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Abstract. Accurate remote pulse rate measurement from RGB face
videos has gained a lot of attention in the past years since it allows
for a non-invasive contactless monitoring of a subject’s heart rate, useful
in numerous potential applications. Nowadays, there is a global trend
to monitor e-health parameters without the use of physical devices en-
abling at-home daily monitoring and telehealth. This paper includes a
comprehensive state-of-the-art on remote heart rate estimation from face
images. We extensively tested a new framework to better understand sev-
eral open questions in the domain that are: which areas of the face are
the most relevant, how to manage video color components and which
performances are possible to reach on a public relevant dataset. From
this study, we extract key elements to design an optimal, up-to-date and
reproducible framework that can be used as a baseline for accurately es-
timating the heart rate of a human subject, in particular from the cheek
area using the green (G) channel of a RGB video. The results obtained
in the public database COHFACE support our input data choices and
our 3D-CNN structure as optimal for a remote HR estimation.

Keywords: Remote HR estimation · 3D-CNN · G channel · ROI

1 Introduction

Heart rate (HR) is an important physiological signal that reflects the physical
and emotional status of an individual. Monitoring physiological parameters, such
as heart rate is of great importance to address an individuals’ health status and
it is beneficial not only for patients in critical situations, but also for high-risk
patients in home-care and outdoor areas [2]. Photoplethysmography (PPG) is
a low-cost and noninvasive means of sensing the cardiovascular blood volume
pulse through subtle color variations in reflected light of human skin [1]. Al-
though PPG is typically implemented using dedicated light sources, Verkruysse
et al. [32] showed that using ambient light as illumination source it is sufficient
to capture a person’s vital signs from RGB videos. Remote PPG technologies
(rPPG), allow for non-intrusive measurements, highly relevant when contact has
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to be prevented (e.g. skin-damage) or users’ cooperation cannot be required (e.g.
surveillance). Some studies showed that a laptop camera is enough to capture
the subtle changes on skin color that lead to a successful HR estimation[21, 22,
24], making it accessible to every individual with a webcam-equipped laptop or
a mobile phone.

In the past years, there has been a growing number of studies dedicated
to remote HR estimation via rPPG using data extracted from face videos [5,
12, 21, 34]. Most of those rPPG algorithms are based on handcrafted features
and consist of a two-stage pipeline which first extract the rPPG signals from
the face, and then perform a frequency analysis to estimate the corresponding
average HR from a peak detection algorithm. They also require different prepro-
cessing techniques such as skin segmentation, color space transformation, signal
decomposition and filtering steps among others. Some filters require parameter
adjustment and tuning according to the data that is being used, making those
approaches nearly impossible to replicate as shown in [7]. Nowadays deep learn-
ing is successfully used in many tasks related to computer vision and medical
analysis, such as body mass index (BMI) estimation from face images [25]. End-
to-end deep neural models have out-performed traditional multi-stage methods
that require hand-crafted feature manipulation being as well possible to repli-
cate. Therefore, recent works have been focused on implementing deep learning
techniques for the rPPG extraction when a large amount of labeled data is avail-
able [4, 17, 20, 28, 29]. Its performance can be also improved by the increasing of
the training set size, unlike previous hand-crafted methods.

The main contributions of this work are the following: 1) We aim to respond
the most common unanswered questions on remote HR estimation by proposing
the first study, to our knowledge, of the influence of different inputs on a 3D-
CNN based HR estimation network, particularly the selection of face region
and the channel choice of a video source. 2) We propose a benchmark for HR
estimation by assembling an optimal and reproducible 3D-CNN that directly
estimates the HR from face videos. 3) The method is evaluated on the publicly
available database COHFACE, allowing comparability with future works, and
evaluated against other learning-based HR estimators.

The rest of this paper is organized as follows. In Section 2 a review of the
state-of-the-art methods for HR estimation is presented. Section 3 describes the
selected neural network that extracts the heart rate from facial videos. The
database description, experimental setup and results are presented in Section 4.
Finally, we conclude with future research directions in Section 5.

2 Related work

In this Section, we give an overview of the state-of-the-art methods for pulse rate
estimation presented in two categories: Hand-crafted approaches and learning-
based models. The hand-crafted methods aim to estimate the rPPG signal from
which the HR is later extracted, while the learning-based models are able to
recover the rPPG signal as well as to directly estimate the HR value. In earlier
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studies, some claims regarding the optimal input unit to use in order to estimate
the HR from skin patches were made. Those claims were proved for hand-crafted
approaches but not exhaustive study was done for the latest works that include
deep learning structures. We aim to identify the most important not-verified
statements and to provide an answer to those open questions in Section 4.

2.1 Hand-crafted rPPG signal estimation

Traditional measurement approaches for extracting human physiological signals
such as HR involve devices that require physical contact. In 2008, Verkruysse
et al. [32] showed that natural light photo-plethysmography could be used for
medical purposes such as remote sensing of vital signs for triage or sport pur-
poses. They also claimed that the G channel of a video contains the strongest
plethysmographic signal due to the fact that hemoglobin absorbs green light
better than red or blue.

Since small variations in reflected light from the skin can be used to estimate
the HR, in the past years, traditional methods studied rPPG measurement from
videos taken with digital cameras by analyzing the color changes on facial re-
gions of interest (ROI). In 2010, Poh et al. [22] presented a non-contact low-cost
method for remotely measuring the HR of a subject using a basic webcam. They
extracted the blood volume pulse from the selected facial ROI by spatially aver-
aging the value of the ROI for each color channel and then applying independent
component analysis to recover the underlying PPG signal. To compute the av-
erage HR value of a video, they applied Fast Fourier Transform (FFT) on the
estimated signal to find the highest power spectrum. In [21], they extended their
work by adding several temporal filters to prune the PPG recovered signal.

Due to the promising results that previous researchers have obtained, several
studies focused on overcoming the problems on rPPG signal recovery. Hann et
al. [5] highlighted the limitations of blind source separation when motion prob-
lems are present in the videos and propose a chrominance-based method that
combines two orthogonal projections of the RGB space. Li et al. [12] approached
the problem of rigid movements by implementing face tracking techniques using
facial landmarks. Their research focused as well on the illumination variation
problem, which influence was rectified with adaptive filters and by comparing
background and foreground illumination. Other authors claimed that the state-
of-the-art approaches were not robust enough in natural conditions and tried to
improve the quality of the rPPG signal. Tulyakov et al. [30] divided the face into
multiple ROI regions and introduced a matrix completion approach to prune
rPPG signals. Wang et al. [34] proposed a projection plane orthogonal to the
skin tone for rPPG pulse extraction and afterwards they expanded their re-
search in [38] proposing a joint face detection and alignment model followed by
an adaptive patch selection method which chooses the best size-variable triangu-
lar patches to exclude undesired facial motions. Later, Niu et al. presented one of
the first real-time rPPG method for continuous HR measurement which included
a multi-patch region selection to remove outlier signals and a distribution-based
model to link the rPPG signal to their best HR estimation [16]. Recent works
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have persisted in the use of hand-crafted methods trying to improve the re-
covered rPPG signal with band-pass filters [11], adding intermediate steps such
as feature points generation for optimum masking and Variational Mode De-
composition (VMD) based filtering [14] or by combining Ensemble Empirical
Mode Decomposition (EEMD) with Multiset Canonical Correlation Analysis
(MCCA) [27].

The main drawback of the presented methods is that they are partly based
on denoising algorithms that do not require any type of training but a complex
parameter tuning, making them extremely difficult to reproduce as pointed out
in previous researches [7]. They include a spatially averaging of the image color
values per ROI which helps in reducing Gaussian noise but fails when the differ-
ent pixels in the ROI do not follow the same distribution. This average operation
is also highly sensitive to different types of noise; motion, lightning and/or sensor
artifacts.

2.2 HR estimation via learning-based models

The first research, to our knowledge, that introduces machine learning techniques
for pulse estimation was presented by Monkaresi et al. [15] in 2013. They pro-
posed a modification of [22] to improve the accuracy of HR detection by adding
machine learning classification techniques in the last step of the pipeline. After
a power spectrum analysis, they explore machine learning techniques to find the
cardiovascular pulse frequency. In 2018, Qiu et al. approached the problem in
a similar way. They applied spatial and temporal filtering to extract the rPPG
signal and then they estimated the corresponding HR using a Convolutional
Neural Network (CNN) [23].

In the recent years, deep-learning models, especially convolutional networks,
have gained more importance in the task of HR estimation. Some of those re-
search works have focused on extracting the rPPG signal from face videos, sim-
ilarly to the traditional methods. In 2018, Chen et al. [4] proposed DeepPhys,
the first end-to-end system for recovering physiological signals using a CNN.
DeepPhys was trained to learn at the same time the most appropriate mask
for ROI selection and to recover the Blood-Volume Pulse (BVP) signals. Yu et
al. [39] proposed the first known approach that includes the use of 3D-CNN for
reconstructing rPPG signals from raw facial videos. In their first research, the
whole video frame is passed as an input of the network and the output is ex-
pected to be the rPPG estimated signal. In a more recent publication [40], they
proposed a two-stage method to extract the rPPG signal in which the 3D-CNN
is used for video enhancement to counter video compression loss. Similar to [39],
Perepelkina et al. [20] developed HeartTrack, a two-stage method that uses a
3D-CNN that recovers the rPPG signal from face frames and a 1D-CNN to map
the signals to their corresponding HR values.

Other works have focused on the task of estimating the HR in beats per
minute (bpm) from face videos, without an intermediate signal estimation step.
In 2018, Spetlik et al. [29] proposed their two-step CNN to directly estimate a
heart rate from a face video. This network consisted on a pipeline of two CNNs,
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the first one extracted a 1D embedding from face images and the second one
mapped this embedding to the estimated HR of a subject. Later on, Wang et
al. [37] proposed a double feature extraction stream by adopting first a low-rank
constraint to guide the network to learn a robust feature representation and
second a rPPG extraction stream. Combining both, they were able to develop
a unified neural network to learn the feature extraction and to estimate HR si-
multaneously. Niu et al. [17] introduced a new data transformation to represent
both, the temporal and the spatial information in a 2D manner from face videos
as input of a deep heart rate estimator. In future researches, they refined this
approach by using multiple ROI volumes as its input [18] and by performing data
augmentation [19]. Song et al. created their own version of spatio-temporal maps
constructed from pulse signals extracted from existing rPPG methods to feed
their CNN [28]. In [8], Hu et al. compared the effectiveness of extracting spatial-
temporal facial features using 2D-CNN against 3D-CNN and in [13] Lokendra et
al. experimented with the utilization of Action Units (AUs) and Temporal Con-
volutional Networks (TCN) for denoising temporal signals and improve the HR
estimation. Other deep learning methods considering the temporal information
of a video for direct HR estimation have been explored. Huang et al. [9] proposed
a deep neural network consisting in 2D convolutional layers and long short-term
memory (LSTM) operations. The first to propose a 3D deep learning architec-
ture were Bousefsaf et al., who presented in [3] a method relying on 3D networks
with embedded synthetic signals in real videos. This 3D network outputs values
recorded in a histogram composed by intervals of 2.5 bpm producing HR predic-
tions per intervals. The model also ensures concurrent mapping by producing a
prediction for each local group of pixels which, as already highlighted by some
users and confirmed by the authors in their git repository, makes the framework
slow since the processing time of one testing sample is on the order of days. As a
way to decrease the number of parameters to leverage the tasks of the network,
the authors used as input of the 3D structure a random shuffle of the group of
pixels in the selected regions of a single channeled frame, and the G-frame was
chosen without any further study supporting this choice.

As stated in this Section many researches have work on the task of extracting
the rPPG signal and/or the HR of a person from facial videos but little attention
has been given on stating an unified criteria for input data choice, specially for
the learning based approaches. We aim to verify some claims by providing a
study on some choices that an author has to make when implementing a deep
learning HR estimator. For this purpose, an overview of recent and relevant
works that use deep learning structures for a direct HR estimation from face
videos is presented in Table 1. The table presents the model structure chosen in
each approach, the type of input data passed to the network, the ROI selected
and the public database (if any) in which their results were reported. As reported
in Table 1 no comparison between input data or ROI is done when the selection
of those needs to be made. The only comparative study made, to the knowledge
of the authors, concerned the performance of a HR when a 2D or a 3D CNN
is selected as network [8]. We aim to enlarge the state of the art by covering



6 N. Mirabet-Herranz et al.

studies such as comparison of different facial areas to be selected as ROI (full
face, cheeks and forehead) and which channels of the input video give the more
valuable information for a CNN-based HR estimator. We will also report our
results in one of the most popular public database for direct HR estimation from
face videos using deep learning based approaches, the COHFACE [7] dataset.

3 Method

3.1 ROI selection

A region of interest (ROI) is a subset of a dataset particularly relevant for a spe-
cific purpose. In our study, a ROI is a part of a video frame that contains relevant
information for our HR task. The right selection of the ROI on a subject’s face
is critical to perform an efficient HR estimation. Despite several research works
have analyzed the facial region leading to the most accurate estimation, these
regions have been tested only with hand-crafted methods [10, 33]. In Section 4,
we aim to contribute to this choice by performing an evaluation comparison
between the most commonly used ROIs for remote HR estimation.

We extract the cheek area from the face videos as described in Fig. 1. First
we divide our videos in 5 second sequences of images creating sub-videos. We
detect from every frame in the sub-video the location of the 68 (x,y)-coordinates
of the dlib landmark detector to map the shape of the face on the image. Then,
we obtain the average landmark points per sub-video and based on those, we
compute a 40×40 pixels sized region of each of the two cheek areas for every
frame of the sub-video. Most of the HR measurement methods tend to average
the color values in the entire ROI and use them as the original rPPG signal. By
performing this step, we loose the local information within each ROI, therefore,
we choose to pass it entirely as input to our neural network.

Fig. 1. Diagram of the proposed ROI extraction approach from a video sequence.

3.2 Green channel selection

In early studies, the strength of the plethysmographic signal in the G channel
of a face video was proved sufficent [32]. This is consistent with the fact that
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Table 1. Overview of the most relevant deep learning structures aiming for a direct HR
estimation from face videos. The table includes the model structure, the type of input
data, the ROI selected, and the public database in which the results were reported.

Paper Year Structure Input data ROI Databases Metrics Code available

HR-CNN [29] 2018 CNN RGB Full frame

COHFACE

MAHNOB

PURE

ECG-Fitness

MAE

RMSE

ρ

Yes

SynRhythm [17] 2018 ResNet18
Spatial-temporal

maps
Nose and cheeks

MAHNOB

MMSE-HR

Me

STDe

RMSE

MER

No

2-stream CNN [37] 2019 Two layer LSTM
Spatial-temporal

maps
Full frame

COHFACE

PURE

MAE

RMSE

ρ

No

RhythmNet [18] 2019 ResNet18
Spatial-temporal

maps
Full face

MAHNOB

MMSE-HR

Me

STDe

MAE

RSME

MER

ρ

Yes but trained

model not shared.

3D-Mapping [3] 2019 3DCNN Shuffled G pixels Full frame UBFC-RPPG

Me

STDe

MAE

RMSE

Yes but trained

model not shared.

Visual-CNN [9] 2020 CONV2D with LSTM RGB Full face -

STDe

MAE

RSME

MER

ρ

No

Robust-CNN [19] 2020 CNN
Spatial-temporal

maps
Full face MMSE-HR

STDe

MAE

RSME

MER

ρ

No

HR-CNN [28] 2020 ResNet18
Spatial-temporal

maps
Nose and cheeks

MAHNOB

ECG-FITNESS

Me

STDe

MAE

RSME

MER

ρ

No

AND-rPPG [13] 2021
Temporal

Convolution Networks
RGB Full face

COHFACE

UBFC-rPPG

STDe

MAE

RSME

ρ

No

rPPGNet [8] 2021 2DCNN vs 3DCNN RGB Full frame
COHFACE

PURE

Me

STDe

MAE

RSME

No

Ours 2022 3D-CNN
RGB vs

R vs G vs B

Full face vs

cheeks vs forehead
COHFACE

Me

STDe

MAE

RSME

MER

ρ

Yes, upon request
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hemoglobin absorbs green light better than red and blue [31] light. However,
in [32] the fact that the R and B channels may contain complementary infor-
mation is highlighted, this is why in Section 4 we perform an evaluation of the
effectiveness of the G channel selection for our method compared to the choice of
R and B channels and the use of the three RGB channels as originally provided
in the video. Other deep learning approaches [3] used as input of their structures
just the G channel of the face videos although our approach differs from theirs in
a crucial point: they consider the selection of the G channel as a way to leverage
the tasks of a CNN, reducing the number of parameters of the network without
any study that justifies the selection.

3.3 Neural network

Convolutional neural networks (CNN) are a type of deep learning models that
usually act directly on raw inputs such as images to extract patterns for various
tasks. CNNs have been proved very efficient, particularly for classification tasks
with which we are dealing in this paper. Those models are often limited to
handling 2D inputs. A three dimensional CNN is a network of processing layers
used to reduce three dimensional data to its key features so that it can be more
easily classified. We model our input data in a three dimensional representation,
where the first two dimensions correspond to the 2D images while the third
dimension represents time.

Recent works on the literature have proved that 3D-CNN structures suc-
cessfully handle 3D data such as videos [35, 36]. We believe in the potential of
3D-CNN for extracting the rPPG information embedded in human faces in the
same way that we suspected that this type of network has not been exploited yet.
Two other works have intended a HR estimation using a 3D-CNN but in our view
major drawbacks from those approaches encourage us to propose our optimal
and reproducible option. In [3] the authors presented a 3D-CNN that produces
a prediction for every pixel present in a video stream leading to a heavy network
that leads to a processing time of days for one test video. In [8] a comparison
between 2D-CNN and 3D-CNN is performed being the rough implementation of
3D-CNN proved to be more suitable for the HR estimation task. In this work,
Hu et al. apply several techniques to improve the performance of both networks
but their main focus lays on adding modules to the 2D-CNN structure leading
to a lack of exploitation of their 3D-CNN.

The architecture of the selected 3D-CNN is shown in Fig. 2. The input video
patch samples are of the size (300, 40, 40, 1) being 300 the number of frames,
(40, 40) the ROI size defined in the Section 3.1 and 1 representing the G chan-
nel. This input data is passed to the first convolution layer, where the video
patch is transformed by kernels, sets of learnable filters. The convolution layers
are followed by pooling layers, where filters evaluate small sections at a time
to abstract the values to maps. We use maxpooling layers, that act as noise
suppressant by taking the highest value of an area. After an alternated use of
convolution layers and pooling layers our network has two dense layers, result-
ing from flattening the last maxpooling layer. Our last dense layer implements
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a softmax function which assigns decimal probabilities to each class to solve the
multi-classification problem. Those decimal probabilities add up to 1 for a faster
convergence. We decided to exploit the softmax function at the output layer of
our network as a way to handle outliers for a better estimation of the HR. By
leveraging classification over regression, our network is more resilient to outliers.

When the probabilities are identified and analyzed, the output is assigned to
a value, in our case, a one hot encoding representation of the HR. The output
of our network is then a vector of length l, being l the number of classes. In
this case, l = 52 classes from 48 to 100 bpm with a step of one. Finally, after
a conversion from one hot encoding vectors to scalar, we perform an average
for all the predictions per sub-video for both cheeks, computing the final HR
prediction.

All the results in this paper are reproducible using open source tools. The
trained model will be publicly available upon request to the authors.

Fig. 2. Model architecture. The network takes the data as a 3D input, then alternates
between 3D Convolutional layers and 3D MaxPool layers, ending with two fully con-
nected layers that output the estimated HR.

3.4 Implementation details

The 3D-CNN structure was implemented in TensorFlow and Keras using a stan-
dard chain of conv3D layers, maxpool3D layers and activation functions. After
each maxpool3D layer, a batch normalization was applied. Batch normalization
was initialized with weights randomly sampled from a Gaussian and their values
were scaled with a value γ and shifted with a value β, parameters learnt during
training. This was performed to avoid a linear activation of the inputs. A dropout
of 0.5 was applied after each batch normalization to ensure a good training pro-
cess by preventing model overfitting. Rectified linear activation functions were
used in every conv3D and dense layer.

The size of the kernels was set to 3×3×3 for the convolutional layers and to
2× 2× 2 for the max pooling layers. The weights of the kernels were initialized
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sampled from a normal distribution with a mean of zero and a standard deviation
of

√
α
n with n equal to the number of input samples. The model was trained for

10 epochs, Adam optimizer was selected with learning rate set to 0.001 and the
loss function chosen was categorical cross-entropy.

4 Experiments

4.1 Experimental settings

Many existing methods reported their results in private self-collected datasets
making difficult a performance comparison of the individual approaches. We
want to demonstrate whether our method is capable of performing under differ-
ent illumination conditions when sometimes part of the subject’s face is barely
illuminated, i.e. the light source comes from one side and not frontal. To vali-
date those hypothesis and enable a fair comparison with other approaches, we
evaluated our method on the public and challenging dataset COHFACE. The
COHFACE dataset [7] is composed of 160 facial videos captured at 20 fps with
a resolution of 640×480 collected from 40 healthy individuals and their physio-
logical signals. The database includes 12 female and 28 male subjects between
19 and 67 years old. Each video has a length of 60 seconds. Physiological read-
ings were taken by a BVP sensor, which measures changes in skin reflectance
to near-infrared lighting caused by the varying oxigen level in the blood due to
heart beating. We converted the BVP signals to HR measurement using a func-
tion from the Bob package o.db.cohface [26]. The videos in this database have
realistic illumination conditions, the subjects are recorded under two different
lighting conditions as shown in Fig. 3: (a) Studio, closed blinds, avoiding natural
light, and using extra light from a spot to homogeneously illuminate the sub-
ject’s face, (b) Natural, all the lights turned off and open blinds. The daylight
videos (b) represent one of the main challenges of this research since the right
side of the subject’s face is not well illuminated, being the value of the pixels
for every channel close to 0. This will generate dark ROI videos that might act
as disturbance to the network in the learning process. But as discussed in [6], a
varied training data, that is representative of realistic conditions, enables deep
learning models to extract information that is independent of the acquisition
scenario. We take advantage of the self-leaning characteristic of neural networks
to face the challenges presented in COHFACE.

Different metrics have been used in the literature for reporting the HR esti-
mation performance of an approach. Evaluating a deep learning algorithm with
different evaluation metrics is an essential part of its validation because it gives
an overall assessment of a model’s performance. We present the mean and stan-
dard deviation (Me, STDe) in bpm of the HR error, the mean absolute HR error
(MAE) in bpm, the root mean squared HR error (RMSE) in bpm, the mean of
error rate percentage (MER) in bpm, and Pearson’s correlation coefficients (ρ).
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Fig. 3. Example video frames of two videos from a subject of the COHFACE dataset.
Frame (a) shows the subject’s face illuminated with studio light and frame (b) with
daylight coming form a left source.

4.2 HR estimation results

In this study, we will compare our method with other deep learning based meth-
ods for direct HR estimation. Similar to [29], we performed a subject-exclusive
split of the videos for training and testing subsets. The training set is composed
of 24 subjects and a testing set of the remaining 12.

The results in Table 2 show that the proposed 3D CNN structure presents a
competitive performance achieving the lowest STD in the COHFACE dataset.
It achieves higher performance compared to [29] confirming that a sequential
processing of the spatial and afterwards the temporal information of a video
as proposed in [29] cannot capture the HR information as well as our network,
which processes both spatial and temporal information simultaneously. It also
overperforms, for every metric reported [37] whose double stream cannot beat
the power of simultaneous 3D convolutions among all input video patches. Fur-
thermore, by using as input the cheek area of the video we acheive lower MAE
and RMSE compared to the denoising patches obtained by the full face in [13].
We prove here that the selection of an optimal face region outperforms the de-
noising of the full face. Finally, our model surpasses for almost every metric
the two networks proposed by [8], which aimed for a CNN-based feature maps
extractor from full faces. In their work they implemented a rough version of
2D and 3D-CNN and then they improve both structures by adding aggregation
functions. The performance of those networks is presented in Table 2. Their fur-
ther promote improvements in the 2D model putting on the side the 3D model.
The results highlight the optimal performance of our 3D-CNN indicating how
an end-to-end 3D CNN can overperform a 2D structure in accurately estimat-
ing a subject’s HR directly from the cheek area without the need of any other
intermediate face representation. This provides a new way to capture the rPPG
information without compromising the model accuracy.

In addition, the processing time of one 60s video with 20 fps for our 3D-
CNN is of 0, 1 milisecond. The proposed 3D network does not require any extra
pre or post processing step, making it highly efficient and convenient for online
estimation.
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Table 2. Comparison between our model and other neural network based approaches
on COHFACE.

Method STD MAE RMSE MER ρ

HR-CNN [29] - 8.10 10.78 - 0.29

2-STREAM CNN [37] - 8.09 9.96 - 0.40

3D-rPPGNet [8] 8.98 5.86 9.12 - -

2D-rPPGNet [8] 8,08 5.59 8.12 - 0.63

AND-rPPG [13] 7.83 6.81 8.06 - 0.63

Ours 7.23 5.5 7.74 7.12 0.62

4.3 Effectiveness of input choice selection

We also perform a study of the effectiveness of different video input choices: ROI
and input channel selection. As a baseline experiments, we trained and tested our
3D-CNN on full face 3 channeled videos. For the consequent experiment, each of
the RGB channels was used to train the network on the full face videos, and the
results are reported in Table 3. The experiments suggest that even though no
clear choice between the use of RGB vs G as input can be made, the selection of
just the R or B channels clearly decreases the network’s performance. As a next
step, we trained and tested the 3D-CNN by feeding it with a 40×40 and 30×80
ROI for the cheeks and forehead experiments respectively. Those areas detected
and cropped using the 68 (x,y)-coordinates of the dlib landmark detector as ex-
plained on Section 3.1. The results presented in Table 3 indicate that taking as
input a smaller and more specific area than the full face is particularly beneficial
to perform an accurate HR estimation especially in the case of the cheeks region.
The cheek area is less affected by nonrigid motion such as smiling or talking and
can yield better results since in some cases the forehead can be occluded by hair
or other monitoring devices. However they can be equally affected by difficult
illumination conditions explaining why in both areas, the results are specially
promising for the G channel, highlighting how in adversarial illumination con-
ditions (e.g. natural light sources that do not distribute the light equally on the
face skin areas) the proposed 3D-CNN predicts successfully the HR only passing
the G channel.

5 CONCLUSION AND FUTURE WORKS

Remote HR estimation allows a pulse rate extraction from the skin regions in
face videos without any type of physical contact with the subject. In this study,
we presented a review on the most relevant SoA methods for a remote rPPG
and HR estimation from RGB face videos. For the learning based approaches,
we summarized some of the choices regarding the structure and the data that
those models use and we extract some key experiments that, in our view, are
lacking from the current literature. More specifically, we perform a comparison
of the most common ROI for remote HR estimation obtaining best results using
the cheek area and we evaluate the choice of the G channel as input against
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Table 3. Evaluation of the proposed network using different input video channels and
ROI on the COHFACE dataset.

Method Me STD MAE RMSE MER ρ

Full face RGB 2.43 9.55 8.22 9.86 11.32 0.28

Full face R 4.05 11.08 9.82 11.80 12.87 0.11

Full face G 1.44 10.35 8.23 10.45 11.54 0.29

Full face B -0.29 10.47 8.95 10.47 12.79 0.23

Forehead RGB -1.22 10.61 8.35 10.68 12.13 0.42

Forehead G -3.17 8.80 7.84 9.35 11.71 0.52

Cheeks RGB 0.01 7.99 5.78 7.99 7.99 0.46

Cheeks G 2.75 7.23 5.5 7.74 7.12 0.62

using the three channels of RGB videos. We highlight how some other deep
learning based models, require a pipeline of different techniques that can be
costly in terms of memory and time, therefore, non suitable for real-time usage
with affordable devices such as mobile phones. Our 3DCNN has a processing
time of 0, 1 milisecond for a 60s video with 20 fps. We propose a competitive,
fast and reproducible HR estimation method based on a 3D-CNN structure and
we evaluate the network against similar deep learning state-of-the-art structures
on the publicly available dataset COHFACE.

Future challenges include the evaluation of the G channel as input against
using the three channels of RGB videos. A 3 stream 3D-CNN for the R, G
and B channels will be further explored as well as an adaptive ROI selection
for forehead skin areas that can be more equally illuminated in natural light
conditions.
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