressions with the global tracking in such a way that they do not
interfere with each other.

∗ In autumn 2000 there will a student project for the MM department to build an MPEG-4 compliant animator. Firstly,
it will be developed using the default morphing techniques. Later, we will study how to map our realistic
techniques on the general MPEG-4 system.

2001 INTERNAL REPORT EURECOM - FTR&D

- 18 -

APPLICATIONS

Being able to analyze the facial expressions of a human face in a video sequence and
reproduce them on a synthetic head using a compact set of FAPs is of tremendous
importance for many multimedia applications like model-based coding, virtual actors,
human-machine communication, interactive environments, video-telephony and virtual
teleconferencing.

The aim of our research is developing an analysis-synthesis system that will not be
dependent on the architecture of the application it will be used for. Introducing the
standard MPEG-4 implies independence at the decoder. Our next step is to build a video
to FAP converter as general and platform independent as possible.

This section describes one specific application that involves the most general
environment: a virtual teleconference. This application has been the first scenery onto
which we have applied the techniques regarding face cloning developed at the Image
Group laboratory.

POSSIBLE FRAMEWORK FOR A VIRTUAL TELECONFERENCE

Visual Part:

Current contents:

• BACKGROUND:
3 meshes and a reference texture to be sent.

• CLONES:
3D head model � cylindrical piece of mouth-teeth
+ Texture

Cylindrical pieces for eyes � texture for teeth and eyesG
R

A
PH

IC
S

2001 INTERNAL REPORT EURECOM - FTR&D

- 19 -

Setting up the session (3 simultaneous users as an example):

1. Load the 3D head model from the other users (either locally stored or
downloaded from a server)

2. Load the teleconference scene � background (meshes + texture)
3. Select the situation of the users � real life versus limited area representation

Physical theoretical situation Physical practical situation, user in front of the screen

The situation of the users must be coherent. Users should have the same
reference and relative position among them. This way, global movements are
obtained from the user reaction towards the synthesized models on the screen.
For instance, if A is to be situated on the right of B, B should have A on the left
in all representations. This way, if A looks at where B is situated in his/her
screen, A’s model should turn towards B in the screens of the rest of the users,
and at the same B should become the main interest point for A’s screen.

Render background depending on the perspective

Render the neutral clones in selected situation

Procedure during the teleconference session:

1. Different global scene movements that will influence the overall situation of the
clones and the background will appear. As an example, we may choose just to
show one of our session partners.

2. Depending on their face expression, what they say, how and where they look,
the clones of the user should be rendered conveniently � Interaction between
analysis/synthesis for all the users. (This has to be handled interactively among
the users)

A B

C

A B
αααα

αααα’

α != αα != αα != αα != α’

C

C
O

M
M

A
N

D
S

A
C

TI
O

N

Specific for
each user

FROM THE ANALYSIS
YOU GET N PARAMETERS

WHILE SYNTHESIZING YOU USE
YOUR PARAMETERS FOR GENERAL

PERSPERTIVE AND THE
PARAMETERS FROM THE OTHERS

FOR SPECIFIC MOVEMENTS

C
O

M
M

A
N

D
S

2001 INTERNAL REPORT EURECOM - FTR&D

- 20 -

The main action during teleconference will be to properly render the synthesized
global displacements and concrete face expressions of each clone. On top of this,
the teleconference background and the clones of the users will move depending
on the situation of the complete scene.

Audio Part:

To maintain the same spatialization concept � applying sound variations depending on
the situation (stereo audio sensing).

1. In neutral state the sound should come from the situation of the user in reference
with the initial situation of the other users (left, right, from the front and so on).

2. As soon as the users start moving, we should extract the sound orientation from
their 3D situation.

C

A B

A
B

B A

C

A
C

T
IO

N

2001 INTERNAL REPORT EURECOM - FTR&D

- 21 -

Example of a possible implementation:

Terminals A, B, C should deal with the analysis of user movements (generation of
parameters to be sent) and the synthesis of the Animation Parameters received from the
others. No sound processing is required.

The Teleconference server should deal with those no direct animation tasks as
setting up the session (connection with the users, handling of their initial position and so
on), adding new users,... No direct analysis or synthesis is needed, good data streaming
and possible processing of parameters may be required. Since the server is the one to
control the situation of the users it could deal with the audio1 (not to overload the
conference terminals)

The terminals and the server do a lot of processing and synthesis therefore the amount
of data to be sent (parameters + audio) can be very low. This system implementation
can be applied low-rate networks.

1The procedure for the audio has not yet been studied, the approach taken so far is to work with it as an
audio data stream, and let the server arrange all possible processing required for the sound spatialization.
This way the separation between terminals and server can also be seen as separation between the Visual
part and the Audio part. On top of this the proper communication system has to be defined.

A B C

Teleconference server

A
ud

io
 B

Pa
ra

m
. B

C
om

pl
et

e
A

ud
io

 B

Pa
ra

m
. A

 +
 C

A
ud

io
 C

Pa
ra

m
. C

C
om

pl
et

e
A

ud
io

 C

Pa
ra

m
. A

 +
 B

A
ud

io
 A

Pa
ra

m
. A

C
om

pl
et

e
A

ud
io

 A

Pa
ra

m
. B

 +
 C

2001 INTERNAL REPORT EURECOM - FTR&D

- 22 -

Annex A

Current FAPs versus MPEG-4 FAPs

This is a compilation of all the MPEG-4 FAPs together with a brief note related to their
implementation in our complete animation system.

MPEG-4 has been designed to allow exaggerated movements and animation that is not
natural for human beings. In a teleconference environment such freedom is not
necessary. MPEG-4 establishes that to be compliant with the standard all FAPS have to
be understood, such an effort may be not convenient. A solution would be to accept
those FAPs that are not implemented but ignore them since they cannot be animated.
Would this system still be MPEG-4 compliant? Maybe not, but priority is to reduce
complexity on the encoder and decoder side of our system, where the animation
analysis and synthesis will take place.

FAP name FAP description units Uni-
orBi
dir

Pos

Motion

FAP in our system and
relationship with MPEG-4

1 Viseme Set of values
determining the
mixture of two
visemes for this
frame (e.g. pbm, fv,
th)

na na Na At present, it is not contemplated
in the system. We do not study
mouth animation from the
phoneme perspective therefore it
is not in our scope.

2 expression A set of values
determining the
mixture of two
facial expression

Na na Na It is not contemplated in our
current system. A priori, should
not be very difficult to implement.
It is a matter of designing a
correct combination of
movements to create common
face expressions like :
happiness, sadness, anger

3 open_jaw Vertical jaw
displacement (does
not affect mouth
opening)

MNS U Down Not contemplated.

4 lower_t_midlip Vertical top middle
inner lip
displacement

MNS B Down Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)

2001 INTERNAL REPORT EURECOM - FTR&D

- 23 -

V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

5 raise_b_midlip Vertical bottom
middle inner lip
displacement

MNS B Up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

6 stretch_l_cornerlip Horizontal
displacement of left
inner lip corner

MW B left Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

7 stretch_r_cornerlip Horizontal
displacement of
right inner lip
corner

MW B right Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

2001 INTERNAL REPORT EURECOM - FTR&D

- 24 -

8 lower_t_lip_lm Vertical
displacement of
midpoint between
left corner and
middle of top inner
lip

MNS B down Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

9 lower_t_lip_rm Vertical
displacement of
midpoint between
right corner and
middle of top inner
lip

MNS B down Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

10 raise_b_lip_lm Vertical
displacement of
midpoint between
left corner and
middle of bottom
inner lip

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

11 raise_b_lip_rm Vertical
displacement of
midpoint between
right corner and
middle of bottom

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)

2001 INTERNAL REPORT EURECOM - FTR&D

- 25 -

inner lip V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

12 raise_l_cornerlip Vertical
displacement of left
inner lip corner

MNS B up H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

13 raise_r_cornerlip Vertical
displacement of
right inner lip
corner

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

14 thrust_jaw Depth
displacement of jaw

MNS U forward Not contemplated

15 shift_jaw Side to side
displacement of jaw

MW B right Not contemplated

16 push_b_lip Depth
displacement of
bottom middle lip

MNS B forward Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)

2001 INTERNAL REPORT EURECOM - FTR&D

- 26 -

V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

17 push_t_lip Depth
displacement of top
middle lip

MNS B forward Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

18 depress_chin Upward and
compressing
movement of the
chin

(like in sadness)

MNS B up Not contemplated

19 close_t_l_eyelid Vertical
displacement of top
left eyelid

IRISD B down Not contemplated

20 close_t_r_eyelid Vertical
displacement of top
right eyelid

IRISD B down Not contemplated

21 close_b_l_eyelid Vertical
displacement of
bottom left eyelid

IRISD B up Not contemplated

22 close_b_r_eyelid Vertical
displacement of
bottom right eyelid

IRISD B up Not contemplated

23 yaw_l_eyeball Horizontal
orientation of left
eyeball

AU B left H_movement_LeftEye (1)

24 yaw_r_eyeball Horizontal
orientation of right
eyeball

AU B left H_movement_RightEye (3)

25 pitch_l_eyeball Vertical orientation AU B down V_movement_LeftEye (2)

2001 INTERNAL REPORT EURECOM - FTR&D

- 27 -

of left eyeball

26 pitch_r_eyeball Vertical orientation
of right eyeball

AU B down V_movement_RightEye (4)

27 thrust_l_eyeball Depth
displacement of left
eyeball

ES B forward Not contemplated.

This is an unrealistic movement.

28 thrust_r_eyeball Depth
displacement of
right eyeball

ES B forward Not contemplated.

This is an unrealistic movement.

29 dilate_l_pupil Dilation of left pupil IRISD B growing Not contemplated

30 dilate_r_pupil Dilation of right
pupil

IRISD B growing Not contemplated

31 raise_l_i_eyebrow Vertical
displacement of left
inner eyebrow

ENS B up Someway included in:

V_movement_RightHalf_LeftEye
brow (6)

32 raise_r_i_eyebrow Vertical
displacement of
right inner eyebrow

ENS B up Someway included in:

V_movement_LeftHalf_RightEye
brow (7)

33 raise_l_m_eyebrow Vertical
displacement of left
middle eyebrow

ENS B up Someway included in:

V_movement_LeftHalf_LeftEyeb
row (5)
V_movement_RightHalf_LeftEye
brow (6)

34 raise_r_m_eyebrow Vertical
displacement of
right middle
eyebrow

ENS B up Someway included in:

V_movement_LeftHalf_RightEye
brow (7)
V_movement_RightHalf_RightEy
ebrow (8)

35 raise_l_o_eyebrow Vertical
displacement of left
outer eyebrow

ENS B up Someway included in:

V_movement_LeftHalf_LeftEyeb
row (5)

36 raise_r_o_eyebrow Vertical
displacement of
right outer eyebrow

ENS B up Someway included in:

V_movement_RightHalf_RightEy
ebrow (8)

37 squeeze_l_eyebrow Horizontal
displacement of left
eyebrow

ES B right Someway included in:

V_movement_LeftHalf_LeftEyeb
row (5)

2001 INTERNAL REPORT EURECOM - FTR&D

- 28 -

V_movement_RightHalf_LeftEye
brow (6)
V_movement_LeftHalf_RightEye
brow (7)
V_movement_RightHalf_RightEy
ebrow (8)

38 squeeze_r_eyebrow Horizontal
displacement of
right eyebrow

ES B left Someway included in:

V_movement_LeftHalf_LeftEyeb
row (5)
V_movement_RightHalf_LeftEye
brow (6)
V_movement_LeftHalf_RightEye
brow (7)
V_movement_RightHalf_RightEy
ebrow (8)

39 puff_l_cheek Horizontal
displacement of
left cheeck

ES B left Not contemplated

40 puff_r_cheek Horizontal
displacement of
right cheeck

ES B right Not contemplated

41 lift_l_cheek Vertical
displacement of left
cheek

ENS U up Not contemplated

42 lift_r_cheek Vertical
displacement of
right cheek

ENS U up Not contemplated

43 shift_tongue_tip Horizontal
displacement of
tongue tip

MW B right Not contemplated

44 raise_tongue_tip Vertical
displacement of
tongue tip

MNS B up Not contemplated

45 thrust_tongue_tip Depth
displacement of
tongue tip

MW B forward Not contemplated

46 raise_tongue Vertical
displacement of
tongue

MNS B up Not contemplated

47 tongue_roll Rolling of the
tongue into U
shape

AU U concav
e
upward

Not contemplated

48 head_pitch Head pitch angle
from top of spine

AU B down Rotation parameter from the
Head Tracking

2001 INTERNAL REPORT EURECOM - FTR&D

- 29 -

49 head_yaw Head yaw angle
from top of spine

AU B left Rotation parameter from the
Head Tracking

50 head_roll Head roll angle
from top of spine

AU B right Rotation parameter from the
Head Tracking

51 lower_t_midlip _o Vertical top middle
outer lip
displacement

MNS B down Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

52 raise_b_midlip_o Vertical bottom
middle outer lip
displacement

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

53 stretch_l_cornerlip_o Horizontal
displacement of left
outer lip corner

MW B left Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

2001 INTERNAL REPORT EURECOM - FTR&D

- 30 -

54 stretch_r_cornerlip_o Horizontal
displacement of
right outer lip
corner

MW B right Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

55 lower_t_lip_lm _o Vertical
displacement of
midpoint between
left corner and
middle of top outer
lip

MNS B down Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

56 lower_t_lip_rm _o Vertical
displacement of
midpoint between
right corner and
middle of top outer
lip

MNS B down Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

57 raise_b_lip_lm_o Vertical
displacement of
midpoint between
left corner and
middle of bottom

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)

2001 INTERNAL REPORT EURECOM - FTR&D

- 31 -

outer lip V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

58 raise_b_lip_rm_o Vertical
displacement of
midpoint between
right corner and
middle of bottom
outer lip

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

59 raise_l_cornerlip_o Vertical
displacement of left
outer lip corner

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)
V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

60 raise_r_cornerlip _o Vertical
displacement of
right outer lip
corner

MNS B up Someway included in:

H_movement_RightHalf_Mouth(
9)
H_movement_LeftHalf_Mouth(1
0)
V_movement_LeftHalf_Mouth(1
2)
V_movement_RightHalf_Mouth(
13)
V_movement_LeftHalf_UpperLip
(15)

2001 INTERNAL REPORT EURECOM - FTR&D

- 32 -

V_movement_RightHalf_UpperLi
p(16)
V_movement_LowerLip(17)

61 stretch_l_nose Horizontal
displacement of left
side of nose

ENS B left Not contemplated.

62 stretch_r_nose Horizontal
displacement of
right side of nose

ENS B right Not contemplated

63 raise_nose Vertical
displacement of
nose tip

ENS B up Not contemplated

64 bend_nose Horizontal
displacement of
nose tip

ENS B right Not contemplated

65 raise_l_ear Vertical
displacement of left
ear

ENS B up Not contemplated

66 raise_r_ear Vertical
displacement of
right ear

ENS B up Not contemplated

67 pull_l_ear Horizontal
displacement of left
ear

ENS B left Not contemplated

68 pull_r_ear Horizontal
displacement of
right ear

ENS B right Not contemplated

2001 INTERNAL REPORT EURECOM - FTR&D

- 33 -

Annex B

MPEG-4 overview: FACE ANIMATION ON ISO/IEC 14496

DATA ABOUT THE STANDARD 34

MAIN GOALS OF THE STANDARD 34
Specifications for Synthetic Video Objects 34

Types of Synthetic Video Objects 34
2D/3D Mesh Compression 35
Definition & Animation Parameter Compression 35
Texture Mapping 36
Text Overlay 36
Image and Graphics Overlay 36
View-Dependent Texture Scalability 37
Geometrical transformations 37
Video Object Tracking 37

FACE ANIMATION 38
MPEG-4 AND FACE ANIMATION 38

DESCRIPTION OF THE FACE OBJECT 38
FACE OBJECT DECODING AND OUTPUT 54

INTEGRATION INTO MPEG-4 SYSTEMS 59
BIFS Syntax for Face Animation 59
FaceDefMesh 60

MPEG-4 PROFILES AND LEVELS FOR FACE ANIMATION 72

2001 INTERNAL REPORT EURECOM - FTR&D

- 34 -

Data about the standard

ISO/IEC JTC1/SC29/WG11
MPEG-4 SNHC Working group.
Group on Face/Body animation

Version 1 – Facial Animation definition – FINISHED
 Body Animation definition – FINISHED

ISO/IEC 14496-1: Systems
ISO/IEC 14496-2: Visual
ISO/IEC 14496-3: Audio

 MPEG-4 is an object-based multimedia compression standard, which allows for encoding of
different audio-visual objects (AVO) in the scene independently. The visual objects may have
natural or synthetic content, including arbitrary shape video objects, special synthetic objects
such as human face and body, and generic 2-D/3-D objects composed of primitives like
rectangles, spheres, or indexed face sets, which define an object surface by means of vertices
and surface patches. The synthetic visual objects are animated by transforms and special
purpose animation techniques, such as face/body animation and 2D-mesh animation. MPEG-4
also provides synthetic audio tools such as structured audio tools and a text-to-speech interface
(TTSI).

 It is important to note that MPEG-4 only specifies the decoding of compliant bit streams
in an MPEG-4 terminal. The encoders do enjoy a large degree of freedom in how to
generate MPEG-4 compliant bit streams. Decoded audio-visual objects can be composed
into 2D and 3D scenes using the Binary Format for Scenes (BIFS), which also allows
implementation of animation of objects and their properties using the BIFS-Anim node.

 This annex aims to provide all specific information regarding Face Animation. It is
remarkable how Face Animation is intimately related to Body Animation. Most all the
information gathered in this report is based or partially taken from ISO/IEC 14496-2
(MPEG-4 Visual) and «Face and 2-D Mesh Animation in MPEG-4» [Murat Tekalp and Jörn
Ostermann]

Main goals of the standard

Specifications for Synthetic Video Objects

Types of Synthetic Video Objects

2001 INTERNAL REPORT EURECOM - FTR&D

- 35 -

a) The object data shall include the following appearance attributes: font style, texture, color,
transparency, surface characteristics.

b) Scene data shall include viewing characteristics as applicable notably lighting, and viewpoint.
c) It shall be possible to download objects or components so that some objects may be added,

removed or modified.
d) Geometry:
Both: indexed face and line sets with defining list of shared vertices.
2D: rectangle, circle, line, polygon, Bezier curve, 2D mesh with implicit structure.
3D: box, cone, cylinder, sphere, 3D mesh.
a) Material properties:
 Both: transparency, color, normal, texture mapping texture translation.
 2D: filled or empty shape, border/line width, dotted border/line, , shadow properties.
b) Surface appearance:
 Both: material, image texture, video texture.
c) Text:
 Simple text, formatted text, font styles
 International language including direction of composition
 Justification of text, direction of streaming
d) Animated streams:

 Dynamic state information (position and attitude, FBA, 2D mesh)
e) Mixing of 2D and 3D objects
f) Face and Body objects
Note
For exact definitions of some of the above items, refer to VRML node definitions.
Behavior is also a composition issue.

2D/3D Mesh Compression

Tools shall be provided for incremental and error resilient download of models. Rendering of
models shall be possible with incomplete models
• Error resilience: it is possible to cope with packet loss without having to retransmit the entire

model.
• Incremental download: useful rendering can be done already before the complete model has

been downloaded
 Examples
• 3D elevation grid
• Face and body objects in the form of 3D polygon meshes.
• A 2D Delaunay mesh that can be represented by vertex positions.
• 3D Models can be very large with respect to the network capacity, and therefore it is useful if

they can be rendered even before completely downloaded.

 Definition & Animation Parameter Compression

 MPEG-4 shall provide syntax and compression for Face Animation Parameters (FAP) and Face
Definition Parameters (FDP), as well as Body Animation Parameters (BAP) and Body Definition
Parameters (BDP).
 It shall be possible to compress FAP with 2 kbit/s.
 Example
 A baseline face in a decoder shall be capable of immediately receiving FAPs from the bitstream,
to produce facial animation: expressions, speech, etc. without downloading a specific face. If
FDPs are received, they can be used to transform a generic face into a particular face determined

2001 INTERNAL REPORT EURECOM - FTR&D

- 36 -

by its shape and (optional) texture. Such tailoring of the bitstream for terminal capability must
recognize the performance capabilities and limitations of the terminal in set-up.
 Note
 Specification of body animation is under investigation.

 Texture Mapping

 MPEG-4 shall support texture mapping on 2D/3D mesh.
 Texture size shall be an integer power of 2 (16x16, 1024x1024, ...)
 Note
 Real time texture mapping capabilities are expected once the texture is loaded into texture
memory. The mesh onto which texture is mapped can be regular or have an arbitrary shape.
 Examples
 Mapping of a face image on a face mesh, mapping of an aerial image on a grid mesh.
• Alpha blending of a still or moving texture onto a video object.

 Text Overlay

• MPEG-4 shall provide capability for text overlay.
• MPEG-4 shall allow standalone text overlay, in the absence of natural audio and video.
• Text overlay can be independent of underlying A/V representation, as well as MPEG-4 shall

provide capability to compose overlay text into layered spatial hierarchies that can be
arranged and synchronized with spatial and temporal events in associated audio and video.

• MPEG-4 shall provide capability to use bitmapped text.
• MPEG-4 shall provide capability to animate text at slow or real-time rates for ready

interpretation and comprehension, controllable by user and/or provider.
• MPEG-4 shall provide capabilities for spatial-temporal location and manipulation of text

overlay.
• MPEG-4 shall support international character sets, and text composition.
 Note
 The MPEG-4 text overlay standard shall be designed to accommodate its easy incorporation into
systems utilizing other existing and developing standards, e.g. MPEG-1 and MPEG-2.
 Examples
• News program similar to “PointCast Network”
• Program guides for broadcast television
• User-selected electronic ticker tape information
• Low-bandwidth news delivery (broadcast, Internet, etc.)
• Real-time “insertion” of advertisements (e.g. product background information, event

announcements, local phone numbers, etc.)
• Hyperlinked text in video

 Image and Graphics Overlay

• MPEG-4 shall provide capability for image and graphics overlay.
• MPEG-4 shall allow standalone image and graphics overlay, in the absence of natural audio

and video.
• MPEG-4 shall provide image and graphics overlay that can be independent of underlying A/V

representation, as well as MPEG-4 shall provide capability to compose overlay images and
graphics into layered spatial hierarchies that can be arranged and synchronized with spatial
and temporal events in associated audio and video.

2001 INTERNAL REPORT EURECOM - FTR&D

- 37 -

• MPEG-4 shall provide capability to use coded images and graphics based on existing
standards.

• MPEG-4 shall provide capability to animate overlaid images and graphics at slow or real-time
rates for ready interpretation and comprehension, controllable by user and/or provider.

• MPEG-4 shall provide capabilities for spatial-temporal location and manipulation of image and
graphics overlays.

 Notes
 The MPEG-4 image and graphics overlay standard shall be designed to accommodate its easy
incorporation into systems utilizing other existing and developing standards, e.g. MPEG-1 and
MPEG-2.
 Examples
• Low-bandwidth news delivery (broadcast, Internet, etc.)
• Special effects for advertising
• Real-time “insertion” of advertisements (e.g. local company logos on network programming,

etc.)
• Hyperlinked images and graphics in video

View-Dependent Texture Scalability

MPEG-4 shall provide means to change non-uniformly the spatial resolution of the texture data by
taking into account viewing conditions (viewpoint, aimpoint, lighting,…) and 3D mesh on which
texture is to be mapped.
Forward channel bandwidth shall be up to 1 Mbit/s.
Note
Use of back channel may be required to transmit viewing conditions.
Example
An aerial view is mapped on a 3D grid mesh, the most visible regions of this texture are
transmitted with a high quality, the least visible with the lowest quality (may even not be
transmitted).

Geometrical transformations

MPEG-4 shall provide cost-effective means to cope with a large number of geometrical
transformations without significant effect on the quality of the final rendered data.
Geometric transformations shall support relative positioning, scaling, and orientation of
objects in scene composition.
2D and 3D transformations are to be supported:
a) linear affine;
b) non-linear or perspective affine;
c) bi-linear transformations.

Video Object Tracking

MPEG-4 shall support efficient coding of mesh-based video object tracking information. This
includes coding of mesh geometry (once for each video object or a temporal segment of a video
object) and one motion vector for each node point at each frame.
Applicable to all video objects considered for coding. It shall be possible to code Video tracking
as side information at 4-5 kbits/s.
Note
The inclusion of tracking information with a video object is optional.

2001 INTERNAL REPORT EURECOM - FTR&D

- 38 -

Example
• Animated texture or graphics overlay on a moving natural or synthetic video object.
• Synthetic transfiguration and augmented reality.

Face Animation

 The ‘Face Animation’ part of the standard allows sending parameters that calibrate and animate
synthetic faces. These models themselves are not standardized by MPEG-4, only the parameters
are.
• Definition and coding of face animation parameters (model independent):

� Feature point positions and orientations to animate the face definition meshes
� Visemes, or visual lip configurations equivalent to speech phonemes

• Definition and coding of face definition parameters (for model calibration):
� 3-D feature point positions
� 3-D head calibration meshes for animation
� Texture map of face
� Personal characteristics

• Facial texture coding;

MPEG-4 enables integration of face animation with multimedia communications and presentations
and allows face animation over low bit rate communication channels, for point to point as well as
multi-point connections with low-delay.

MPEG-4 AND FACE ANIMATION

 The representation of synthetic visual objects in MPEG-4 is based on the prior VRML
standard using nodes such as Transform, which defines rotation, scale or translation of
an object, and IndexedFaceSet describing 3-D shape of an object by an indexed face
set. However, MPEG-4 is the first international standard that specifies a compressed
binary representation of animated synthetic audio-visual objects.

Specification and Animation of Faces

MPEG-4 specifies a face model in its neutral state, a number of feature points on this
neutral face as reference points, and a set of FAPs, each corresponding to a particular
facial action deforming a face model in its neutral state. The FAP value for a particular
FAP indicates the magnitude of the corresponding action, e.g., a big versus a small smile
or deformation of a mouth corner. For an MPEG-4 terminal to interpret the FAP values
using its face model, it has to have predefined model specific animation rules to produce
the facial action corresponding to each FAP. The terminal can either use its own
animation rules or download a face model and the associated face animation tables
(FAT) to have a customized animation behavior. Since the FAPs are required to animate
faces of different sizes and proportions, the FAP values are defined in face animation
parameter units (FAPU). The FAPU are computed from spatial distances between major
facial features on the model in its neutral state.

DESCRIPTION OF THE FACE OBJECT

2001 INTERNAL REPORT EURECOM - FTR&D

- 39 -

Neutral face and Facial Animation Parameter Units

As the first step, MPEG-4 defines a generic face model in its neutral state by the following
properties (see Figure 1):

• the coordinate system is right-handed; head axes are parallel to the world axes
• gaze is in direction of Z axis,
• all face muscles are relaxed,
• eyelids are tangent to the iris, the pupil is one third of the diameter of the iris,
• lips are in contact; the line of the lips is horizontal and at the same height of lip corners,
• the mouth is closed and the upper teeth touch the lower ones,
• the tongue is flat, horizontal with the tip of tongue touching the boundary between upper

and lower teeth.

A FAPU and the feature points used to derive the FAPU are defined next with respect to the face
in its neutral state.

 Figure 1: A face model in its neutral state and the feature points used to define
FAP units (FAPU). Fractions of distances between the marked key features are used
to define FAPU

The FAPU allow interpretation of the FAPs on any facial model in a consistent way,
producing reasonable results in terms of expression and speech pronunciation. The
measurement units are shown in Table 1.

2001 INTERNAL REPORT EURECOM - FTR&D

- 40 -

 Table 1: Facial Animation Parameter Units and their definitions.

 Description FAPU Value

 IRISD0 = 3.1.y – 3.3.y = 3.2.y – 3.4.y Iris diameter (by definition it is equal to
the distance between upper ad lower
eyelid) in neutral face

 IRISD = IRISD0 / 1024

 ES0 = 3.5.x – 3.6.x Eye separation ES = ES0 / 1024

 ENS0 = 3.5.y – 9.15.y Eye - nose separation ENS = ENS0 / 1024

 MNS0 = 9.15.y – 2.2.y Mouth - nose separation MNS = MNS0 / 1024

 MW0 = 8.3.x – 8.4.x Mouth width MW = MW0 / 1024

 AU Angle Unit 10-5 rad

2001 INTERNAL REPORT EURECOM - FTR&D

- 41 -

Feature Points or Face Description Parameters

2001 INTERNAL REPORT EURECOM - FTR&D

- 42 -

MPEG-4 specifies 84 feature points on the neutral face. Feature points are arranged in groups like
cheeks, eyes, and mouth. The location of these feature points has to be known for any MPEG-4
compliant face model. The feature points on the model should be located according to the Figure
of the previous page.

 The FDPs are normally transmitted once per session, followed by a stream of compressed FAPs.
If the decoder does not receive the FDPs, the use of FAPUs ensures that it can still interpret the
FAP stream. This insures minimal operation in broadcast or teleconferencing applications. The
FDP set is specified in BIFS syntax (see ISO/IEC 14496-1). The FDP node defines the face model
to be used at the receiver. Two options are supported:

• calibration information is downloaded so that the proprietary face of the receiver can be
configured using facial feature points and optionally a 3D mesh or texture.

• a face model is downloaded with the animation definition of the Facial Animation Parameters.
This face model replace the proprietary face model in the receiver.

In the following, the notation 2.1.x indicates the x coordinate of feature point 2.1.

Feature points Recommended location constraints

Text description x y z

2.1 Bottom of the chin 7.1.x

2.2 Middle point of inner upper lip contour 7.1.x

2.3 Middle point of inner lower lip contour 7.1.x

2.4 Left corner of inner lip contour

2.5 Right corner of inner lip contour

2.6 Midpoint between f.p. 2.2 and 2.4 in
the inner upper lip contour

(2.2.x+2.4.x)/2

2.7 Midpoint between f.p. 2.2 and 2.5 in
the inner upper lip contour

(2.2.x+2.5.x)/2

2.8 Midpoint between f.p. 2.3 and 2.4 in
the inner lower lip contour

(2.3.x+2.4.x)/2

2.9 Midpoint between f.p. 2.3 and 2.5 in
the inner lower lip contour

(2.3.x+2.5.x)/2

2.10 Chin boss 7.1.x

2.11 Chin left corner > 8.7.x and <
8.3.x

2.12 Chin right corner > 8.4.x and <
8.8.x

2.13 Left corner of jaw bone

2.14 Right corner of jaw bone

3.1 Center of upper inner left eyelid (3.7.x+3.11.x)/2

2001 INTERNAL REPORT EURECOM - FTR&D

- 43 -

3.2 Center of upper inner right eyelid (3.8.x+3.12.x)/2

3.3 Center of lower inner left eyelid (3.7.x+3.11.x)/2

3.4 Center of lower inner right eyelid (3.8.x+3.12.x)/2

3.5 Center of the pupil of left eye

3.6 Center of the pupil of right eye

3.7 Left corner of left eye

3.8 Left corner of right eye

3.9 Center of lower outer left eyelid (3.7.x+3.11.x)/2

3.10 Center of lower outer right eyelid (3.7.x+3.11.x)/2

3.11 Right corner of left eye

3.12 Right corner of right eye

3.13 Center of upper outer left eyelid (3.8.x+3.12.x)/2

3.14 Center of upper outer right eyelid (3.8.x+3.12.x)/2

4.1 Right corner of left eyebrow

4.2 Left corner of right eyebrow

4.3 Uppermost point of the left eyebrow (4.1.x+4.5.x)/2 or
x coord of the
uppermost point
of the contour

4.4 Uppermost point of the right eyebrow (4.2.x+4.6.x)/2 or
x coord of the
uppermost point
of the contour

4.5 Left corner of left eyebrow

4.6 Right corner of right eyebrow

5.1 Center of the left cheek 8.3.y

5.2 Center of the right cheek 8.4.y

5.3 Left cheek bone > 3.5.x and <
3.7.x

> 9.15.y and <
9.12.y

5.4 Right cheek bone > 3.6.x and <
3.12.x

> 9.15.y and <
9.12.y

6.1 Tip of the tongue 7.1.x

6.2 Center of the tongue body 7.1.x

6.3 Left border of the tongue 6.2.z

6.4 Right border of the tongue 6.2.z

7.1 top of spine (center of head rotation)

2001 INTERNAL REPORT EURECOM - FTR&D

- 44 -

8.1 Middle point of outer upper lip contour 7.1.x

8.2 Middle point of outer lower lip contour 7.1.x

8.3 Left corner of outer lip contour

8.4 Right corner of outer lip contour

8.5 Midpoint between f.p. 8.3 and 8.1 in
outer upper lip contour

(8.3.x+8.1.x)/2

8.6 Midpoint between f.p. 8.4 and 8.1 in
outer upper lip contour

(8.4.x+8.1.x)/2

8.7 Midpoint between f.p. 8.3 and 8.2 in
outer lower lip contour

(8.3.x+8.2.x)/2

8.8 Midpoint between f.p. 8.4 and 8.2 in
outer lower lip contour

(8.4.x+8.2.x)/2

8.9 Right hiph point of Cupid’s bow

8.10 Left hiph point of Cupid’s bow

9.1 Left nostril border

9.2 Right nostril border

9.3 Nose tip 7.1.x

9.4 Bottom right edge of nose

9.5 Bottom left edge of nose

9.6 Right upper edge of nose bone

9.7 Left upper edge of nose bone

9.8 Top of the upper teeth 7.1.x

9.9 Bottom of the lower teeth 7.1.x

9.10 Bottom of the upper teeth 7.1.x

9.11 Top of the lower teeth 7.1.x

9.12 Middle lower edge of nose bone (or
nose bump)

7.1.x (9.6.y + 9.3.y)/2
or nose bump

9.13 Left lower edge of nose bone (9.6.y +9.3.y)/2

9.14 Right lower edge of nose bone (9.6.y +9.3.y)/2

9.15 Bottom middle edge of nose 7.1.x

10.1 Top of left ear

10.2 Top of right ear

10.3 Back of left ear (10.1.y+10.5.y)/
2

10.4 Back of right ear (10.2.y+10.6.y)/
2

2001 INTERNAL REPORT EURECOM - FTR&D

- 45 -

10.5 Bottom of left ear lobe

10.6 Bottom of right ear lobe

10.7 Lower contact point between left lobe
and face

10.8 Lower contact point between right
lobe and face

10.9 Upper contact point between left ear
and face

10.1
0

Upper contact point between right ear
and face

11.1 Middle border between hair and
forehead

7.1.x

11.2 Right border between hair and
forehead

< 4.4.x

11.3 Left border between hair and
forehead

> 4.3.x

11.4 Top of skull 7.1.x > 10.4.z and <
10.2.z

11.5 Hair thickness over f.p. 11.4 11.4.x 11.4.z

11.6 Back of skull 7.1.x 3.5.y

FDP field Description

FeaturePointsCoord contains a Coordinate node. Specifies feature points for the
calibration of the proprietary face. The coordinates are listed in the
‘point’ field in the Coordinate node in the prescribed order, that a
feature point with a lower label is listed before a feature point with
a higher label (e.g. feature point 3.14 before feature point 4.1).

TextureCoords contains a Coordinate node. Specifies texture coordinates for the
feature points. The coordinates are listed in the point field in the
Coordinate node in the prescribed order, that a feature point with
a lower label is listed before a feature point with a higher label
(e.g. feature point 3.14 before feature point 4.1).

TextureType contains a hint to the decoder on the type of texture image, in
order to allow better interpolation of texture coordinates for the
vertices that are not feature points. If textureType is 0, the
decoder should assume that the texture image is obtained by
cylindrical projection of the face. If textureType is 1, the decoder
should assume that the texture image is obtained by orthographic
projection of the face.

 FaceDefTables contains faceDefTables nodes. The behavior of FAPs is defined
in this field for the face in faceSceneGraph.

FaceSceneGraph contains a Group node. In case of option 1, this can be used to
contain a texture image as explained above. In case of option 2,
this is the grouping node for face model rendered in the
compositor and has to contain the face model. In this case, the

2001 INTERNAL REPORT EURECOM - FTR&D

- 46 -

effect of Facial Animation Parameters is defined in the
faceDefTablesfield.

Face Animation Parameters

The FAPs are based on the study of minimal perceptible actions and are closely related
to muscle actions. The 68 parameters are categorized into 10 groups related to parts of
the face. FAPs can also be used to define facial action units. Exaggerated amplitudes
permit the definition of actions that are normally not possible for humans, but are
desirable for cartoon-like characters.

 The FAP set contains two high level parameters visemes and expressions. A viseme is a
visual correlate to a phoneme. The viseme parameter allows viseme rendering (without
having to express them in terms of other parameters) and enhances the result of other
parameters, insuring the correct rendering of visemes. Only static visemes which are
clearly distinguished are included in the standard set. Additional visemes may be added
in future extensions of the standard. Similarly, the expression parameter allows
definition of high level facial expressions. The facial expression parameter values are
defined by textual descriptions. To facilitate facial animation, FAPs that can be used
together to represent natural expression are grouped together in FAP groups, and can
be indirectly addressed by using an expression parameter. The expression parameter
allows for a very efficient means of animating faces.

FAP 1 (visemes) and FAP 2 (expressions) are high-level animation parameters. A face
model designer creates them for each face model. Using FAP 1 and FAP 2 together with
low-level FAPs 3-68 that affect the same areas as FAP 1 and 2, may result in unexpected
visual representations of the face. Generally, the lower level FAPs have priority over
deformations caused by FAP 1 or 2. When specifying an expression with FAP 2, the
encoder may sent an init_face bit that deforms the neutral face of the model with the
expression prior to superimposing FAPs 3-68. This deformation is applied with the
neutral face constraints of mouth closure, eye opening, gaze direction and head
orientation. Since the encoder does not know how FAP 1 and 2 are implemented, we
recommend using only those low-level FAPs that will not interfere with FAP 1 and 2.

FAPs names may contain letters with the following meaning: l = left, r = right, t = top, b = bottom, i = inner, o = outer,
m = middle. The sum of two corresponding top and bottom eyelid FAPs must equal 1024 when the eyelids are closed.
Inner lips are closed when the sum of two corresponding top and bottom lip FAPs equals zero. For example:
(lower_t_midlip + raise_b_midlip) = 0 when the lips are closed. All directions are defined with respect to the face and not
the image of the face.

Table C-1 -- FAP definitions, group assignments and step sizes

FAP name FAP description units Uni-
orBi
dir

Pos

motion

G
r
p

FDP
subg
rp
num

Qua
nt
step
size

Min/Max
I-Frame
quantize
d values

Min/Max
P-Frame
quantiz
ed
values

1 Viseme Set of values
determining the
mixture of two
visemes for this
frame (e.g. pbm, fv,

na na na 1 na 1 viseme_b
lend: +63

viseme_
blend: +-
63

2001 INTERNAL REPORT EURECOM - FTR&D

- 47 -

th)

2 expression A set of values
determining the
mixture of two
facial expression

Na na na 1 na 1 expressio
n_intensit
y1,
expressio
n_intensit
y2: +63

expressi
on_inten
sity1,
expressi
on_inten
sity2: +-
63

3 open_jaw Vertical jaw
displacement (does
not affect mouth
opening)

MNS U down 2 1 4 +1080 +360

4 lower_t_midlip Vertical top middle
inner lip
displacement

MNS B down 2 2 2 +-600 +-180

5 raise_b_midlip Vertical bottom
middle inner lip
displacement

MNS B up 2 3 2 +-1860 +-600

6 stretch_l_cornerlip Horizontal
displacement of left
inner lip corner

MW B left 2 4 2 +-600 +-180

7 stretch_r_cornerlip Horizontal
displacement of
right inner lip
corner

MW B right 2 5 2 +-600 +-180

8 lower_t_lip_lm Vertical
displacement of
midpoint between
left corner and
middle of top inner
lip

MNS B down 2 6 2 +-600 +-180

9 lower_t_lip_rm Vertical
displacement of
midpoint between
right corner and
middle of top inner
lip

MNS B down 2 7 2 +-600 +-180

10 raise_b_lip_lm Vertical
displacement of
midpoint between
left corner and
middle of bottom
inner lip

MNS B up 2 8 2 +-1860 +-600

11 raise_b_lip_rm Vertical
displacement of
midpoint between
right corner and
middle of bottom

MNS B up 2 9 2 +-1860 +-600

2001 INTERNAL REPORT EURECOM - FTR&D

- 48 -

inner lip

12 raise_l_cornerlip Vertical
displacement of left
inner lip corner

MNS B up 2 4 2 +-600 +-180

13 raise_r_cornerlip Vertical
displacement of
right inner lip
corner

MNS B up 2 5 2 +-600 +-180

14 thrust_jaw Depth
displacement of jaw

MNS U forward 2 1 1 +600 +180

15 shift_jaw Side to side
displacement of jaw

MW B right 2 1 1 +-1080 +-360

16 push_b_lip Depth
displacement of
bottom middle lip

MNS B forward 2 3 1 +-1080 +-360

17 push_t_lip Depth
displacement of top
middle lip

MNS B forward 2 2 1 +-1080 +-360

18 depress_chin Upward and
compressing
movement of the
chin

(like in sadness)

MNS B up 2 10 1 +-420 +-180

19 close_t_l_eyelid Vertical
displacement of top
left eyelid

IRISD B down 3 1 1 +-1080 +-600

20 close_t_r_eyelid Vertical
displacement of top
right eyelid

IRISD B down 3 2 1 +-1080 +-600

21 close_b_l_eyelid Vertical
displacement of
bottom left eyelid

IRISD B up 3 3 1 +-600 +-240

22 close_b_r_eyelid Vertical
displacement of
bottom right eyelid

IRISD B up 3 4 1 +-600 +-240

23 yaw_l_eyeball Horizontal
orientation of left
eyeball

AU B left 3 na 128 +-1200 +-420

24 yaw_r_eyeball Horizontal
orientation of right
eyeball

AU B left 3 na 128 +-1200 +-420

25 pitch_l_eyeball Vertical orientation
of left eyeball

AU B down 3 na 128 +-900 +-300

26 pitch_r_eyeball Vertical orientation AU B down 3 na 128 +-900 +-300

2001 INTERNAL REPORT EURECOM - FTR&D

- 49 -

of right eyeball

27 thrust_l_eyeball Depth
displacement of left
eyeball

ES B forward 3 na 1 +-600 +-180

28 thrust_r_eyeball Depth
displacement of
right eyeball

ES B forward 3 na 1 +-600 +-180

29 dilate_l_pupil Dilation of left pupil IRISD B growing 3 5 1 +-420 +-120

30 dilate_r_pupil Dilation of right
pupil

IRISD B growing 3 6 1 +-420 +-120

31 raise_l_i_eyebrow Vertical
displacement of left
inner eyebrow

ENS B up 4 1 2 +-900 +-360

32 raise_r_i_eyebrow Vertical
displacement of
right inner eyebrow

ENS B up 4 2 2 +-900 +-360

33 raise_l_m_eyebrow Vertical
displacement of left
middle eyebrow

ENS B up 4 3 2 +-900 +-360

34 raise_r_m_eyebrow Vertical
displacement of
right middle
eyebrow

ENS B up 4 4 2 +-900 +-360

35 raise_l_o_eyebrow Vertical
displacement of left
outer eyebrow

ENS B up 4 5 2 +-900 +-360

36 raise_r_o_eyebrow Vertical
displacement of
right outer eyebrow

ENS B up 4 6 2 +-900 +-360

37 squeeze_l_eyebrow Horizontal
displacement of left
eyebrow

ES B right 4 1 1 +-900 +-300

38 squeeze_r_eyebrow Horizontal
displacement of
right eyebrow

ES B left 4 2 1 +-900 +-300

39 puff_l_cheek Horizontal
displacement of
left cheeck

ES B left 5 1 2 +-900 +-300

40 puff_r_cheek Horizontal
displacement of
right cheeck

ES B right 5 2 2 +-900 +-300

41 lift_l_cheek Vertical
displacement of left
cheek

ENS U up 5 3 2 +-600 +-180

2001 INTERNAL REPORT EURECOM - FTR&D

- 50 -

42 lift_r_cheek Vertical
displacement of
right cheek

ENS U up 5 4 2 +-600 +-180

43 shift_tongue_tip Horizontal
displacement of
tongue tip

MW B right 6 1 1 +-1080 +-420

44 raise_tongue_tip Vertical
displacement of
tongue tip

MNS B up 6 1 1 +-1080 +-420

45 thrust_tongue_tip Depth
displacement of
tongue tip

MW B forward 6 1 1 +-1080 +-420

46 raise_tongue Vertical
displacement of
tongue

MNS B up 6 2 1 +-1080 +-420

47 tongue_roll Rolling of the
tongue into U
shape

AU U concav
e
upward

6 3, 4 512 +300 +60

48 head_pitch Head pitch angle
from top of spine

AU B down 7 na 170 +-1860 +-600

49 head_yaw Head yaw angle
from top of spine

AU B left 7 na 170 +-1860 +-600

50 head_roll Head roll angle
from top of spine

AU B right 7 na 170 +-1860 +-600

51 lower_t_midlip _o Vertical top middle
outer lip
displacement

MNS B down 8 1 2 +-600 +-180

52 raise_b_midlip_o Vertical bottom
middle outer lip
displacement

MNS B up 8 2 2 +-1860 +-600

53 stretch_l_cornerlip_o Horizontal
displacement of left
outer lip corner

MW B left 8 3 2 +-600 +-180

54 stretch_r_cornerlip_o Horizontal
displacement of
right outer lip
corner

MW B right 8 4 2 +-600 +-180

55 lower_t_lip_lm _o Vertical
displacement of
midpoint between
left corner and
middle of top outer
lip

MNS B down 8 5 2 +-600 +-180

56 lower_t_lip_rm _o Vertical
displacement of
midpoint between

MNS B down 8 6 2 +-600 +-180

2001 INTERNAL REPORT EURECOM - FTR&D

- 51 -

right corner and
middle of top outer
lip

57 raise_b_lip_lm_o Vertical
displacement of
midpoint between
left corner and
middle of bottom
outer lip

MNS B up 8 7 2 +-1860 +-600

58 raise_b_lip_rm_o Vertical
displacement of
midpoint between
right corner and
middle of bottom
outer lip

MNS B up 8 8 2 +-1860 +-600

59 raise_l_cornerlip_o Vertical
displacement of left
outer lip corner

MNS B up 8 3 2 +-600 +-180

60 raise_r_cornerlip _o Vertical
displacement of
right outer lip
corner

MNS B up 8 4 2 +-600 +-180

61 stretch_l_nose Horizontal
displacement of left
side of nose

ENS B left 9 1 1 +-540 +-120

62 stretch_r_nose Horizontal
displacement of
right side of nose

ENS B right 9 2 1 +-540 +-120

63 raise_nose Vertical
displacement of
nose tip

ENS B up 9 3 1 +-680 +-180

64 bend_nose Horizontal
displacement of
nose tip

ENS B right 9 3 1 +-900 +-180

65 raise_l_ear Vertical
displacement of left
ear

ENS B up 10 1 1 +-900 +-240

66 raise_r_ear Vertical
displacement of
right ear

ENS B up 10 2 1 +-900 +-240

67 pull_l_ear Horizontal
displacement of left
ear

ENS B left 10 3 1 +-900 +-300

68 pull_r_ear Horizontal
displacement of
right ear

ENS B right 10 4 1 +-900 +-300

2001 INTERNAL REPORT EURECOM - FTR&D

- 52 -

Table C-2 -- FAP grouping

Group Number of FAPs

1: visemes and expressions 2

2: jaw, chin, inner lowerlip, cornerlips, midlip 16

3: eyeballs, pupils, eyelids 12

4: eyebrow 8

5: cheeks 4

6: tongue 5

7: head rotation 3

8: outer lip positions 10

9: nose 4

10: ears 4

In the following, each facial expression is defined by a textual description and a pictorial example. (reference [10], page
114.) This reference was also used for the characteristics of the described expressions.

Table C-3 -- Values for expression_select

Expression_select expression
name

Textual description

0 na Na

1 joy The eyebrows are relaxed. The mouth is open and the mouth
corners pulled back toward the ears.

2 sadness The inner eyebrows are bent upward. The eyes are slightly
closed. The mouth is relaxed.

3 anger The inner eyebrows are pulled downward and together. The
eyes are wide open. The lips are pressed against each other
or opened to expose the teeth.

4 fear The eyebrows are raised and pulled together. The inner
eyebrows are bent upward. The eyes are tense and alert.

5 disgust The eyebrows and eyelids are relaxed. The upper lip is raised
and curled, often asymmetrically.

6 surprise The eyebrows are raised. The upper eyelids are wide open,
the lower relaxed. The jaw is opened.

Table C-5 -- Values for viseme_select

viseme_select phonemes example

0 none na

1 p, b, m put, bed, mill

2001 INTERNAL REPORT EURECOM - FTR&D

- 53 -

2 f, v far, voice

3 T,D think, that

4 t, d tip, doll

5 k, g call, gas

6 tS, dZ, S chair, join, she

7 s, z sir, zeal

8 n, l lot, not

9 r red

10 A: car

11 e bed

12 I tip

13 Q top

14 U book

Face Model Specification versus a proprietary Model

Every MPEG-4 terminal that is able to decode FAP streams has to provide an MPEG-4
compliant face model that it animates. Usually, this is a model proprietary to the
decoder. The encoder does not know about the look of the face model. Using an FDP
(Face Definition Parameter) node, MPEG-4 allows the encoder to completely specify the
face model to animate. This involves defining the static geometry of the face model in
its neutral state using a scene graph, defining the surface properties and defining the
animation rules using Face Animation Tables (FAT) that specify how this model gets
deformed by the facial animation parameters. Alternatively, the FDP node can be used
to ‘calibrate’ the proprietary face model of the decoder. However, MPEG-4 does not
specify how to 'calibrate' or adapt a proprietary face model.

In order for a face model to be MPEG-4 compliant, it has to be able to execute all FAPs.
Therefore, the face model has to have at least as many vertices as there are feature
points that can be animated. Thus, an MPEG-4 compliant face model may have as little
as 50 vertices. Such a model would not generate a pleasing impression. MPEG-4 expects
to require at least 500 vertices for pleasant and reasonable face models.

Structure of the coded data

 Upon construction, the Face object contains a generic face with a neutral expression. This face
can already be rendered. It is also immediately capable of receiving the FAPs. If FDPs are
received, they transform the generic face into a particular face determined by its shape and
texture. Optionally, a complete face model can be downloaded via the FDP set as a scene graph

2001 INTERNAL REPORT EURECOM - FTR&D

- 54 -

for insertion in the face node. The translation from phonemes to FAPs is not standardized. It is
assumed that every decoder has a default face model with default parameters. The setup stage
is used to customize the face at the decoder.

 A face object is formed by a temporal sequence of face object planes. This is depicted as follows
in Figure 6-9.

-------------------- Face Object
Plane n

Face Object
Plane 2

Face Object
Plane 1

Face Object

 Figure 6-9 -- Structure of the face object bitstream

 A face object represents a node in an ISO/IEC 14496 scene graph. The scene graph is the
hierarchical representation of the ISO/IEC 14496 scene structure (see ISO/IEC 14496-1).

 Alternatively, a face object can be formed by a temporal sequence of face object plane groups
(called segments for simplicity), where each face object plane group itself is composed of a
temporal sequence of 16 face object planes, as depicted in the following:

 face object:

Face Object
Plane Group n

Face Object
Plane Group 2

Face Object
Plane Group 1

 face object plane group:

Face Object
Plane 16

Face Object
Plane 2

Face Object
Plane 1

 When the alternative face object bitstream structure is employed, the bitstream is decoded by
DCT-based face object decoding as described in DCT Based Object Decoding part. Otherwise,
the bitstream is decoded by the frame-based face object decoding

FACE OBJECT DECODING AND OUTPUT

Frame based face object decoding

The coded data is decoded by an arithmetic decoding process, described in annex B of ISO/IEC
14496-2. Following the arithmetic decoding, the data is de-quantized by an inverse quantization
process. The FAPs are obtained by a predictive decoding scheme as shown in Figure 7-47.

The base quantization step size QP for each FAP is listed in Table C-1. The quantization
parameter fap_quant is applied uniformly to all FAPs. The magnitude of the quantization scaling
factor ranges from 1 to 8. The value of fap_quant == 0 has a special meaning, it is used to
indicate lossless coding mode, so no dequantization is applied. The quantization stepsize is
obtained as follows:

if (fap_quant)
qstep = QP * fap_quant

else
qstep = 1

The dequantized FAP’(t) is obtained from the decoded coefficient FAP’’(t) as follows:
FAP’(t) = qstep * FAP’’(t)

2001 INTERNAL REPORT EURECOM - FTR&D

- 55 -

FAP(t)
Coded
Data +

Decoding
Arithmetic Inverse

Quantization

Frame
delay

Figure 7-47 -- FAP decoding

Decoding of faps

For a given frame FAPs in the decoder assume one of three of the following states:
1. set by a value transmitted by the encoder
2. retain a value previously sent by the encoder
3. interpolated by the decoder

FAP values which have been initialized in an intra coded FAP set are assumed to retain those
values if subsequently masked out unless a special mask mode is used to indicate interpolation
by the decoder. FAP values which have never been initialized must be estimated by the decoder.
For example, if only FAP group 2 (inner lip) is used and FAP group 8 (outer lip) is never used, the
outer lip points must be estimated by the decoder. In a second example the FAP decoder is also
expected to enforce symmetry when only the left or right portion of a symmetric FAP set is
received (e.g. if the left eye is moved and the right eye is subject to interpolation, it is to be
moved in the same way as the left eye).

DCT based face object decoding

The bitstream is decoded into segments of FAPs, where each segment is composed of a temporal
sequence of 16 FAP object planes. The block diagram of the decoder is shown in Figure 7-48.

Huffman
Decoding

Inverse
Quantization

Inverse
DCT

Memory
Buffer

DC

Huffman
Decoding

Run-Length
Decoding

Inverse
Quantization

AC

FAPs

Figure 7-48 -- Block diagram of the DCT-based decoding process

The DCT-based decoding process consists of the following three basic steps:
1. Differential decoding the DC coefficient of a segment.
2. Decoding the AC coefficients of the segment
3. Determining the 16 FAP values of the segment using inverse discrete cosine transform

(IDCT).
A uniform quantization step size is used for all AC coefficients. The quantization step size for AC
coefficients is obtained as follows:

2001 INTERNAL REPORT EURECOM - FTR&D

- 56 -

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i]

where DCTQP[i] is the base quantization step size and its value is defined in a subclause of the
ISO/IEC 14496-2 (Maui version). The quantization step size of the DC coefficient is one-third of
the AC coefficients. Different quantization step sizes are used for different FAPs.

The DCT-based decoding process is applied to all FAP segments except the viseme (FAP #1) and
expression (FAP #2) parameters. The latter two parameters are differential decoded without
transform. The decoding of viseme and expression segments are described at the end of this
subclause.

For FAP #3 to FAP #68, the DC coefficient of an intra coded segment is stored as a 16-
bit signed integer if its value is within the 16-bit range. Otherwise, it is stored as a 31-
bit signed integer. For an inter coded segment, the DC coefficient of the previous
segment is used as a prediction of the current DC coefficient. The prediction error is
decoded using a Huffman table of 512 symbols. . An "ESC" symbol, if obtained,
indicates that the prediction error is out of the range [-255, 255]. In this case, the next
16 bits extracted from the bitstream are represented as a signed 16-bit integer for the
prediction error. If the value of the integer is equal to -256*128, it means that the
value of the prediction error is over the 16-bit range. Then the following 32 bits from
the bitstream are extracted as a signed 32-bit integer, in twos complement format and
the most significant bit first

The AC coefficients, for both inter and intra coded segments, are decoded using
Huffman tables. The run-length code indicates the number of leading zeros before each
non-zero AC coefficient. The run-length ranges from 0 to 14 and proceeds the code for
the AC coefficient. The symbol 15 in the run length table indicates the end of non-zero
symbols in a segment. Therefore, the Huffman table of the run-length codes contains 16
symbols. The values of non-zero AC coefficients are decoded in a way similar to the
decoding of DC prediction errors but with a different Huffman table.

The bitstreams corresponding to viseme and expression segments are basically differential
decoded without IDCT. For an intra coded segment, the quantized values of the first
viseme_select1, viseme_select2, viseme_blend, expression_select1, expression_select2,
expression_intensity1, and expression_intensity2 within the segment are decoded using fixed
length code. These first values are used as the prediction for the second viseme_select1,
viseme_select2, … etc of the segment and the prediction error are differential decoded using
Huffman tables. For an inter coded segment, the last viseme_select1, for example, of the
previous decoded segment is used to predict the first viseme_select1 of the current segment. In
general, the decoded values (before inverse quantization) of differential coded viseme and
expression parameter fields are obtained

2001 INTERNAL REPORT EURECOM - FTR&D

- 57 -

byviseme_segment_select1q[k] = viseme_segment_select1q[k-1] +
viseme_segment_select1q_diff[k] - 14

viseme_segment_select2q[k] = viseme_segment_select2q[k-1] +
viseme_segment_select2q_diff[k] - 14

viseme_segment_blendq[k] = viseme_segment_blendq[k-1] +
viseme_segment_blendq_diff[k] - 63

expression_segment_select1q[k] = expression_segment_select1q[k-1] +
expression_segment_select1q_diff[k] - 6

expression_segment_select2q[k] = expression_segment_select2q[k-1] +
expression_segment_select2q_diff[k] - 6

expression_segment_intensity1q[k] = expression_segment_intensity1q[k-1] +
expression_segment_intensity1q_diff[k] - 63

expression_segment_intensity2q[k] = expression_segment_intensity2q[k-1] +
expression_segment_intensity2q_diff[k] - 63

Decoding of the viseme parameter fap 1

Fourteen visemes have been defined for selection by the Viseme Parameter FAP 1. The viseme
parameter allows two visemes from a standard set to be blended together. The viseme
parameter is composed of a set of values as follows.

Table 7-17 -- Viseme parameter range

viseme () { Range

viseme_select1 0-14

viseme_select2 0-14

viseme_blend 0-63

viseme_def 0-1

}

Viseme_blend is quantized (step size = 1) and defines the blending of viseme1 and viseme2 in
the decoder by the following symbolic expression where viseme1 and 2 are graphical
interpretations of the given visemes as suggested in the non-normative annex.

final viseme = (viseme 1) * (viseme_blend / 63) + (viseme 2) * (1 - viseme_blend / 63)

The viseme can only have impact on FAPs that are currently allowed to be interpolated.
If the viseme_def bit is set, the current mouth FAPs can be used by the decoder to define the
selected viseme in terms of a table of FAPs. This FAP table can be used when the same viseme is
invoked again later for FAPs which must be interpolated.

Decoding of the viseme parameter fap 2

The expression parameter allows two expressions from a standard set to be blended
together. The expression parameter is composed of a set of values as follows.

Table 7-18 -- Expression parameter range

expression () { Range

expression_select1 0-6

2001 INTERNAL REPORT EURECOM - FTR&D

- 58 -

expression_intensity1 0-63

expression_select2 0-6

expression_intensity2 0-63

init_face 0-1

expression_def 0-1

}

Expression_intensity1 and expression_intensity2 are quantized (step size = 1) and define
excitation of expressions 1 and 2 in the decoder by the following equations where expressions 1
and 2 are graphical interpretations of the given expression as suggested by the non-normative
reference:

final expression = expression1 * (expression_intensity1 / 63)+ expression2 *
(expression_intensity2 / 63)

The decoder displays the expressions according to the above fomula as a superposition of the 2
expressions.

The expression can only have impact on FAPs that are currently allowed to be
interpolated. If the init_face bit is set, the neutral face may be modified within the
neutral face constraints of mouth closure, eye opening, gaze direction, and head
orientation before FAPs 3-68 are applied. If the expression_def bit is set, the current
FAPs can be used to define the selected expression in terms of a table of FAPs. This FAP
table can then be used when the same expression is invoked again later.

Fap masking

The face is animated by sending a stream of facial animation parameters. FAP masking, as
indicated in the bitstream, is used to select FAPs. FAPs are selected by using a two level mask
hierarchy. The first level contains two bit code for each group indicating the following options:
1. no FAPs are sent in the group.
2. a mask is sent indicating which FAPs in the group are sent. FAPs not selected by the group

mask retain their previous value if any previously set value (not interpolated by decoder if
previously set)

3. a mask is sent indicating which FAPs in the group are sent. FAPs not selected by the group
mask retain must be interpolated by the decoder.

4. all FAPs in the group are sent.

Output of the decoding process for SNHC

Here we describe the output of the theoretical model of the decoding process that decodes
bitstreams conforming to the Visual part of ISO/IEC 14496.

The visual decoding process input is one or more coded visual bitstreams (one for each of the
layers). The visual layers are generally multiplexed by the means of a system stream that also
contains timing information.

Video data

2001 INTERNAL REPORT EURECOM - FTR&D

- 59 -

The output of the video decoding process is a series of VOPs that are normally the input of a
display process. The order in which fields or VOPs are output by the decoding process is called
the display order, and may be different from the coded order (when B-VOPs are used).

2D Mesh data
The output of the decoding process is a series of one or more mesh object planes. The mesh
object planes are normally input to a compositor that maps the texture of a related video object
or still texture object onto each mesh. The coded order and the composited order of the mesh
object planes are identical.

Face animation parameter data
The output of the decoding process is a sequence of facial animation parameters. They are input
to a display process that uses the parameters to animate a face object.

INTEGRATION INTO MPEG-4 SYSTEMS

In order to use face animation in the context of MPEG-4 systems, a BIFS scene graph has to be
transmitted to the decoder. The minimum scene graph contains a Face node and a FAP node.
The FAP decoder writes the amplitude of the FAPs into fields of the FAP node. The FAP node
might have the children Viseme and Expression which are FAPs requiring a special syntax. This
scene graph would enable an encoder to animate the proprietary face model of the decoder. If a
face model is to be controlled from a TTS system, an AudioSource node is to be attached to the
face node.

In order to download a face model to the decoder, the face node requires an FDP node as one of
its children. This FDP node contains the position of the feature points in the downloaded model,
the scene graph of the model and the FaceDefTable, FaceDefMesh and FaceDefTransform nodes
required to define the action caused by FAPs.

BIFS Syntax for Face Animation

Node interface

Face {
exposedField SFNode fit NULL

 exposedField SFNode fdp NULL
 exposedField SFNode fap NULL

exposedField SFNode ttsSource NULL
 exposedField MFNode renderedFace NULL
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.36.

Functionality and semantics

The Face node is used to define and animate a face in the scene. In order to animate
the face with a facial animation stream, it is necessary to link the Face node to a BIFS-
Anim stream. The node shall be assigned a nodeID, through the DEF mechanism.
Then, as for any BIFS-Anim stream, an animation mask is sent in the object descriptor
of the BIFS-Anim stream (specificInfo field). The animation mask points to the

2001 INTERNAL REPORT EURECOM - FTR&D

- 60 -

Face node using its nodeID. The terminal shall then connect the facial animation
decoder to the appropriate Face node.

The FAP field shall contain a FAP node, describing the facial animation parameters
(FAPs). Each Face node shall contain a non-NULL FAP field.

The FDP field, which defines the particular look of a face by means of downloading the
position of face definition points or an entire model, is optional. If the FDP field is not
specified, the default face model of the terminal shall be used.

The FIT field, when specified, allows a set of FAPs to be defined in terms of another set
of FAPs. When this field is non-NULL, the terminal shall use FIT to compute the
maximal set of FAPs before using the FAPs to compute the mesh.

The ttsSource field shall only be non-NULL if the facial animation is to determine the
facial animation parameters from an audio TTS source (see ISO/IEC 14496-3, section 6).
In this case the ttsSource field shall contain an AudioSource node and the face
shall be animated using the phonemes and bookmarks received from the TTS.

renderedFace is the scene graph of the face after it is rendered (all FAP’s applied).

FaceDefMesh

Node interface

FaceDefMesh {
 field SFNode faceSceneGraphNode NULL
 field MFInt32 intervalBorders []
 field MFInt32 coordIndex []
 field MFVec3f displacements []
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.37.

Functionality and semantics

The FaceDefMesh node allows for the deformation of an IndexedFaceSet as a
function of the amplitude of a FAP as specified in the related FaceDefTable node. The
FaceDefMesh node defines the piece-wise linear motion trajectories for vertices of the
faceSceneGraphNode field, which shall contain an IndexedFaceSet node. This
IndexedFaceSet node belongs to the scenegraph of the faceSceneGraph field of
the FDP node.

The intervalBorders field specifies interval borders for the piece-wise linear
approximation in increasing order. Exactly one interval border shall have the value 0.

The coordIndex field shall contain a list of indices into the Coordinate node of the
IndexedFaceSet node specified by the faceSceneGraphNode field.

2001 INTERNAL REPORT EURECOM - FTR&D

- 61 -

For each vertex indexed in the coordIndex field, displacement vectors are given in the
displacements field for the intervals defined in the intervalBorders field. There
must be exactly (num(intervalBorders)-1)*num(coordIndex) values in this field.

In most cases, the animation generated by a FAP cannot be specified by updating a
Transform node. Thus, a deformation of an IndexedFaceSet node needs to be
performed. In this case, the FaceDefTables shall define which IndexedFaceSets
are affected by a given FAP and how the coord fields of these nodes are updated. This
is done by means of tables.

If a FAP affects an IndexedFaceSet, the FaceDefMesh shall specify a table of the
following format for this IndexedFaceSet:

Table 7 - Vertex displacements

Vertex no. 1st Interval [I1, I2] 2nd Interval [I2, I3] …
Index 1 Displacement D11 Displacement D12 …
Index 2 Displacement D21 Displacement D22 …
… … … …

Exactly one interval border Ik must have the value 0:
[I1, I2], [I2, I3], …[Ik-1, 0], [0, Ik+1], [Ik+1, Ik+2], …[Imax-1, Imax]

During animation, when the terminal receives a FAP, which affects one or more
IndexedFaceSets of the face model, it shall piece-wise linearly approximate the
motion trajectory of each vertex of the affected IndexedFaceSets by using the
appropriate table.

Figure 4 - An arbitrary motion trajectory is approximated as a piece-wise linear one.

If Pm is the position of the mth vertex in the IndexedFaceSet in neutral state (FAP =
0), P’m the position of the same vertex after animation with the given FAP and Dmk the
3D displacement in the kth interval, the following algorithm shall be applied to determine
the new position P’m.
Determine, in which of the intervals listed in the table the received FAP is lying.

If the received FAP is lying in the jth interval [Ij, Ij+1] and 0=Ik ≤ Ij, the new vertex
position P’m of the mth vertex of the IndexedFaceSet is given by:
P’m = FAPU * ((Ik+1-0) * Dm,k + (Ik+2-Ik+1) * Dm, k+1 + … + (Ij - Ij-1) * Dm, j-1 + (FAP-Ij) *
Dm, j) + Pm. (Eq. 1)
If FAP > Imax, then P’m is calculated by using equation Eq. 1 and setting the index j =
max.
If the received FAP is lying in the jth interval [Ij, Ij+1] and Ij+1 ≤ Ik=0, the new vertex
position P’m is given by:

2001 INTERNAL REPORT EURECOM - FTR&D

- 62 -

P’m = FAPU * ((Ij+1 - FAP) * Dm, j + (Ij+2 - Ij+1) * Dm, j+1 + … + (Ik-1 - Ik-2) * Dm, k-2 + (0 -
Ik-1) * Dm, k-1) + Pm (Eq. 2)

If FAP < I1, then P’m is calculated by using equation Eq. 1 and setting the index j+1 = 1.
If for a given FAP and IndexedFaceSet the table contains only one interval, the
motion is strictly linear:
P’m = FAPU * FAP * Dm1 + Pm.

EXAMPLE

FaceDefMesh {
objectDescriptorID UpperLip
intervalBorders [-1000, 0, 500, 1000]
coordIndex [50, 51]
displacements [1 0 0, 0.9 0 0, 1.5 0 4, 0.8 0 0, 0.7 0 0, 2 0 0]

}

This FaceDefMesh defines the animation of the mesh “UpperLip”. For the piecewise-linear motion
function three intervals are defined: [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the
vertices with the indices 50 and 51. The displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4),
the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and (2 0 0). Given a FAPValue of 600, the resulting
displacement for vertex 50 would be:

displacement(vertex 50) = 500*(0.9 0 0)T + 100 * (1.5 0 4)T = (600 0 400)T.

If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -I, as appropriate.

FaceDefTables

Node interface

FaceDefTables {
 field SFInt32 fapID 0
 field SFInt32 highLevelSelect 0
 exposedField MFNode faceDefMesh []

exposedField MFNode faceDefTransform []
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.38.

Functionality and semantics

The FaceDefTables node defines the behavior of a facial animation parameter FAP on
a downloaded face model in faceSceneGraph by specifying the displacement vectors
for moved vertices inside IndexedFaceSet objects as a function of the FAP fapID
and/or specifying the value of a field of a Transform node as a function of FAP fapID.

The FaceDefTables node is transmitted directly after the BIFS bitstream of the FDP
node. The FaceDefTables lists all FAPs that animate the face model. The FAPs
animate the downloaded face model by updating the Transform or IndexedFaceSet
nodes of the scene graph in faceSceneGraph. For each listed FAP, the
FaceDefTables node describes which nodes are animated by this FAP and how they
are animated. All FAPs that occur in the bitstream have to be specified in the

2001 INTERNAL REPORT EURECOM - FTR&D

- 63 -

FaceDefTables node. The animation generated by a FAP can be specified either by
updating a Transform node (using a FaceDefTransform), or as a deformation of an
IndexedFaceSet (using a FaceDefMesh).

The FAPUs shall be calculated by the terminal using the feature points that shall be
specified in the FDP. The FAPUs are needed in order to animate the downloaded face
model.

Semantics

The fapID field specifies the FAP, for which the animation behavior is defined in the
faceDefMesh and faceDefTransform fields.

If fapID has value 1 or 2, the highLevelSelect field specifies the type of viseme or
expression. In other cases this field has no meaning and shall be ignored.

The faceDefMesh field shall contain a FaceDefMesh node.

The faceDefTransform field shall contain a FaceDefTransform node.

FaceDefTransform

Node interface

FaceDefTransform {
field SFNode faceSceneGraphNode NULL

 field SFInt32 fieldId 1
 field SFRotation rotationDef 0, 0, 1, 0
 field SFVec3f scaleDef 1, 1, 1
 field SFVec3f translationDef 0, 0, 0
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.39.

Functionality and semantics

The FaceDefTransform node defines which field (rotation, scale or translation)
of a Transform node (faceSceneGraphNode) of faceSceneGraph (defined in
an FDP node) is updated by a facial animation parameter, and how the field is updated.
If the face is in its neutral position, the faceSceneGraphNode has its translation,
scale, and rotation fields set to the neutral values (0,0,0) T, (1,1,1)T, (0,0,1,0),
respectively.

The faceSceneGraphNode field specifies the Transform node for which the
animation is defined. The node shall be part of faceScenegraph as defined in the
FDP node.

The fieldId field specifies which field in the Transform node, specified by the
faceSceneGraphNode field, is updated by the FAP during animation. Possible fields
are translation, rotation, scale.

2001 INTERNAL REPORT EURECOM - FTR&D

- 64 -

� If fieldID==1, rotation shall be updated using rotationDef and FAPValue.
� If fieldID==2, scale shall be updated using scaleDef and FAPValue.
� If fieldID==3, translation shall be updated using translationDef and FAPValue.

The rotationDef field is of type SFRotation. With rotationDef=(rx,ry,rz,θ), the new
value of the rotation field of the Transform node faceSceneGraphNode is:

rotation: =(rx,ry,rz,θ*FAPValue*AU) [AU is defined in ISO/IEC FCD 14496-2]
The scaleDef field is of type SFVec3f. The new value of the scale field of the
Transform node faceSceneGraphNode is:

scale:= FAPValue*scaleDef
The translationDef field is of type SFVec3f. The new value of the translation field
of the Transform node faceSceneGraphNode is:

translation:= FAPValue*translationDef

FAP

Node interface

FAP {
ExposedField SFNode viseme NULL

 ExposedField SFNode expression NULL
 exposedField SFInt32 open_jaw +I
 exposedField SFInt32 lower_t_midlip +I
 exposedField SFInt32 raise_b_midlip +I
 exposedField SFInt32 stretch_l_corner +I
 exposedField SFInt32 stretch_r_corner +I
 exposedField SFInt32 lower_t_lip_lm +I
 exposedField SFInt32 lower_t_lip_rm +I
 exposedField SFInt32 lower_b_lip_lm +I
 exposedField SFInt32 lower_b_lip_rm +I
 exposedField SFInt32 raise_l_cornerlip +I
 exposedField SFInt32 raise_r_cornerlip +I
 exposedField SFInt32 thrust_jaw +I
 exposedField SFInt32 shift_jaw +I
 exposedField SFInt32 push_b_lip +I
 exposedField SFInt32 push_t_lip +I
 exposedField SFInt32 depress_chin +I
 exposedField SFInt32 close_t_l_eyelid +I
 exposedField SFInt32 close_t_r_eyelid +I
 exposedField SFInt32 close_b_l_eyelid +I
 exposedField SFInt32 close_b_r_eyelid +I
 exposedField SFInt32 yaw_l_eyeball +I
 exposedField SFInt32 yaw_r_eyeball +I
 exposedField SFInt32 pitch_l_eyeball +I
 exposedField SFInt32 pitch_r_eyeball +I
 exposedField SFInt32 thrust_l_eyeball +I
 exposedField SFInt32 thrust_r_eyeball +I
 exposedField SFInt32 dilate_l_pupil +I
 exposedField SFInt32 dilate_r_pupil +I
 exposedField SFInt32 raise_l_i_eyebrow +I
 exposedField SFInt32 raise_r_i_eyebrow +I
 exposedField SFInt32 raise_l_m_eyebrow +I

2001 INTERNAL REPORT EURECOM - FTR&D

- 65 -

 exposedField SFInt32 raise_r_m_eyebrow +I
 exposedField SFInt32 raise_l_o_eyebrow +I
 exposedField SFInt32 raise_r_o_eyebrow +I
 exposedField SFInt32 squeeze_l_eyebrow +I
 exposedField SFInt32 squeeze_r_eyebrow +I
 exposedField SFInt32 puff_l_cheek +I
 exposedField SFInt32 puff_r_cheek +I
 exposedField SFInt32 lift_l_cheek +I
 exposedField SFInt32 lift_r_cheek +I
 exposedField SFInt32 shift_tongue_tip +I
 exposedField SFInt32 raise_tongue_tip +I
 exposedField SFInt32 thrust_tongue_tip +I
 exposedField SFInt32 raise_tongue +I
 exposedField SFInt32 tongue_roll +I
 exposedField SFInt32 head_pitch +I
 exposedField SFInt32 head_yaw +I
 exposedField SFInt32 head_roll +I
 exposedField SFInt32 lower_t_midlip_o +I
 exposedField SFInt32 raise_b_midlip_o +I
 exposedField SFInt32 stretch_l_cornerlip +I
 exposedField SFInt32 stretch_r_cornerlip_o +I
 exposedField SFInt32 lower_t_lip_lm_o +I
 exposedField SFInt32 lower_t_lip_rm_o +I
 exposedField SFInt32 raise_b_lip_lm_o +I
 exposedField SFInt32 raise_b_lip_rm_o +I
 exposedField SFInt32 raise_l_cornerlip_o +I
 exposedField SFInt32 raise_r_cornerlip_o +I
 exposedField SFInt32 stretch_l_nose +I
 exposedField SFInt32 stretch_r_nose +I
 exposedField SFInt32 raise_nose +I
 exposedField SFInt32 bend_nose +I
 exposedField SFInt32 raise_l_ear +I
 exposedField SFInt32 raise_r_ear +I
 exposedField SFInt32 pull_l_ear +I
 exposedField SFInt32 pull_r_ear +I
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.40.

Functionality and semantics

This node defines the current look of the face by means of expressions and FAPs and
gives a hint to TTS controlled systems on which viseme to use. For a definition of the
facial animation parameters see ISO/IEC 14496-2, Annex C.

The viseme field shall contain a Viseme node.

The expression field shall contain an Expression node.

The semantics for the remaining fields are described in the ISO/IEC 14496-2, Annex C
and in particular in Table C-1.

A FAP of value +I shall be interpreted as indicating that the particular FAP is
uninitialized.

2001 INTERNAL REPORT EURECOM - FTR&D

- 66 -

FDP

Node interface

FDP {
 exposedField SFNode featurePointsCoord NULL
 exposedField SFNode textureCoords NULL

exposedField SFBool useOrthoTexture FALSE
 ExposedField MFNode faceDefTables []
 ExposedField MFNode faceSceneGraph []
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.41.

Functionality and semantics

The FDP node defines the face model to be used at the terminal. Two options are
supported:
1. If faceDefTables is NULL, calibration information is downloaded, so that the proprietary

face of the terminal can be calibrated using facial feature points and, optionally, the texture
information. In this case, the featurePointsCoord field shall be set.
featurePointsCoord contains the coordinates of facial feature points, as defined in
ISO/IEC 14496-2, Annex C, Figure C-1, corresponding to a neutral face. If a coordinate of a
feature point is set to +I, the coordinates of this feature point shall be ignored. The
textureCoord field, if set, is used to map a texture on the model calibrated by the feature
points. The textureCoord points correspond to the feature points. That is, each defined
feature point shall have corresponding texture coordinates. In this case, the
faceSceneGraph shall contain exactly one texture image, and any geometry it might
contain shall be ignored. The terminal shall interpret the feature points, texture coordinates,
and the faceSceneGraph in the following way:

Feature points of the terminal’s face model shall be moved to the coordinates of the feature
points supplied in featurePointsCoord, unless a feature point is to be ignored, as explained
above.
If textureCoord is set, the texture supplied in the faceSceneGraph shall be mapped onto the
terminal's default face model. The texture coordinates are derived from the texture coordinates of
the feature points supplied in textureCoords. The useOrthoTexture field provides a hint to
the decoding terminal that, when FALSE, indicates that the texture image is best obtained by
cylindrical projection of the face. If useOrthoTexture is TRUE, the texture image is best
obtained by orthographic projection of the face.

2. A face model as described in the faceSceneGraph is decoded. This face model replaces
the terminal's default face model in the terminal. The faceSceneGraph shall contain the
face in its neutral position (all FAPs = 0). If desired, the faceSceneGraph shall contain the
texture maps of the face. The functions defining the way in which the faceSceneGraph
shall be modified, as a function of the FAPs, shall also be decoded. This information is
described by faceDefTables that define how the faceSceneGraph is to be modified as a
function of each FAP. By means of faceDefTables, IndexedFaceSets and
Transform nodes of the faceSceneGraph can be animated. Since the amplitude of FAPs
is defined in units that are dependent on the size of the face model, the

2001 INTERNAL REPORT EURECOM - FTR&D

- 67 -

featurePointsCoord field defines the position of facial features on the surface of the face
described by faceSceneGraph. From the location of these feature points, the terminal
computes the units of the FAPs. Generally, only two node types in the scene graph of a
decoded face model are affected by FAPs: IndexedFaceSet and Transform nodes. If
a FAP causes a deformation of an object (e.g. lip stretching), then the coordinate positions in
the affected IndexedFaceSets shall be updated. If a FAP causes a movement which can
be described with a Transform node (e.g. FAP 23, yaw_l_eyeball), then the appropriate
fields in this Transform node shall be updated. It shall be assumed that this Transform
node has its rotation, scale, and translation fields set to neutral values if the face is in
its neutral position. A unique nodeId shall be assigned via the DEF statement to all
IndexedFaceSet and Transform nodes which are affected by FAPs so that they can
be accessed unambiguously during animation.

The featurePointsCoord field shall contain a Coordinate node that specifies
feature points for the calibration of the terminal's default face. The coordinates are
specified in the point field of the Coordinate node in the prescribed order, that a
feature point with a lower label number is listed before a feature point with a higher
label number.

EXAMPLE Feature point 3.14 before feature point 4.1

The textureCoords field shall contain a Coordinate node that specifies texture
coordinates for the feature points. The coordinates are listed in the point field in the
Coordinate node in the prescribed order, that a feature point with a lower label is
listed before a feature point with a higher label.

The useOrthoTexture field may contain a hint to the terminal as to the type of
texture image, in order to allow better interpolation of texture coordinates for the
vertices that are not feature points. If useOrthoTexture is FALSE, the terminal may
assume that the texture image was obtained by cylindrical projection of the face. If
useOrthoTexture is 1, the terminal may assume that the texture image was obtained
by orthographic projection of the face.

The faceDefTables field shall contain FaceDefTables nodes. The behavior of FAPs
is defined in this field for the face in faceSceneGraph.

The faceSceneGraph field shall contain a Group node. In the case of option 1
(above), this may be used to contain a texture image as described above. In the case of
option 2, this shall be the grouping node for the face model rendered in the compositor
and shall contain the face model. In this case, the effect of facial animation parameters
is defined in the faceDefTables field.

FIT

Node interface

FIT {
exposedField MFInt32 FAPs []

 exposedField MFInt32 graph []

2001 INTERNAL REPORT EURECOM - FTR&D

- 68 -

 exposedField MFInt32 numeratorTerms []
 exposedField MFInt32 denominatorTerms []

exposedField MFInt32 numeratorExp []
exposedField MFInt32 denominatorExp []
exposedField MFInt32 numeratorImpulse []

 exposedField MFFloat numeratorCoefs []
 exposedField MFFloat denominatorCoefs []
}

NOTE — For the binary encoding of this node see Document MPEG-4 NODES A.1.42.

Functionality and semantics

The FIT node allows a smaller set of FAPs to be sent during a facial animation. This
small set can then be used to determine the values of other FAPs, using a rational
polynomial mapping between parameters. In a FIT node, rational polynomials are used
to specify interpolation functions.

EXAMPLE The top inner lip FAPs can be sent and then used to determine the top outer lip FAPs.
Another example is that only viseme and/or expression FAPs are sent to drive the face. In this case, low-
level FAPs are interpolated from these two high-level FAPs.

To make the scheme general, sets of FAPs are specified, along with a FAP interpolation
graph (FIG) between the sets that specifies which sets are used to determine which
other sets. The FIG is a graph with directed links. Each node contains a set of FAPs.
Each link from a parent node to a child node indicates that the FAPs in the child node
can be interpolated from the parent node. Expression (FAP#1) or Viseme (FAP #2)
and their fields shall not be interpolated from other FAPs.

In a FIG, a FAP may appear in several nodes, and a node may have multiple parents.
For a node that has multiple parent nodes, the parent nodes are ordered as 1st parent
node, 2nd parent node, etc. During the interpolation process, if this child node needs to
be interpolated, it is first interpolated from 1st parent node if all FAPs in that parent
node are available. Otherwise, it is interpolated from 2nd parent node, and so on.
An example of FIG is shown in Figure 5. Each node has a nodeID. The numerical label
on each incoming link indicates the order of these links.

expression

lower_t_midlip

raise_b_midlip

bottom_inner_lip FAPs

bottom_outer_lip FAPs

top_outer_lip FAPs

top_inner_lip FAPs

1
1

1

1

2

2

2

2

1

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

2001 INTERNAL REPORT EURECOM - FTR&D

- 69 -

Figure 5 - A FIG example

The interpolation process based on the FAP interpolation graph is described using
pseudo-C code as follows:
do {

interpolation_count = 0;
for (all Node_i) { // from Node_1 to Node_N

for (ordered Node_i’s parent Node_k) {
if (FAPs in Node_i need interpolation and

FAPs in Node_k have been interpolated or are available) {
interpolate Node_i from Node_k; //using interpolation function

// table here
interpolation_count ++;
break;

}
}

}
} while (interpolation_count != 0);

Each directed link in a FIG is a set of interpolation functions. Suppose F1, F2, …, Fn are
the FAPs in a parent set and f1, f2, …, fm are the FAPs in a child set.
Then, there are m interpolation functions denoted as:
f1 = I1(F1, F2, …, Fn)
f2 = I2(F1, F2, …, Fn)
…
fm = Im(F1, F2, …, Fn)
Each interpolation function Ik () is in a rational polynomial form if the parent node does
not contain viseme FAP or expression FAP.

� ∏� ∏=
−

= =

−

= =

1

0 1

1

0 1
21)()(),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jin

ijij FbFcFFFI

Otherwise, an impulse function is added to each numerator polynomial term to allow
selection of expression or viseme.

� ∏� ∏−=
−

= =

−

= =

1

0 1

1

0 1
21)())((),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jiisn

ijij
i

FbFcaFFFFI δ

In both equations, K and P are the numbers of polynomial products, ci and ib are the
coefficient of the ith product. lij and ijm are the power of Fj in the ith product. An

impulse function equals 1 when is aF
i

= , otherwise, equals 0.
isF can only be

viseme_select1, viseme_select2, expression_select1, and expression_select2. ia is an

integer that ranges from 0 to 6 when
isF is expression_select1 or expression_select2,

ranges 0 to 14 when
isF is viseme_select1 or viseme_select2. The encoder shall send

an interpolation function table which contains K , P , ia , is , ci , ib , lij , ijm to the terminal.

To aid in the explanation below, it is assumed that there are N different sets of FAPs
with index 1 to N, and that each set has ni, i=1,..,N parameters. It is also assumed that

2001 INTERNAL REPORT EURECOM - FTR&D

- 70 -

there are L directed links in the FIG and that each link points from the FAP set with
index Pi to the FAP set with index Ci, for i = 1, .. , L

The FAPs field shall contain a list of FAP-indices specifying which animation parameters
form sets of FAPs. Each set of FAP indices is terminated by –1. There shall be a total of
N + n1 + n2 + … + nN numbers in this field, with N of them being –1. FAP#1 to FAP#68
are of indices 1 to 68. Fields of the Viseme FAP (FAP#1), namely, viseme_select1,
viseme_select2, viseme_blend, are of indices from 69 to 71. Fields of the
Expression FAP (FAP#2), namely, expression_select1, expression_select2,
expression_intensity1, expression_intensity2 are of indices from 72 to 75.
When the parent node contains a Viseme FAP, three indices, 69, 70, 71, shall be
included in the node (but not index 1). When a parent node contains an Expression
FAP, four indices, 72,73,74,75, shall be included in the node (but not index 2).

The graph field shall contain a list of pairs of integers, specifying a directed links
between sets of FAPs. The integers refer to the indices of the sets specified in the FAPs
field, and thus range from 1 to N. When more than one direct link terminates at the
same set, that is, when the second value in the pair is repeated, the links have
precedence determined by their order in this field. This field shall have a total of 2L
numbers, corresponding to the directed links between the parents and children in the
FIG.
The numeratorTerms field shall be a list containing the number of terms in the
polynomials of the numerators of the rational functions used to interpolate parameter
values. Each element in the list corresponds to K in equation 1 above). Each link i (that
is, the ith integer pair) in the graph field must have nCi values specified, one for each
child FAP. The order in the numeratorTerms list shall correspond to the order of the
links in the graph field and the order that the child FAP appears in the FAPs field.
There shall be nC1 + nC2 + … + nCL numbers in this field.

The denominatorTerms field shall contain a list of the number of terms in the
polynomials of the denominator of the rational functions controlling the parameter value.
Each element in the list corresponds to P in equation 1. Each link i (that is, the ith
integer pair) in the graph field must have nCi values specified, one for each child FAP.
The order in the denominatorTerms list corresponds to the order of the links in the
graph field and the order that the child FAP appears in the FAPs field. There shall be
nC1 + nC2 + … + nCL numbers in this field.
The numeratorImpulse field shall contain a list of impulse functions in the
numerator of the rational function for links with the Viseme or Expression FAP in
parent node. This list corresponds to the)(is aF

i
−δ . Each entry in the list is (is , ia).

The numeratorExp field shall contain a list of exponents of the polynomial terms in
the numerator of the rational function controlling the parameter value. This list
corresponds to lij . For each child FAP in each link i, nPi*K values need to be specified.

The order in the numeratorExp list shall correspond to the order of the links in the
graph field and the order that the child FAP appears in the FAPs field.

NOTE — K may be different for each child FAP.

2001 INTERNAL REPORT EURECOM - FTR&D

- 71 -

The denominatorExp field shall contain a list of exponents of the polynomial terms of
the denominator of the rational function controlling the parameter value. This list
corresponds to ijm . For each child FAP in each link i, nPi*P values need to be specified.

The order in the denominatorExp list shall correspond to the order of the links in the
graph field and the order that the child FAP appears in the FAPs field.

NOTE — P may be different for each child FAP.

The numeratorCoefs field shall contain a list of coefficients of the polynomial terms
of the numerator of the rational function controlling the parameter value. This list
corresponds to ci . The list shall have K terms for each child parameter that appears in a
link in the FIG, with the order in numeratorCoefs corresponding to the order in
graph and FAPs.

NOTE — K is dependent on the polynomial, and is not a fixed constant.

The denominatorCoefs field shall contain a list of coefficients of the polynomial
terms in the numerator of the rational function controlling the parameter value. This list
corresponds to ib . The list shall have P terms for each child parameter that appears in a
link in the FIG, with the order in denominatorCoefs corresponding to the order in
graph and FAPs.

NOTE — P is dependent on the polynomial, and is not a fixed constant.

EXAMPLE Suppose a FIG contains four nodes and 2 links. Node 1 contains FAP#3, FAP#3, FAP#5.
Node 2 contains FAP#6, FAP#7. Node 3 contains an expression FAP, which means contains FAP#72,
FAP#73, FAP#74, and FAP#75. Node 4 contains FAP#12 and FAP#17. Two links are from node 1 to node
2, and from node 3 to node 4. For the first link, the interpolation functions are

)65/()432(5435
2

435436 FFFFFFFFFF ++++=

47 FF = .

For the second link, the interpolation functions are

)6.0)(6()6.0)(6(7573747212 FFFFF −+−= δδ

)5.1)(6()5.1)(6(7573747217 FFFFF −−+−−= δδ .

The second link simply says that when the expression is surprise (FAP#72=6 or FAP#73=6), for FAP#12,
the value is 0.6 times of expression intensity FAP#74 or FAP#75; for FAP#17, the value is –1.5 tims of
FAP#74 or FAP#75.

After the FIT node given below, we explain each field separately.
FIT {

FAPs [3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
graph [1 2 3 4]
numeratorTerms [4 1 2 2]
denominatorTerms [2 1 1 1]
numeratorExp [1 0 0 0 1 0 0 0 1 1 2 0 0 1 0

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1]
denominatorExp [0 0 1 1 1 1 0 0 0

2001 INTERNAL REPORT EURECOM - FTR&D

- 72 -

0 0 0 0 0 0 0 0]
numeratorImpulse [72 6 73 6 72 6 73 6]
numeratorCoefs [1 2 3 4 1 0.6 0.6 -1.5 –1.5]
denominatorCoefs [5 6 1 1 1]

}

FAPs [3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
Four sets of FAPs are defined, the first with FAPs number 3, 4, and 5, the second with FAPs number 6 and
7, the third with FAPs number 72, 73, 74, 75, and the fourth with FAPs number 12, 17.

graph [1 2 3 4]
The first set is made to be the parent of the second set, so that FAPs number 6 and 7 will be determined by
FAPs 3, 4, and 5. Also, the third set is made to be the parent of the fourth set, so that FAPs number 12 and
17 will be determined by FAPs 72, 73, 74, and 75.

numeratorTerms [4 1 2 2]
The rational functions that define F6 and F7 are selected to have 4 and 1 terms in their numerator,
respectively. Also, the rational functions that define F12 and F17 are selected to have 2 and 2 terms in their
numerator, respectively.

denominatorTerms [2 1 1 1]
The rational functions that define F6 and F7 are selected to have 2 and 1 terms in their denominator,
respectively. Also, the rational functions that define F12 and F17 are selected to both have 1 term in their
denominator.

numeratorExp [1 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1]
The numerator selected for the rational function defining F6 is F3 + 2F4 + 3 F5 + 4F3F42. There are 3
parent FAPs, and 4 terms, leading to 12 exponents for this rational function. For F7, the numerator is just
F4, so there are three exponents only (one for each FAP). Values for F12 and F17 are derived in the same
way.

denominatorExp [0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]
The denominator selected for the rational function defining F6 is 5F5+ 6F3F4F5 , so there are 3 parent FAPs
and 2 terms and hence, 6 exponents for this rational function. For F7, the denominator is just 1, so there are
three exponents only (one for each FAP). Values for F12 and F17 are derived in the same way.

numeratorImpulse [72 6 73 6 72 6 73 6]

For the second link, all four numerator polynomial terms contain impulse function)6(72 −Fδ or
)6(73 −Fδ .

numeratorCoefs [1 2 3 4 1 0.6 0.6 -1.5 –1.5]
There is one coefficient for each term in the numerator of each rational function.

denominatorCoefs [5 6 1 1 1]
There is one coefficient for each term in the denominator of each rational function.

MPEG-4 PROFILES AND LEVELS FOR FACE ANIMATION

MPEG-4 defines profiles to which decoders have to conform. A profile consists of objects
defining the tools of the profile. Levels of a profile and object put performance and
parameter limits on the tools. MPEG-4 Audio, Visual and Systems define parts of face
animation.

2001 INTERNAL REPORT EURECOM - FTR&D

- 73 -

A profile is a defined sub-set of the entire bitstream syntax that is defined by this part of ISO/IEC
14496. A level is a defined set of constraints imposed on parameters in the bitstream. All
syntactic elements and parameter values which are not explicitly constrained may take any of the
possible values that are allowed by this part of ISO/IEC 14496. A decoder shall be deemed to be
conformant to a given profile at a given level if it is able to properly decode all allowed values of
all syntactic elements as specified by that profile at that level.

Related to SNHC:

 The profiles for synthetic and synthetic/natural hybrid visual content are:
• The Simple Facial Animation Visual Profile provides a simple means to animate a face model,

suitable for applications such as audio/video presentation for the hearing impaired.
• The Scalable Texture Visual Profile provides spatial scalable coding of still image (texture)

objects useful for applications needing multiple scalability levels, such as mapping texture
onto objects in games, and high-resolution digital still cameras.

• The Basic Animated 2-D Texture Visual Profile provides spatial scalability, SNR scalability, and
mesh-based animation for still image (textures) objects and also simple face object
animation.

• The Hybrid Visual Profile combines the ability to decode arbitrary-shaped and temporally
scalable natural video objects (as in the Core Visual Profile) with the ability to decode several
synthetic and hybrid objects, including simple face and animated still image objects. It is
suitable for various content-rich multimedia applications.

The Face Animation part is related to the Synthetic Visual Category of the Visual Profiles
(composed by the Scaleable Texture prof. Ad the Simple Face Animation prof.)

The Simple Face Animation Profile:

All ISO/IEC 14496-2 facial animation decoders (for all object types) are required to generate at
their output a facial model including all the feature points defined in this part of ISO/IEC 14496,
even if some of the features points will not be affected by any information received from the
encoder.
The Simple Face object is not required to implement the viseme_def/expression_def functionality.

Level 1:

number of objects: 1,
The total FAP decode frame-rate in the bitstream shall not exceed 72 Hz ,
The decoder shall be capable of a face model rendering update of at least 15 Hz, and
Maximum bitrate 16 kbit/s.

 Level 2:

maximum number of objects: 4,
The FAP decode frame-rate in the bitstream shall not exceed 72 Hz (this means that the FAP
decode framerate is to be shared among the objects),
The decoder shall be capable of rendering the face models with the update rate of at least 60Hz,
sharable between faces, with the constraint that the update rate for each individual face is not
required to exceed 30Hz, and
Maximum bitrate 32 kbit/s.

From audio profiles and from systems profiles:

In MPEG-4 Audio, the TTSI with the bookmark identifiers for face animation as well as the
interface to the Phoneme/Bookmark-to-FAP-converter is defined. It is part of all Audio profiles.
Using a TTS, any Audio profile and a Visual profile containing the Face object allows to define

2001 INTERNAL REPORT EURECOM - FTR&D

- 74 -

interactive services with face animation at extremely low data rates. Without using a TTS, any
Audio profile and a Visual profile containing the Face object allows to play speech and animate
the proprietary face model.

In order to enable the specification of the face, the BIFS node FDP and its children have to be
transmitted. This is possible for terminals that support the Complete Scene Graph profile and the
Complete Graphics profile.

2001 INTERNAL REPORT EURECOM - FTR&D

- 75 -

Annex C

MPEG-4 FACE OBJECT DESCRIPTION

SF – marks that is a single item
MF – marks that is a vector item

SFNode Face(#36)
{
• SFNode FIT (#42) [NULL]

{
• MFInt32 FAPs [] – enumeration of the FAP used for the interpolation each group separated by –1.
• MFInt32 graph
• MFInt32 numeratorTerms
• MFInt32 denominatorTerms
• MFInt32 numeratorExp
• MFInt32 denominatorExp
• MFInt32 numeratorImpulse
• MFFloat numeratorCoefs
• MFFloat denominatorCoefs
}

• SFNode FDP(#41)[NULL]
{
• SFNode featurePointCoordinate(#24) – Coordinate – MFVec3f point – NULL: It shows the FPD 3D coord. in the specific order. [NULL]
• SFNode textureCoords(#25) – Coordinate2D – MFVec2f – It shoe the texture coordinates in the specific order. [NULL]
• SFBool useOrthoTexture – Tells the kind of projection to be used: true = orthogonal, false = cylindrical. [FALSE]
• MFNode faceDefTables (#38) []

{
• SFInt32 fapID – is the ID number of the described FAP [0]
• SFInt32 highLevelSelect – 1 � we are dealing with a viseme; 2 � we are dealing with an expression; other � ignore it. [0]
• MFNode faceDefMesh(#37)[]

{
• SFNode faceSceneGraphNode – IndexedFaceSet(#48) – It contains the coordinates belonging to the part we want to move. It should

be a subset of the sceneGraph field of the FPD node [NULL] LOOK: ISO/IEC … subclause 6.23 [10]
{
• MFInt32 set_colorIndex
• MFInt32 set_coordIndex
• MFInt32 normalIndex
• MFInt32 set_texCoordIndex
• SFNode color [NULL]
• SFNode coord [NULL]
• SFNode normal [NULL]
• SFNode texCoord [NULL]
• SFBool ccw [TRUE]
• MFInt32 colorIndex []
• SFBool colorPerVertex [TRUE]
• SFBool convex [TRUE]
• MFInt32 coordIndex []
• SFFloat creaseAngle 0.0
• MFInt32 normalIndex[]
• SFBool normalPervertex[TRUE]
• SFBool solid [TRUE]
• MFInt32 texCoordIndex []
}

• MFInt32 intervalBorders – specifies interval borders for the piece-wise linear approximation in increasing order. One interval border
shall have the value 0. []

• MFInt32 coordIndex – the number of the coordinate of the previous IndexedFaceSet whose movement we want to define []
• MFVec3f displacement – for each Index it should display the displacement vector for each interval. []
}

• MFNode faceDefTransform (#39)[]
{
• SFNode faceSceneGraphNode – a subset already defined in the sceneGraph of the FDP. [NULL]
• SFInt32 fieldId – 1 � rotation; 2 � scale; 3 � translation [1]
• SFRotation rotationDef [0, 0, 1, 0]
• SFVec3f scaleDef [1, 1, 1]
• SFVec3f translationDef [0, 0, 0]
}

 }

2001 INTERNAL REPORT EURECOM - FTR&D

- 76 -

• MFNode faceSceneGraph [] – ALREADY DESCRIBED
 }
• SFNode FAP (#40) – Description of Facial Animation Parameters. [NULL]

{
• SFNode viseme – VISEME node (#97). [NULL]
• SFNode expression – EXPRESSION node (#34). [NULL]
• SFInt32 open_jaw [+l]
• … all FAPs, +l means the FAP has not been initialized.
• SFInt32 pull_r_ear [+l]
}

• SFNode ttsSource - realted to AudioSource if used a TTS if not NULL. [NULL]
• MFNode renderedFace [NULL] It is the face scene graph after all FAPs are applied.
}

2001 INTERNAL REPORT EURECOM - FTR&D

- 77 -

BIBLIOGRAPHY

1. J.-L. Dugelay, Katia Fintzel, S. Valente,. Synthesitc Natural Hybrid Coding for Virtual
Teleconferencing Systems. IEEE Picture Coding Symposium; April 21-23 1999;
Portland Oregon USA

2. S. Valente, J.-L. Dugelay. Face Tracking and Realistic Animations for
Telecommunicant Clones. IEEE Multimedia Jan-Mar 2000

3. S. Valente, J.-L. Dugelay. A Visual Analysis/Synthesis Feedback Loop for Accurate
Face Tracking Preprint submitted to Elsevier Preprint. 2000

4. S. Valente. Analyse, Synthèse et Animation de Clones dans un contexte de
Téléréunion Virtuelle. Ph.D. thesis presented the 2nd of November 1999 at the
Institut Eurécom.

5. ISO/IEC 14496-1 MPEG-4 Part 1: Systems. Atlantic City, November 1998

6. ISO/IEC 14496-2 MPEG-4 Part 2: Visual. Maui, December 1999

7. Tutorial Issue on the MPEG-4 Standard. Signal Processing Image Communication.
Vol. 15, Nos. 4-5, January 2000

8. S. Valente, A. C. Andrés del Valle, J.-L. Dugelay. Analysis and Reproduction of Facial
Expressions for Realistic Communicating Clones. To appear in The Journal of VLSI
and Signal Processing, Autumn 2000.

