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Abstract—Generalized Approximate Message Passing (GAMP)
allows for Bayesian inference in linear models with non iden-
tically independently distributed (n.i.i.d.) priors and n.i.i.d.
measurements of the linear mixture outputs. It represents an
efficient technique for approximate inference which becomes
accurate when both rows and columns of the measurement
matrix can be treated as sets of independent vectors and both
dimensions become large. It has been shown that the fixed points
of GAMP correspond to extrema of a large system limit of the
Bethe Free Energy (LSL-BFE), which represents a meaningful
approximation optimization criterion regardless of whether the
measurement matrix exhibits the independence properties. How-
ever, the convergence of (G)AMP can be notoriously problematic
for certain measurement matrices and the only sure fix so
far is damping (by a difficult to determine amount). In this
paper we revisit the GAMP algorithm by rigorously applying an
alternating constrained minimization strategy to an appropriately
reparameterized LSL-BFE with matched variable and constraint
partitioning. This guarantees convergence, at least to a local
optimum.

I. INTRODUCTION

In the Gaussian case, the signal model for the recovery of a
sparse signal vector x can be formulated as, y = Ax + v,
where y are the observations or data, A is called the mea-
surement or the sensing matrix which is known and is of
dimension M×N with typically M < N . In the sparse model
case, x contains only K non-zero (or significant) entries,
with K < M < N . In Bayesian inference, the Sparse
Bayesian Learning (SBL) algorithm was first proposed by
[1], [2]. SBL is based on a two or three layer hierarchical
prior on the sparse coefficients x. The priors for the hyper-
parameters (precision parameters) are chosen such that the
marginal prior for x induces sparsity, allowing the majority of
the coefficients to tend towards zero. It is worth mentioning
that [3] provides a detailed overview of the various sparse
signal recovery algorithms which fall under l1 or l2 norm
minimization approaches such as Basis Pursuit, LASSO etc
and SBL methods. The authors justify the superior recovery
performance of SBL compared to the above mentioned con-
ventional methods. Nevertheless, the matrix inversion involved
in the Linear Minimum Mean Squared Error (LMMSE) step
in SBL at each iteration makes it computationally complex
even for moderately large data sets. This complexity is the
motivation behind approximate inference methods.
Belief Propagation (BP) based SBL algorithms [4] are com-
putationally more efficient. A more detailed discussion on the
various approximate inference methods for SBL appears in

[5]. Various studies on the convergence analysis of Gaus-
sian BP (GaBP) can be found in [6]–[9]. Although BP
achieves great empirical success [10], not enough rigorous
work exists to characterize the convergence behavior of BP
in loopy networks. In [11] a convergence condition for GaBP
is provided which requires the underlying distribution to be
walk-summable. Their convergence analysis is based on the
Gaussian Markov random field (GMRF) based decomposition,
in which the underlying distribution is expressed in terms of
the pairwise connections between the variables.
The Approximate Message Passing (AMP) algorithm has been
introduced to further reduce complexity of GaBP. In General-
ized AMP (GAMP), the vector x can have non-Gaussian priors
and the measurement process can be more general than linear
with additive Gaussian noise. However, the convergence of
(G)AMP can be problematic for certain measurement matrices
A. Many variations have been introduced to help (G)AMP
converge, such as adding Alternating Direction Method of
Multipliers (ADMM), exploiting part of the singular value
decomposition of the measurement matrix in Vector AMP
(VAMP) (but which does not allow to handle n.i.i.d. priors
conveniently), sequential updating in Swept AMP (SwAMP)
which works almost always, and especially by introducing
damping with the typically difficult to determine damping
requirements.
The AMP algorithm and its variations have many potential
applications in (machine learning aided) wireless communica-
tions systems:
• multi-user detection [12],
• channel estimation [13],
• joint detection and channel estimation [14],
• compressive sensing [15],
• reduced complexity Linear Minimum Mean Squared Er-

ror (LMMSE) receiver or transmitter computation [13].
A. Contributions of this paper

• We propose a version of GAMP with guaranteed conver-
gence, by rigorously applying an alternating constrained
minimization strategy with matched variable and con-
straint partitioning. We apply this strategy to an appro-
priately augmented Lagrangian of the constrained Large
System Limit of the Bethe Free Energy.

• The new GAMP, dubbed AMBGAMP below, requires
to solve for the mean constraint Lagrange multipliers s
appearing in the posterior mean x̂(s) to make it satisfies
this mean constraint. This can be done by bisection. We



also propose a first-order approximation of x̂(s), which
resembles the Method of Moments. We furthermore re-
mark that this first-order approximation becomes exact in
the Gaussian case, of which we work out the details also.

• We also indicate that asymptotically, under an i.i.d. el-
ement model for A, the variance computations in AM-
BGAMP are exact. This allows to analyze the steady-state
MSE as a function of system dimensions, prior pdfs and
measurement pdfs. In particular in the Gaussian case, this
allows to analyze the performance for SBL.

II. GENERALIZED APPROXIMATE MESSAGE PASSING

The data model considered in GAMP is essentially a linear
mixing model

z = Ax , px(x) , py|z(y|z) (1)

with (possibly) non identically independently distributed
(n.i.i.d.) prior px(x) =

∏N
i=1 pxi

(xi) and n.i.i.d. measure-
ments py|z(y|z) =

∏M
k=1 pyk|zk(yk|zk). In Bayesian estima-

tion we are interested in the posterior, which is given by

px,z|y(x, z|y) =
1

Z(y)
e−

∑N
i=1 fxi

(xi)−
∑M

k=1 fzk (zk) 1{z=Ax}

(2)
where we have the negative loglikelihoods for prior and
measurements

fxi
(xi) = − ln pxi

(xi) , fzk(zk) = − ln pyk|zk(yk|zk) (3)

where the equality in case of fzk(zk) is up to constants that
may depend on y (and which are absorbed in the normalization
constant Z(y)). The problem in Bayesian estimation is the
computation of this constant Z(y) and of the posterior means
and variances. Belief propagation is a message passing tech-
nique that allows to compute the posterior marginals. However,
due to loops in the factor graph, loopy belief propagation
may have convergences issues and is furthermore still rela-
tively complex. GAMP is an approximate belief propagation
technique which is motivated by asymptotic considerations in
which the rows and columns of the measurement matrix A are
considered as random and independent, in which case GAMP
can actually produce the correct posterior marginals. In any
case, GAMP computes a separable approximate posterior of
the form

qx,z(x, z) = qx(x) qz(z) =
N∏
i=1

qxi
(xi)

M∏
k=1

qzk(zk) (4)

in which the dependence on y has been omitted. The GAMP
algorithm [16], [17] appears in the table for Algorithm 1. We
only consider here Sum-Product GAMP (for MMSE estima-
tion, as opposed to Max-Sum GAMP for MAP estimation).

III. AMBGAMP

AMB is short for ACM-LSL-BFE: Alternating Constrained
Minimization of the Large System Limit of the Bethe Free
Energy. As we shall see, AMBGAMP uses most of the same
updates as GAMP, but GAMP does not rigorously follow

Algorithm 1 GAMP
Require: y, A, S = A.A, fx(x), fz(z)

1: Initialize: t = 0, x̂t, τ tx, st−1 = 0
2: repeat
3: [Output node update]
4: τ tp = S τ tx
5: pt = A x̂t − st−1.τ tp
6: ẑt = E(z|pt, τ tp)
7: τ tz = var(z|pt, τ tp)
8: st = (ẑt − pt)./τ tp
9: τ ts = (1− τ tz ./τ tp)./τ tp

10: [Input node update]
11: τ tr = 1./(ST τ ts)
12: rt = x̂t + τ tr .A

T st

13: x̂t+1 = E(x|rt, τ tr)
14: τ tx = var(x|rt, τ tr)
15: until Convergence

the principle of alternating minimization (block coordinate
descent) esp. in the presence of constraints. It has been shown
that any fixed point of the GAMP algorithm is a critical point
of the following constrained minimization of a Large System
Limit (LSL) of the Bethe Free Energy (BFE) (see [17] and
references therein):

min
qx,qz,τp

JLSL−BFE(qx, qz, τp)

s.t. E(z|qz) = A E(x|qx)
τp = S var(x|qx)

(5)

where the LSL BFE is given by

JLBFE(qx, qz, τp)=D(qx||e−fx)+D(qz||e−fz)+HG(qz, τp),

with HG(qz, τp) =
1
2

M∑
k=1

[
var(zk|qzk)

τpk
+ ln(2π τpk)

]
(6)

and where D(q||p) = E(ln( qp ) |q) is the Kullback-Leibler
distance (KLD) and HG(qz, τp) is a sum of a KLD and
an entropy of Gaussians with identical means but different
variances. The LSL BFE optimization problem (6) can be
reformulated with the following augmented Lagrangian

min
qx,qz,τp,u

max
s,τs

L(qx, qz, τp,u, s, τs) with

L = D(qx||e−fx)+D(qz||e−fz)+HG(qz, τp)

+sT (E(z|qz)−A E(x|qx))− 1
2τ

T
s (τp − S var(x|qx))

+ 1
2‖E(x|qx)− u‖

2
τr +

1
2‖E(z|qz)−Au‖2τp

(7)
where s, τs are Lagrange multipliers, and τr = 1./(ST τs)
is just a short-hand notation for quantities that depend on τs.
We also use the notations: ‖u‖2τ =

∑
i u

2
i /τi, element-wise

multiplication as in s.τ and element-wise division as in 1./τ .
We interpret the constraints as follows:
E(z|qz) = A E(x|qx) is interpreted as a constraint on
E(z|qz), and
τp = S var(x|qx) (which is a vector of the individual
variances) is interpreted as a constraint on τp. To interpret



constraints as constraints on a subset of the variables, such
subset should be rich enough to allow to satisfy the constraints.
Due to the updating order, the other variables will be fixed
actually as can be seen further. So the alternating optimization
of (7), which corresponds to alternating minimization of the
constrained problem (6), should be carried out in the following
way. In the partitioning of the variables to be updated, the
Lagrange multipliers for the constraints in which a given
subset of variables is involved, should be optimized at the same
time as that subset of variables. Such alternating optimization
policy guarantees the cost function to decrease at each update,
and hence to converge, to at least a local optimum. We propose
to follow the following updating order

{qz, s} → {u} → {τp, τs} → {qx} . (8)

In other words, at iteration t we have the following sequence

{qtz, st} = argmin
qz

max
s
L(qt−1x , qz, τ

t−1
p ,ut−1, s, τ t−1s )(9)

{ut} = argmin
u
L(qt−1x , qtz, τ

t−1
p ,u, st, τ t−1s ) (10)

{τ tp, τ ts} = argmin
τp

max
τs

L(qt−1x , qtz, τp,u
t, st, τs) (11)

{qtx} = argmin
qx

L(qx, q
t
z, τ

t
p,u

t, st, τ ts) (12)

A. Update of {qz, s}
The most tricky part is the update of {qz, s}. To that end,
consider

L(qt−1x , qz, τ
t−1
p ,ut−1, s, τ t−1s )

= D(qz||e−fz) + 1
2var(z|qz)./τ t−1p

+sT E(z|qz) + 1
2‖E(z|qz)−Aut−1‖2

τ t−1
p

+ const.

= D(qz||e−fz) + 1
2 E(z

T z|qz)./τ t−1p

−(E(z|qz))T ((Aut−1)./τ t−1p − s) + const.

= D(qz||e−fz) + 1
2 E(‖z− p

t(s)‖2
τ t−1
p

) + const.

(13)

where const. denotes constants w.r.t. z and

pt(s) = Aut−1 − s.τ t−1p . (14)

This cost function is separable. We get per component

min
qzk

D(qzk ||gtzk/Z
t
zk
) ⇒ qtzk = gtzk/Z

t
zk

Ztzk(sk) =
∫
gtzk(zk; sk) dzk , − ln gtzk(zk; sk) =

fzk(zk) +
1

τt−1
pk

(
z2k
2 − zkAk,: u

t−1) + zk sk

(15)

where Ak,: denotes row k of A. Note that the partition
function Ztzk acts as cumulant generating function:

−
∂ lnZtzk
∂sk

= E(zk|qtzk) = E(zk|ptk(sk), τ t−1pk
) = ẑtk(sk)

∂2 lnZtzk
∂s2k

= var(zk|ptk(sk), τ t−1pk
) = τ tzk(sk)

−
∂3 lnZtzk
∂s3k

= E(zk − E zk)3

(16)

To satisfy the mean constraint in (5), we require stk to satisfy

ẑtk = ẑtk(s
t
k) = Ak,:x̂

t−1 , τ tzk = τ tzk(s
t
k) . (17)

The second derivative in (16) shows that ẑtk(sk) is a mono-
tonically increasing function, which means that solving (17)
for stk can be done by bisection. Alternatively, we can ap-
proximate with a first-order Taylor series expansion (the third-
order cumulant (kurtosis) in (16) will be zero for symmetric
measurement pdfs, in which case the next non-zero term in
the Taylor series expansion is a fourth-order term!)

ẑtk(s
t
k) ≈ ẑtk(st−1k )+τzk(s

t−1
k ) (stk−st−1k ) = Ak,:x̂

t−1 (18)

from which we get

stk = st−1k +
1

τzk(s
t−1
k )

(Ak,:x̂
t−1 − ẑtk(st−1k )) (19)

which is very similar to a Method of Moments (MM) update
of the Lagrange multiplier. As a result, the algorithm can be
expected to converge even with this (good) approximation (but
one can also avoid this approximation). This MM update is
actually exact in the Gaussian case.

B. Update of u

From (7), (10), we get

L(qt−1x , qtz, τ
t−1
p ,u, st, τ t−1s )

= 1
2‖x̂

t−1 − u‖2τr +
1
2‖A x̂

t−1 −Au‖2τp + const.
(20)

where const. denotes constants w.r.t. u. The minimizer is
obviously

ut = x̂t−1 . (21)

Note that due to the update of (only) {qz, s} just before, we
have ẑt = A x̂t−1 which greatly simplifies this update of u.
In contrast to [18] where a complex update of u is required
which is not compatible with the fast AMP style algorithms.

C. Update of {τp, τs}

Due to the preceding update of u, the two quadratic terms
shown in 20 are now zero. As a result, the dependence of those
terms on τp, τs via the weights disappears for the update of
{τp, τs} which comes next. Hence the terms of interest in (10)
for (8) are now

L(qt−1x , qtz, τp,u
t, st, τs)

= HG(q
t
z, τp)− 1

2τ
T
s (τp − S τ t−1x ) + const. = const.+

1
2

M∑
k=1

[
τ tzk
τpk

+ ln(2π τpk)

]
− 1

2

M∑
k=1

τsk(τpk − Sk,: τ
t−1
x )

(22)



where const. denotes constants w.r.t. {τp, τs}. The optimiza-
tion yields

∂L

∂τsk
= 0 ⇒ τ tpk = Sk,: τ

t−1
x (23)

∂L

∂τpk
=

1

2
(−
τ tzk
τ2pk

+
1

τpk
− τsk) = 0

⇒ τ tsk =
1

τ tpk
(1−

τ tzk
τ tpk

) (24)

(25)

D. Update of qx
For the update of qx in (12) finally, consider the relevant
terms in the augmented Lagrangian (and remember that τ tr =
1./(ST τ ts) or 1./τ tr = ST τ ts ) (11)

L(qx, q
t
z, τ

t
p,u

t, st, τ ts)

= D(qx||e−fx)− st TA E(x|qx) + 1
2τ

t T
s S var(x|qx)

+ 1
2‖E(x|qx)− u

t‖2τ t
r
+ const.

= D(qx||e−fx) + 1
2 (1./τ

t
r)
T E(x.x|qx)− st TA E(x|qx)

−(ut./τ tr))T E(x|qx) + const.

= D(qx||e−fx) + 1
2 (1./τ

t
r)
T E(x.x|qx)

−(ut + τ tr .AT st)T (E(x|qx)./τ tr) + const.

= D(qx||e−fx) + 1
2 E(‖x− rt‖2τ t

r
|qx) + const.

(26)
where const. denotes constants w.r.t. x and

rt = ut + τ tr .A
T st . (27)

This cost function is separable. We get per component

min
qxk

D(qxk
||gtxk

/Ztxk
) ⇒ qtxk

= gtxk
/Ztxk

Ztxk
=
∫
gtxk

(xk) dxk ,

− ln gtxk
(xk) = fxk

(xk) +
1

2τt
rk

[(xk − rk)2 − r2k] .
(28)

Again the partition function Ztxk
acts as cumulant generating

function:

τ trk
∂ lnZtxk

∂rk
= E(xk|qtxk

) = E(xk|rtk, τ trk) = x̂tk

(τ trk)
2
∂2 lnZtxk

∂r2k
= var(xk|rtk, τ trk) = τ txk

.

(29)

Again simplifications arise in the Gaussian case, and approx-
imations for more general cases are possible, as suggested
earlier for the moments of qzk .

IV. AMBGAMP LARGE SYSTEM ANALYSIS

In GAMP, as opposed to AMP, we may not have (simple)
analytical updates for means and variances. As a result, the
take on large system analysis (LSA) for GAMP is from a
different angle. If both the rows or the columns of A are now
modeled as independent, then given that also the priors on x
and z are independent (factorized), the true posteriors for x
and z will become factorized and will equal the approximate

Algorithm 2 AMBGAMP
Require: y, A, S = A.A, fx(x), fz(z)

1: Initialize: t = 0, x̂t−1, τ t−1x , ut−1, τ t−1p , st−1 = 0
2: repeat
3: [Output node update]
4: pt(s) = Aut−1 − s.τ t−1p

5: ẑt(s) = E(z|pt(s), τ t−1p )
6: st = arg{ẑt(s) = A x̂t−1}, pt = pt(st)
7: τ tz = var(z|pt, τ t−1p )
8: ut = x̂t−1

9: [Variance matching]
10: τ tp = S τ t−1x

11: τ ts = (1− τ tz ./τ tp)./τ tp
12: τ tr = 1./(ST τ ts)
13: [Input node update]
14: rt = ut + τ tr .A

T st

15: x̂t = E(x|rt, τ tr)
16: τ tx = var(x|rt, τ tr)
17: until Convergence

posteriors qx(x), qz(z). So multiplication with A or AT

acts like scrambling in CDMA communications, that renders
the individual outputs independent. Furthermore, the marginal
posteriors are the product of the respective prior and extrinsic
distributions that correspond to information coming through
A or AT , the random nature of which will lead to Gaussian
extrinsic distributions by the central limit theorem. In other
words, in the LSA, in which the dimensions of x and z
(the two dimensions of A) tend to infinity at a constant
ratio, the approximate posteriors handled in GAMP become
asymptotically exact. As a result, the variance information
propagated by GAMP corresponds asymptotically to the exact
MSE of the (MMSE) estimates propagated by GAMP. The
existing GAMP steady-state analysis results are valid, as they
assume that the algorithm has converged to such steady-state.
Such steady-state analysis appears in [16] (particularly in the
extended arxiv version), or in [19].

V. SBL-AMBGAMP LARGE SYSTEM ANALYSIS

In this Gaussian case, MMSE estimation becomes LMMSE,
for which we have investigated LSA in [20] using large
random matrix theory. It can be checked that the LSA of the
general GAMP case above reduces to these same results in
the Gaussian case.

VI. CONCLUDING REMARKS

We have drawn attention to an approach to perform alternating
constrained optimization, which is also called block coordinate
descent for optimization problems with constraints. The ap-
proach consists of not only partitioning the variables appearing
in the cost function, but also to partition the constraints
according to this variable partitioning and to identify for
each constraint subset the variable subset that can be used
to satisfy these constraints. In the alternating optimization



of the cost function w.r.t. each variable subset, the possible
corresponding constraint subset should be involved in the
constrained optimization sub-problem.
To arrive at the convergent AMBGAMP algoritrhm, a par-
ticular formulation of the Bethe Free Energy criterion is
considered with a judiciously chosen Method of Moments
extension to incorporate constraints quadratically. The La-
grangian of the resulting augmented BFE is then introduced.
The alternating optimization of the resulting cost function
only leads to the desired algorithm of low complexity when
alternating optimization is done in one particular order. Other
updating orders would also lead to convergent algorithms but
not to low complexity updates.
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