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Abstract—In the context of on-demand video streaming ser-
vices, both the caching and the recommendation decisions have an
impact on the user satisfaction, and thus, financial implications
for the Content Provider (CP). The idea of co-designing these
decisions has been recently proposed in the literature as a way
to minimize delivery costs and traffic at the backbone Internet.
However, related work does not take into account that every
content exists in multiple versions/streaming qualities, or at best
treats each version as a separate content, when it comes to
caching. In this paper, we explore how transcoding a content
at the edge could avoid placing multiple related versions of this
content in the same cache, thus better utilizing capacity (leading
to an increase of the CP’s profit). To this end, we formulate
the problem of jointly deciding on caching, recommendations,
and user-transcoder assignments with the goal of increasing the
profit (revenue minus the incurred costs). We propose an iterative
algorithm that is based on a decomposition of the formulated
problem into two subproblems. We show that both subproblems,
although NP-hard, are equivalent to problems in the literature
for which algorithms with approximation guarantees exist. Our
numerical evaluations in realistic scenarios show that the pro-
posed policy leads to important financial gains of up to 29%
when compared to the scenario where edge transcoding is not
exploited.

I. INTRODUCTION

A. Motivation and Related Work

With on-demand video streaming services dominating to-
day’s Internet traffic, wireless caching, i.e., caching at the
base station (BS), would play a significant role in future
wireless architectures beyond 5G. Therefore, caching decisions
are crucial when one takes into account the vast catalogs of
such services paired with limited cache capacity at the edge. At
the same time, the recommendations that appear at the user’s
interface have a strong impact on content requests, shaping
80% of the content requests [1]. Co-designing these decisions
has been recently proposed in the literature (e.g., [2], [3], [4])
as a way to steer requests towards cached contents while
ensuring that users still receive recommendations that are rel-
evant to their tastes. The joint decisions are possible when the
Content Provider (CP) leases a virtual network slice, and thus,
can design both caching and recommendation policies while
overcoming potential obstacles of today’s Content Delivery
Networks (CDNs) such as https requests. This offers an at-
scale content distribution for the CP.
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An important limitation of almost all the related work
on jointly optimizing caching and recommendations, is the
assumption that every content, e.g., a movie, is available in
only one version1/bitrate with a certain size and popularity.
However, in practice, each content might be available in
a large number of versions. Different versions/qualities are
delivered to different users according to the device used and
to the user’s Internet connection. Highly sophisticated adaptive
bitrate (ABR) streaming schemes are also in place during
playback to dynamically select the quality per chunk served.
Therefore, a single content consists usually of a bundle of
several files, sometimes more than 1,000 [5], that correspond
not only to various bitrates, but also encoding profiles, audio
files, subtitles, etc. When it comes to deciding what to cache,
a first approach would be to cache the entire bundle per
(popular) content, without taking into account which version
every user would prefer or support. However, given the limited
cache capacity, another approach would be to treat each
version as a separate file with its own popularity, i.e., assign
popularities per pair [content, quality] rather than per content.
This latter approach is adopted by today’s large CDNs, like
the one built by Netflix [5].

While this latter policy somewhat alleviates the problem,
the increasing availability of edge computing capabilities
(e.g., at MEC servers) suggests a great opportunity of fur-
ther improvement. In particular, a cached version could be
transcoded, on the spot, in order to serve a request for a
(lower) version not currently cached. Several works focus
on joint caching and transcoding policies, and sometimes in
conjunction with the ABR streaming scheme that is in place,
e.g., [6], [7], [8], [9]. These works already suggest that such an
approach can improve users’ quality of experience (QoE) and
alleviate the traffic at the backbone Internet. However, none
of the above works exploit the impact of recommendations on
content requests as a way of managing the limited cache and
processing capacity at the edge.

B. Our approach and Contributions

We propose a scheme of jointly optimizing caching, recom-
mendation, and transcoding decisions, see Fig. 1. We focus on
proactive decisions that can be made at the CP’s core cloud
at a remote location, without the need of storing users’ data

1Throughout this paper, the terms version, bitrate, and (streaming) quality
are used interchangeably.
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Fig. 1. The problem studied in this work: proactive decisions on caching,
recommendations, and transcoding assignments for a transcoder-enabled base
station. Our approach takes into account the users’ preferences in contents
and preferred streaming quality, as well as the limited cache and processing
capacities at the edge.

at the base station. To the best of our knowledge, this is the
first work that proposes and studies such a problem2.
Our contributions are the following:

• We formulate the problem of deciding jointly on caching,
recommendations, and transcoding assignments at the base
station. We adopt a revenue-driven approach that attempts to
maximize the CP’s profit (revenue minus costs), and is able
to generalize simpler metrics like cache hit rate [3] or user
experience [4].

• As the problem in hand is NP-hard, we decompose it
into two subproblems that each have favorable theoretical
properties. On one hand, the caching and recommendations
subproblem (with transcoding decisions assumed fixed and
given) while still NP-hard, can be approximated to a constant.
On the other hand, the transcoding subproblem, also NP-hard,
is 1/2-approximable. We thus propose an algorithm that is
based on the alternating optimization of the two subproblems
and provably converges to a stationary point in a small finite
number of iterations.

• We conduct numerical evaluations in realistic scenarios
using a real dataset. We show that transcoding at the edge can
increase the CP’s profit by up to 29% when compared to a
joint caching and recommendations scheme. We also perform
a sensitivity analysis with respect to key problem parameters,
such as cache and processing capacities.

II. PROBLEM SETUP

Content Requests: The CP owns a content catalog K that
is accessible to a set U of users through the CP’s streaming
service. A list of Nu recommended contents appears to every
user u ∈ U . As is common in related works, the user makes
a content request according to the following model:

• with probability αu, the user requests a recommended
content. Each of the Nu recommended items could be
chosen with equal probability;

2Close to this idea, in [9], the recommendations play the role of suggesting
similar content when the ones requested are not cached. In contrast, we
model the problem where recommendations precede (and therefore, steer)
the requests, as is the case in today’s streaming services.

• with probability (1 − αu), the user ignores the recom-
mendations and requests (e.g., through the search bar) a
content i ∈ K of the catalog with probability pui.

The quantity αu represents the percentage of time a user u
follows the recommendations, and it could be estimated by
the CP based on the user’s past behavior.

Recommendations: Typically, the CP would select the
Nu most relevant contents to feature in the recommendations
list of every user. We denote by rui ∈ [0, 1] the (predicted)
relevance or utility of a content i to the user u. These
values are the result of today’s state-of-the-art recommender
systems [1] and are inputs for our problem. In this work,
the recommendation decisions (i.e., deciding which contents
will appear to the user’s recommendations list) are made not
only based on the relevances rui, but also on caching and
transcoding assignments. We let yui ∈ {0, 1} denote the binary
variable for content i being recommended to user u (yui = 1)
or not (yui = 0). We denote by Y the matrix of yui.

CP’s Revenues: When a user u requests a content i, this
content is associated with an expected revenue Rui described
by: Rui = fui(rui), where fui is an increasing function of
rui that describes the impact of the user’s (predicted) interest
in a content on the CP’s revenues. This function could, for
example, be estimated based on the CP’s revenue model (ad-
based, subscription-based, etc.) and on data on user behavior.

Caching Variables: Every user is associated to a single
BS, and therefore, we focus on caching decisions of one
BS. Each content of the catalog is available in L different
versions/qualities, where 1 is the lowest quality and L is the
highest. Every user u has a preferred streaming quality or her
device/connection can support a certain quality denoted by
qu. We denote by X = (xij) the (binary) caching variables:
xij = 1 if content i is cached in quality j, and xij = 0
otherwise. The cache capacity at the BS is equal to C, and
every pair [content i, quality j] is of size σij . Typically, the
higher the quality, the larger the size of the corresponding file.

Finally, caching and recommendation decisions are proac-
tive and are made at the CP’s core cloud. Proactive caching
decisions (during off peak hours) have been proposed in the lit-
erature as a way of avoiding peak traffic requests [10], and they
have become a trend even in today’s CDN architectures [11].

Transcoding and Fetching Costs: Upon request of content
i by user u, if the requested pair [content i, quality qu] is
cached at the BS, it will be delivered to the user with no cost.
If the content is cached in a quality ℓ > qu, then this can be
transcoded at the BS and delivered to the user. This action will
cost (to the CP) Tuiℓ currency units (see also Fig. 2). This can
be a function of:

• fees that the CP might need to pay upon usage of
computational capabilities at the BS. This can be paid
either by usage or on a monthly basis, as is also the case
for today’s cloud services [12];

• the additional delays and low QoE that the transcoding
action might cause, and therefore, this can lead to user
abandonment where a part of Rui will be lost3.

3According to estimates [13], a 1% abandonment rate can already lead
to a loss in the CP’s revenue of 85, 000 US dollars ($) per year from ad
impressions.



However, since transcoding is a computationally heavy
task, only a few contents can be transcoded. We assume
that only B threads/processing units/cores are available at
a time. For this reason, in our framework, we decide on
user-transcoder assignments. We denote by zu the (binary)
transcoding-assignment variables, where zu = 1 if requests
made by user u can be transcoded if necessary, and zu = 0
otherwise. We also denote by Z the vector of zu, u ∈ U .
These decisions are made proactively and at the same time as
caching and recommendations. This way, recommendations for
contents that cannot be transcoded will be reduced.
Remark 1. It is important to note here that our approach
is complimentary to online ABR policies, such as DASH,
that operate at a different time scale, i.e., during playback.
Our scheme operates offline, attempting to proactively identify
which version of the content to cache at the edge based on
estimated statistics about the quality each user can support,
while taking into account the potential for edge transcoding.
ABR policies can later decide, per chunk, which chunk version
the user can actually support at the moment, based on the
caching decisions and the processing capacity.

If the requested content is not cached in quality ℓ for all ℓ ≥
qu, then the content will be fetched via a backhaul link (from
the macro-cell or the backbone Internet) at the cost of Fuiqu

currency units (we make the natural assumption that Fuiqu >
Tuiℓ). This will be also the case if a higher quality of the
requested content is cached, but the user is not assigned to the
transcoder, i.e., zu = 0. The price Fuiqu can be a function of:

• fees that the CP pays to a last-mile Internet Service
Provider (ISP) or CDN for the delivery of the content;

• loss in revenue caused by additional delays and increase
in user abandonment (in terms of lost ad impressions or
user churn).

Therefore, the incurred cost associated to every request made
by user u for content i (in quality qu) will be:

Qui(X,Z):= (1− xiqu)
∑
ℓ>qu

xiℓzuTuiℓ

ℓ−1∏
j=qu

(1− xij)

+(1− xiqu)
∑
ℓ>qu

xiℓ(1− zu)Fuiℓ

ℓ−1∏
j=qu

(1− xij)

+
∏
ℓ≥qu

(1− xiℓ)Fuiℓ, (1)

where the first summand is the expected transcoding cost that
the CP pays when the requested pair [i, qu] is not cached, but
the same content is cached at a higher quality, and the user has
been assigned to the transcoder (zu = 1). From all the different
qualities, the one closest to qu will be transcoded. The second
summand in (1) is the expected fetching cost that the CP pays
when the requested [i, qu] is not cached, the content is cached
at a higher quality, but the user has not been assigned to the
transcoder (zu = 0). Finally, the last summand represents the
fetching cost the CP pays to a last-mile ISP when the requested
content is not cached at the BS at any quality higher or equal
to the preferred one, and the content will be retrieved through
backhaul links.

III. PROBLEM FORMULATION AND ANALYSIS

A. The CRTr problem
The problem of maximizing the CP’s profit (revenue mi-

nus costs) as a function of caching, recommendation, and
transcoding-assignment decisions is formulated as follows:

CRTr Problem.

max
X,Y,Z

∑
u,i

(
αu

Nu
yui + (1− αu)pui

)
[Rui −Qui(X,Z)] (2)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U ; (3)∑
i∈K

∑
j∈{1,L}

xijσij ≤ C; (4)

∑
u∈U

wuzu ≤ B; (5)

xij , yui, zu ∈ {0, 1}, ∀u, i, j, (6)

where the constrains in (3) suggest that each user receives
Nu recommendations and the constraint in (4) is the cache
capacity constraint for the BS’s cache. Moreover, (5) is the
processing capacity constraint that will be satisfied in expec-
tation. In particular, wu is the average number of processing
units/cores that a user will utilize (based on the considered
request model and caching and recommendation variables):

wu :=
∑
i∈K

[
αu

Nu
yui + (1− αu)pui

] (
(1− xiqu)·

∑
ℓ>qu

xiℓcℓqu

ℓ−1∏
j=qu

(1− xij)
)
,

where cℓqu denotes the number of processing units/cores
required for transcoding from source quality ℓ to destination
quality qu < ℓ. We assume that cℓqu ≤ chqu , for qu < ℓ < h,
which is in line with related works that assume that the larger
the source file is, the larger the processing needs are, e.g., [6].
According to the expression above, the source file will be the
one utilizing the least amount of cores among all the versions
that are cached at the BS.

Lemma 1. The CRTr Problem is NP-hard.

Proof. The caching subproblem alone is a knapsack problem,
which is NP-hard [14].

B. Our Heuristic
Based on the alternating optimization method, we decom-

pose the problem into two subproblems: the caching and
recommendations (CR) subproblem and the transcoding (Tr)
subproblem. In particular, if F denotes the objective function
in the CRTr problem in (2), and for a given Z ′ transcoding
assignment vector, we define:

CR-subproblem: max
X,Y

s.t. (3),(4),(6)

F (X,Y, Z ′). (7)

The CR-subproblem is NP-hard since it contains the caching
decisions subject to cache capacity constraints. Nevertheless,
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Fig. 2. An example of a weighted bipartite graph illustrating the incurred
transcoding costs (if any) between cached contents of different qualities and
users of different quality preferences. The contents and/or qualities that are
not cached will be fetched via the backhaul link with a fetching cost (not
depicted here).

the following lemma shows that its solution can be approxi-
mated up to a constant factor.

Lemma 2. The CR-subproblem is approximable by a factor
of 1−1/e

2 .

Proof. The key observation is that cached contents of different
qualities will be delivered at different costs, e.g., we can
picture this as a bipartite graph (see Fig. 2). On the other
hand, in the femtocaching problem in [10] (that contains only
caching variables) and in the problem defined in [4] (that con-
tains both caching and recommendation variables), a similar
bipartite graph describes the connectivity between users and
different caches. We prove that the CR-subproblem can be
mapped to the problem in [4], and therefore, it is submodular
and monotone increasing.

Under the same request model as ours, the objective func-
tion in [4] is the balanced sum stream. quality + βu ·
recomm. quality capturing a tradeoff between the streaming
quality in terms of expected Quality of Service (QoS) that a
user can enjoy as a result of cache-friendly recommendations,
and the distortion of the recommendations she will experience.
We will show that the CR-subproblem’s objective function
in (7) can be mapped to the term of streaming quality in [4].
We note that our framework does not measure recommenda-
tion quality4, and thus, βu = 0 for all u ∈ U . Therefore, the
objective function in [4], for βu = 0, is equal to:∑

u,i

(
αu

Nu
yui + (1− αu)pui

)
su(X, i), (8)

where su(X, i) is the expected QoS for user u and (requested)
content i, for a given cache allocation X. Similar in spirit to
femtocaching [10], the term su(X, i) is expressed in a way that
every requested content will be delivered from the cache that
ensures the best QoS for the user, given the cache allocation.
This cache might be the original server (that contains the entire
catalog) in case the particular content is not cached at any
cache that the user has access to. The subset of caches a user
u has access to is denoted by C(u), while the cache-specific

4Even thought the objective in (7) does not explicitly maximize the
recommendation quality, the dependency of Rui on the relevances rui already
“pushes” the CP towards a limited distortion of the recommendations.

QoS for cache j is denoted by suj . According to [4], su(X, i)
is calculated by the following expression:

su(X, i) :=

|C(u)|∑
j=1

[
su(j)xi(j)

j−1∏
l=1

(1− xi(l))
]
, (9)

where the su(j) are the ordered cache-specific QoS, i.e., su(1)
denotes the maximum (cache-specific) QoS for user u, su(2)
is the second highest QoS for user u, and so on.

Upon request of a content, instead of choosing the cache
with the “best” QoS among a set of caches, our objective
picks the “best” available quality (or version) of the requested
content among the ones cached (given the cache allocation and
the transcoding assignments). If the content is not cached in
any quality or if transcoding is not possible for the particular
user, the content will be delivered in the requested quality
by the backhaul link. In this case, we conventionally use the
symbol 0 to describe the quality. Therefore, in our problem
setup C(u, i) for user u is defined as the set of available
qualities and is a subset of the set {0, . . . , L}. Formally, we can
write: C(u, i) := {0}∪ {qu}∪ {qu +1, . . . , L if zu = 1}. The
CP’s profit of our framework can be mapped to the quantity
su(X, i) if we notice that every quality (or version) j brings
Suj profit as described below:

Suj :=


Rui − Fuiqu , for j = 0,

Rui, for j = qu,

Rui − Tuij , for j > qu.

Therefore, by defining a similar ordering of Suj , these
ordered values can replace the quantities su(j) in (9) which
then implies that our objective can be written as the objective
in [4] expressed in (8). This mapping of our problem’s
quantities to the quantities used in [4] allows us to prove
that the objective function of the CR-subproblem is monotone
increasing and submodular. The theory on submodular max-
imization suggests that a 1−1/e

2 -approximation is achievable
by the policy described in [4].

According to the policy proposed in [4], the policy for the
CR-subproblem starts with the cache being empty and greedily
fills it as long as the capacity constraint is not violated. In
every round of selection, it estimates the benefit (or marginal
gain) in terms of the objective function in (7) for all pairs
[content, quality] while deciding on the recommendations (as
a subroutine). It then selects the pair that leads to the highest
benefit before the next selection round begins. This is a
size-oblivious algorithm. However, since every pair [content,
quality] is of different size, the policy also runs a size-aware
algorithm that repeats the same process as above but this time
selecting the pair with the highest ratio of benefit to the pair’s
size. Finally, it suffices to choose the solution that achieves
the highest objective function value that resulted by the size-
oblivious and size-aware algorithms.

Next, given a pair of caching and recommendations deci-
sions (X ′, Y ′), we define the second subproblem that aims to
decide on the user-transcoder assignments (variables zu):

Tr-subproblem: max
Z

s.t. (5),(6)

F (X ′, Y ′, Z). (10)



Lemma 3. The Tr-subproblem is NP-hard, but approximable
by a factor of 1/2.

Proof. The TR-subproblem is similar to user-association prob-
lems in small-cell networks (studied, for example, in [15]). In
particular, the Tr-subproblem evaluates the benefit (in terms of
profit) of assigning a user to the transcoder, given the expected
number of cores the user will utilize. This number, denoted by
wu in (5), corresponds to the weight of an object in the defini-
tion of the 0-1 knapsack problem. Therefore, the subproblem
is equivalent to the 0-1 knapsack problem, and thus, NP-hard.
However, the well-known modified greedy algorithm for the
knapsack problem can achieve a 1/2-approximation5 [14].

In particular, according to the greedy algorithm for the
knapsack problem, the algorithm for the TR-subproblem con-
sists of choosing the users to grant a transcoding assignment
based on the ratio of benefit each user brings (in terms
of the objective function in (10)) to the weight wu (which
is the expected number of processing units that each user
will utilize). The modification that ensures a 1

2 -approximation
guarantee (see [14]) consists of running the greedy algorithm
first, and then comparing its solution with the highest benefit
of any single user. The larger of the two is chosen as the final
solution (transcoding assignment vector).

Based on the alternating optimization of the two subprob-
lems, we now define our heuristic:
CRTr algorithm: An initial value for the transcoding assign-
ment vector Z(0) is set to Z(0) = [1, 1, . . . , 1]. Then, at every
iteration k = 1, 2, . . . :

1) Solve the CR-subproblem for Z(k−1) (transcoding assign-
ment vector) with the approximation algorithm in [4].

2) Given the solution of CR-subproblem (X(k), Y (k)) solve
the Tr-subproblem with a greedy algorithm for the knap-
sack problem [14].

Lemma 4. The CRTr algorithm converges to a stationary point
within 2 iterations.

Proof. In particular, the CRTr algorithm converges after solv-
ing the CR-subproblem of the second iteration, making it
only a 3-step algorithm. We will prove that a fourth step
of solving the Tr-subproblem for k = 2, i.e., deriving Z(2),
will result in Z(2) = Z(1). Let us assume, on the contrary,
that Z(2) ̸= Z(1). Without loss of generality, this means that
after the second iteration, User A who was not assigned to
the transcoder will be prioritized over User B who will lose
her assignment to the transcoder, i.e., z

(2)
A = 1 and z

(2)
B = 0,

while z
(1)
A = 0 and z

(1)
B = 1. First, the fact that z

(1)
A = 0

and z
(1)
B = 1 means that, within the first iteration, the relative

gain of assigning User B was larger than the one concerning
User A. Let us denote by Gu(X

′, Y ′) the relative gain in
terms of the greedy algorithm for Tr-subproblem (i.e., gain of
objective function in (10) divided by wu) of assigning user
u to the transcoder, given (X ′, Y ′). Therefore, the previous
observation implies that GB(X

(1), Y (1)) ≥ GA(X
(1), Y (1)).

We remind the reader that (X(1), Y (1)) was derived given

5We note that a better approximation can be achieved through the FPTAS
scheme at the cost of higher complexity, see [14].

Z(0), i.e., all users are assigned to the transcoder. Since, by the
definition of the problem, Fuiq > Tuiℓ, i.e., the fetching costs
are higher than the transcoding costs, if at least one user is not
assigned (given the limited processing capacity) in Z(k), for
k > 1, then the relative gain Gu will decrease for this user.
Formally, this means that: Gu(X

(1), Y (1)) ≥ Gu(X
(k), Y (k)),

for all k = 2, 3, . . ., for this user in question. On the other
hand, for every user who is assigned to the transcoder, at
iteration k > 1, her relative gain is greater than or equal to the
relative gain at iteration k = 1. In fact, given that only a subset
of users will be assigned to the transcoder, the caching (and
recommendation) decisions will naturally concern the most
relevant contents for this group of users. Formally, this means
that Gu(X

(1), Y (1)) ≤ Gu(X
(k), Y (k)), for every user in

this group. Therefore, GB(X
(2), Y (2)) ≥ GB(X

(1), Y (1)) ≥
GA(X

(1), Y (1)) ≥ GA(X
(2), Y (2)). However, the inequality

GB(X
(2), Y (2)) ≥ GA(X

(2), Y (2)) leads to a contradiction:
User B should be prioritized over User A, and therefore, it is
not possible that z(2)A = 1 while z

(2)
B = 0.

The running time of the CRTr algorithm is the sum of
the running times of the two subproblems’ algorithms, i.e.,
O(|U| · |K|2 · L · C · log(|U|)). Implementation-wise, the
complexity of solving the CR-subproblem can be alleviated
either through methods that avoid unnecessary calculations or
through distributed implementations (see, for example, [16]).

IV. PERFORMANCE EVALUATION

In this section, we numerically evaluate the gains that can be
achieved through the proposed CRTr policy, compared to the
case where edge transcoding is not exploited (i.e., the state-
of-the-art policies for joint caching and recommendations).
Moreover, we perform a sensitivity analysis with respect to
key parameters, such as cache and processing capacity. First,
we present the default input parameters.

Catalog, Recommendations, and Revenue: Our scenario
consists of 100 users connected to the BS that have access
to a catalog of 4000 movie titles (which corresponds to a
typical catalog of movies in today’s streaming services [17]).
Every content is available in 5 different qualities [18]. The
size of different contents and qualities is calculated through
statistics on movie lengths and data usage for various qualities.
In particular, given an average length of 2.17 hours [19], the
length of every movie is selected randomly in the interval
[1.34, 3] (in hours). Based on Netflix’s data usage [20], we
assume data usage of 0.3, 0.7, 1, 3, and 4.5 Gb per hour for
qualities 1 to 5 respectively. Hence, file sizes σij vary from
0.4Gb to 13.5Gb. The users prefer or their devices/connections
can support a specific quality as follows: 10% for quality 1,
20% for quality 2, 40% for quality 3, 20% for quality 4, and
10% for quality 5. These percentages were derived by adapting
findings on (wired) Internet connectivity in France [21]. Every
user receives Nu recommendations, where Nu is randomly
chosen between 20 and 35. The probability the user follows
the recommendations, αu, varies in [0.6, 1) (as in Netflix,
where the average is equal to 0.8 [1]). For the matrix of
content utilities rui, a subset of the Movielens dataset [22]
containing 5-star ratings of movies was used, where the



ratings were mapped in the interval [0, 1] (as in [4]). The
popularity of contents (when requested outside of the rec-
ommendations) is equal to the normalized content relevances
rui aggregated over the users, i.e., rui/

∑
u rui. Finally, the

values Rui (revenue per content) were derived through the
equation 0.1 + R0 ∗ rui, and therefore, vary from $0.1 and
$1.1. This equation could, for example, capture an ad-based
revenue model (e.g., YouTube), where rui can be interpreted
as the user retention rate, and thus, the quantity R0 ∗ rui is
the portion of ad-based revenue.

Caching, Transcoding, and Costs: We consider a BS
with caching and processing capabilities (for which the exact
numbers will be specified in what follows). The processing
capacity is counted in number of cores (processing units). We
assume that transcoding contents of qualities 2 and 3 to lower
qualities requires a single core, while transcoding qualities 4
and 5 requires two cores (see Sec. III-A). The transcoding
cost (that the CP pays to the mobile network provider) in the
first case is $0.02 per hour, and in the second case $0.04
per hour [12]. If transcoding is not possible (because of the
cache allocation or the transcoding assignments), the requested
content will be fetched from a macro-cellular station that
contains the entire catalog, as it has been envisioned for future
wireless networks, e.g., [10]. In this case, the CP pays to a
last-mile ISP fetching fees equal to $0.15 per Gb [23].

First, we fix the processing capacity to 20 cores, which,
as we explained above, means that requests of only 10 to
20 users can be satisfied through transcoding. The number
of cores that each user might use (varying from 1 to 2)
has been calculated in expectation as a result of the content
request model we described in Sec. II. We are particularly
interested in evaluating the gains of the transcoding-enabled
scenario versus the gains of a scenario where only caching
and recommendations are optimized, without the possibility
of transcoding. For this reason, we will compare with the
NoTransc policy that is defined as follows:

NoTransc Policy: This policy solves the joint caching and
recommendations problem for a BS with no processing ca-
pabilities (i.e., zu = 0 for all u). The solution is derived by
applying only the first step of our heuristic (single iteration),
which is essentially the policy proposed in [4]. This policy
treats every pair [content, quality] as a separate file.

In Fig. 3, we plot the relative increase in net income (profit)
achieved by our policy with respect to the scenario where
no transcoding is possible, i.e., the y-axis is normalized with
respect to the profit achieved by the NoTransc policy. The
points correspond to different relative cache sizes, i.e., as a
fraction of the total size of the catalog

∑
i,j σij . We focus

on cache capacity varying between 0.1% and 2%. This is in
line with caches that are used today by Netflix in its in-house
CDN (Open Connect), see [24] and [25]. We observe that for
small cache sizes between 0.1% and 0.6%, the relative gain
is larger than or equal to 5%, and can reach up to 29%. It is
important to note that even gains of 5% imply large monetary
profits in real-world systems. Especially when referring to
large CPs, like Netflix, that have more than 200 million
subscribers and report annual profits of more than 1 billion
US dollars [26]. As the cache size increases, more files can

be cached and transcoding costs can be avoided. Hence, the
gains of enabling transcoding at the edge decreases. However,
the size of these gains not only depend on the revenue and
cost models, but also on key parameters that we will explore
in what follows.

Fig. 3. Relative gain in net income achieved by our policy when compared
to the gains achieved by a scheme without transcoding (NoTransc policy).

In order to better understand Fig. 3, we study the distribution
of the cache hit rate between exact cache hits (i.e., the
requested quality is cached) and the transcoding cache hits
(i.e., a transcoding action takes place in order to deliver the
requested content in the requested quality). In Fig 4(a), we plot
the hit rate achieved by our policy (dark red for exact hits and
light red/pink for transcoding hits) and the hit rate of NoTransc
policy (only exact hits, by design). We see that, for cache
capacity of 0.4%, the exact hit rate is equal to 0.5, while the
transcoding rate is 0.11. As the cache capacity increases, the
hit rate of NoTransc is close to the total hit rate of our policy,
which renders the gain of transcoding smaller (as observed in
Fig. 3). We note that the gain of transcoding is restricted by
both the transcoding cost itself and the processing capacity.

We stress here that jointly optimizing caching and recom-
mendations (even without transcoding) can lead to high hit
rates (up to 0.82), as it has been shown already in related
works, e.g., [4], [3]), and can been observed in Fig. 4(a). This
is because the recommendations are “nudged”, i.e., instead of
recommending to each user the most relevant contents (which
are the contents with the highest rui for every u), the rec-
ommendations favor cached items. Therefore, we evaluate
how our scheme can potentially affect the users and their
perception of the recommendations. For that, we measure the
recommendations quality (RQ) as defined in [4]: for each user
u, RQ measures the sum of relevance of the received rec-
ommendations, i.e.,

∑
i ruiyui. Fig. 4(b) shows the aggregate

RQ (summed over the users) achieved by our policy and by
the NoTransc policy. The y-axis is regularized with respect
to the top relevant contents (baseline recommendations). We
see that the quality achieved by both policies is between 60%
and 87%. The RQ of the two policies are very close to each
other (where in most cases our policy slightly outperforms the
NoTransc policy) while our policy achieves a higher profit.

Finally, we investigate how the processing capacity affects
the hit rate and the distribution of exact and transcoding
hits. Fig. 4(c) depicts the distribution of the hits for different
processing capacities and for fixed cache size of 0.4%. We see
that, in principle, as the number of processing units increases,
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Fig. 4. (a) Hit rate achieved by our policy and by the NoTransc policy for different cache capacities; (b) Recommendations quality (RQ) for different cache
capacities for our policy and the NoTransc policy; (c) Distribution of exact and transcoding hits achieved by our policy for different processing capacities.

the percentage of the transcoding hits increases. However, the
cache capacity still constrains this percentage since only a
few contents can be cached in high qualities (note that the
higher the quality, the larger the file is), and thus, can be
transcoded on-the-fly. For reference, we also depict the hits in
the case of unlimited processing capacity. We see that, in this
case, the transcoding hits outnumber the exact hits. This would
lead to higher gains in net income and higher RQ. However,
this balance between transcoding and exact hits reflects the
difference between fetching and transcoding costs.

V. CONCLUSIONS AND FUTURE WORK

We presented a generic framework that captures the eco-
nomic gains of a CP that employs a BS with caching
and transcoding capabilities. We modeled the problem of
jointly optimizing (proactive) caching, recommendation, and
transcoding decisions with the goal of maximizing the net
income. To this end, we proposed a policy based on the
method of alternating optimization. Our numerical evaluations
showed that, in realistic scenarios, enabling transcoding at the
edge (in conjunction with a joint caching and recommendation
scheme) can be significantly beneficial, especially in case of
very limited cache capacity. An interesting direction for future
work is to design an online decision mechanism that adjusts
the transcoding assignments given the flow of requests and
possibly in conjunction with the ABR scheme that is in place.
Another direction would be to tackle the problem in the setting
of a network of BSs with overlapping coverage.
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