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Abstract

A fundamental drawback of kernel-based statistical models is their limited scalability to large data sets, which requires resorting
to approximations. In this work, we focus on the popular Gaussian kernel and on techniques to linearize kernel-based models
by means of random feature approximations. In particular, we do so by studying a less explored random feature approximation
based on Maclaurin expansions and polynomial sketches. We show that such approaches yield poor results when modelling high-
frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance
significantly in this regime. We demonstrate these gains on a number of experiments involving the application of Gaussian process
regression to synthetic and real-world data of different data sizes and dimensions.
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1. Introduction

Positive definite kernels are used to model nonlinear phenomena in a theoretically principled way. They have
been extensively studied for kernel methods [17] as well as for Gaussian processes (GPs) [14], where they achieve
competitive empirical performance [16]. For methods such as Gaussian process regression (GPR), we can obtain
closed form predictions by solving linear systems, which is a substantial advantage over deep learning approaches
that require iterative solvers and convergence verification. However, a naive application relies on algebraic operations
on the kernel matrix (or Gram matrix) that consists of pairwise kernel evaluations of the training data. Constructing
this matrix therefore requires O(N2) computations and memory, where N is the number of training points, which
obstructs the application of such models when the number of training points is large, e.g., N > 10 000.

Hence, considerable effort has been dedicated to improving the scalability of kernel methods and GPs, in particular
[22, 13, 19, 9]. All these methods turn the quadratic dependency on N into a linear or even sub-linear one when using
mini-batching, which allows them to scale to millions of data points. A popular line of research uses so-called random
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feature (RF) approximations, which were originally introduced as random Fourier features for shift-invariant kernels
[13] and were later extended to other classes of kernels such as dot product kernels [10].

Random feature approximations of the Gaussian kernel, which represents the focus of this work, are well-studied in
the literature and are usually based on random Fourier features (c.f. [11] for a recent review). However, [3] have shown
that the Gaussian kernel can also be formulated as a weighted sum of polynomial kernels allowing for a (non-random)
Taylor series approximation of the exponential using explicit polynomial basis functions. [20] have further shown that
using random feature approximations of these polynomial basis functions can make such approaches competitive with
random Fourier features provided that the data is scaled appropriately.

In this work, we show that the approach in [20] fails for GPR when modelling high-frequency data for which the
Gaussian kernel is parameterized by a short length scale. We propose a localized modification of the GPR predictor
used in [20] that cures this pathology and show that our predictor is competitive and sometimes superior to random
Fourier features for a given dimension of the feature map. We evaluate our novel predictor empirically on highly
nonlinear synthetic and real-world data (typically modelled using short length scales), and show that it yields state-
of-the-art performance regardless of the input dimension of the data. We made our code publicly available1.

Our work is structured as follows. We cover GPR as well as its approximation through a Taylor series approxima-
tion with random features in Section 2. Our theoretical contributions are made in Section 3, where we identify and
propose a cure for a pathology of such Taylor series approximations. The empirical evaluation is reported in Section 4.

2. Background on Gaussian process regression with Gaussian kernel approximations

2.1. Gaussian process regression (GPR)

Suppose a training data set D := {(xi, yi)}Ni=1 with (xi, yi) ∈ Rd × R that we summarize in matrix notation as
X := (x1, . . . , xN)⊤ ∈ RN×d and y := (y1, . . . , yN)⊤ ∈ RN . We assume that y has been generated from X by an
unknown latent function f : Rd → R that has been corrupted by independent Gaussian noise, i.e., yi = f (xi) + ϵi with
ϵi ∼ N(0, σ2

noise) and σ2
noise > 0.

In GPR [14, Chapter 2], the vector of function evaluations f := ( f (x1), . . . , f (xN))⊤ ∈ RN is assumed to have a joint
Gaussian distribution with mean µ ∈ RN and covariance matrix Kff ∈ RN×N . We follow the standard approach and set
µ to zero here although more complex models exist [14, Chapter 2.7]. The entries of Kff correspond to the evaluations
of a positive definite kernel function k : Rd ×Rd → R, i.e., (Kff)i, j = k(xi, x j) that determines the covariance of a pair
of function values f (xi) and f (x j).

The task of GPR is to predict the latent function value at a new test input x∗ ∈ Rd given the training set D. The
predictive distribution of f (x∗)|D ∈ R can be computed in closed form, and it is N(µ∗, σ2

∗) with:

µ∗ := k⊤f∗(Kff + σ2
noiseI)−1y and σ2

∗ := k∗∗ − k⊤f∗(Kff + σ2
noiseI)−1 kf∗, (1)

where kf∗ = (k(x1, x∗), . . . , k(xN , x∗))⊤ ∈ RN , k∗∗ = k(x∗, x∗) and I ∈ RN×N is the identity matrix. GPR is an
attractive modelling choice as it provides uncertainty estimates through the predictive variance σ2

∗ next to the actual
prediction µ∗. At the same time, the hyperparameters of the kernel function k can be obtained through a gradient-based
optimization of the log marginal likelihood [14, Chapter 5.4] avoiding time-consuming cross-validation.

However, computing the GPR predictor can be expensive in practice. The computational bottleneck is to solve the
linear systems in Eq. (1), which costs O(N3) time. Even storing the matrix Kff requires O(N2) memory and becomes
infeasible in practice when N is large, typically greater than 10 000, and approximations become necessary.

Explicit feature space formulation. If there exists a finite-dimensional feature map Φ : Rd → RD such that k(x, y) =
Φ(x)⊤Φ(y), it can be shown [14, Chapter 2] that Eq. (1) can be reformulated as

µ∗ := Φ(x∗)⊤A−1Φ(X)⊤y/σ2
noise and σ2

∗ := Φ(x∗)⊤A−1Φ(x∗), with A := Φ(X)⊤Φ(X)/σ2
noise + I, (2)

1 https://github.com/joneswack/dp-rfs

https://github.com/joneswack/dp-rfs
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where Φ(X) = (Φ(x1), . . . ,Φ(xN))⊤ ∈ RN×D. The feature space representation (2) changes the computational cost to
O(ND2) and thus improves the scaling of GPR drastically if D ≪ N. Unfortunately, exact feature maps can be infinite
dimensional and this holds in particular for the Gaussian kernel that we study in this work. However, there exist finite
dimensional feature maps that yield an approximate Gaussian kernel and we discuss them next.

2.2. Truncated Maclaurin approximation of the Gaussian kernel

The Gaussian kernel for two inputs x, y ∈ Rd (y is different from the labels in Eq. (1) here) is defined as k(x, y) =
σ2 exp(−∥x − y∥2/(2l2)) with its parameters being the length scale l > 0 and kernel variance σ2 > 0. We rewrite this
kernel as a weighted sum of polynomial kernels (x⊤y/l2)n for n ∈ N by using ∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2(x⊤y):

k(x, y) = σ2 exp
(
−
∥x∥2

2l2

)
exp

(
−
∥y∥2

2l2

)
exp

(
x⊤y
l2

)
= σ2 exp

(
−
∥x∥2

2l2

)
exp

(
−
∥y∥2

2l2

) ∞∑
n=0

1
n!

(
x⊤y
l2

)n

, (3)

where the second equality of Eq. (3) follows from the Maclaurin series (Taylor series around zero) of the exponential
function. In the following, we obtain a finite-dimensional feature map for an approximate Gaussian kernel through
explicit feature maps for polynomial kernels.

Explicit feature map of the polynomial kernel. Let a ⊗ b = vec(ab⊤) ∈ Rd2
be the vectorized outer product of two

vectors a, b ∈ Rd. We further define a(n) := a ⊗ · · · ⊗ a ∈ Rdn
to be the result of applying this operation a total

number of (n − 1) times to a vector with itself. To simplify the notation, we absorb the length scale in the input
data, i.e., we define the inputs x̃ := x/l and ỹ := y/l. Then the polynomial kernel in Eq. (3) can be written as
(x⊤y/l2)n = (x̃⊤ ỹ)n = (x̃(n))⊤(ỹ(n)) [17, Proposition 2.1], where x̃(n) and ỹ(n) are its explicit feature maps. We can now
use the explicit feature maps for polynomial kernels to obtain an explicit feature map for the Gaussian kernel.

Explicit feature map of the Gaussian kernel. If we truncate the inifinite Maclaurin series in Eq. (3) to a finite degree
p ∈ N, we obtain an approximate Gaussian kernel kp(x, y) = Φ(x)⊤Φ(y) with an explicit feature map defined as:

Φ(x) := σ exp
(
−∥x̃∥2/2

) (
1, (x̃(1)/

√
1!)⊤, . . . , (x̃(p)/

√
p!)⊤

)⊤
∈ RD with D = 1 + d1 + · · · + dp. (4)

The approximation error |kp(x, y) − k(x, y)| depends on the truncation degree p of the Maclaurin series in Eq. (3). If
x̃⊤ ỹ ∈ R is far away from zero, a large p is needed for

∑p
n=0(x̃⊤ ỹ)n/n! to be an accurate estimate of exp(x̃⊤ ỹ). As the

dimension D of Φ(x) scales as O(dp), it becomes infeasible to construct such feature maps in practice when d or p are
large. Thus, this approach was considered less efficient than random Fourier features [13] with respect to D in [3].

In the following, we substitute the explicit feature maps x̃(1), . . . , x̃(p) in Eq. (4) with low-dimensional random
feature maps to attain good kernel estimates with reasonable D that become competitive with random Fourier features.

2.3. Optimized random Maclaurin features for the Gaussian kernel

Instead of using the explicit feature maps {x̃(n)}
p
n=1 in Eq. (4), [20] suggest to use random features for polynomial

kernels as soon as d > 1. Here we consider random features that have been used in [10, 8, 20, 21]. Unlike for the ones
proposed in [12, 1], there are closed form variance formulas available for the former in the literature [20] that allow
us to optimize the variances of our kernel approximation in the following.

Polynomial Sketches. We define a random feature map ϕn, from now on called a polynomial sketch, as:

ϕn(x) := (W1x ⊙ · · · ⊙Wnx)/
√

D ∈ RD, (⊙ denotes the element-wise product) (5)

where W1, . . . ,Wn ∈ RD×d are i.i.d. random matrices. For two inputs x̃, ỹ ∈ Rd we have E[ϕn(x̃)⊤ϕn(ỹ)] = (x̃⊤ ỹ)n,
i.e., the random feature approximation ϕn(x̃)⊤ϕn(ỹ) is an unbiased estimate of the polynomial kernel, if the {Wi}

n
i=1

are sampled from an appropriate distribution. The variance of the approximation decreases as D increases. Table (1)
shows three valid example sampling procedures for {W}ni=1 along with the resulting variances V[ϕn(x)⊤ϕn(y)] of the
corresponding kernel estimate.
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Table 1. Polynomial Sketches according to [20] along with the variances of the associated kernel estimate. Here, D ∈ N is the number of random
features and c(D, d) := ⌊D/d⌋d(d − 1) + (D mod d)(D mod d − 1).

Polynomial Sketch Sampling Procedure for {Wi}
n
i=1 Variance V[ϕn(x)⊤ϕn(y)]

Gaussian Entries of Wi are sampled i.i.d. from N(0, 1) D−1[(∥x∥2 ∥y∥2 + 2(x⊤y)2)n − (x⊤y)2n]
Rademacher Entries of Wi are sampled i.i.d. from Unif({1,−1}) D−1[(∥x∥2 ∥y∥2 + 2((x⊤y)2 −

∑d
i=1 x2

i y2
i ))n − (x⊤y)2n]

TensorSRHT Wi is implicitly defined through Algorithm (2) Rademacher variance − c(D,d)
D2 ·[

(x⊤y)2n −
(
(x⊤y)2 − 1

d−1

(
∥x∥2∥y∥2 + (x⊤y)2 − 2

∑d
k=1 x2

ky2
k

))n]

As shown in [20], the variance of the Rademacher polynomial sketch (second row in Table (1)) is upper-bounded by
the variance of the Gaussian polynomial sketch (first row). TensorSRHT (third row) is a structured polynomial sketch
that imposes an orthogonality constraint on the rows of each {W}ni=1 leading to even lower variances for odd degrees
n. We summarize its construction in Algorithm (2) in Appendix A. It uses the Fast Walsh-Hadamard Transform [5]
to project a data point in O(nD log d) instead of O(nDd) time required for Gaussian and Rademacher sketches.

In this work, we only make use of Rademacher and TensorSRHT sketches as they yield the lowest variances. It is
also possible to use complex-valued random matrices in Eq. (5) that yield additional variance reductions for positively
valued data [21]. However, this condition does not hold for the method proposed in this work, which is why we
consider only real-valued polynomial sketches here.

Randomized Gaussian kernel approximation. We now consider using the set of polynomial sketches {ϕn(x̃)}pn=1 (5)
instead of the explicit feature maps {x̃(n)}

p
n=1 in Φ(x) (4), which yields the approximate Gaussian kernel:

k̂p(x, y) := Φ(x)⊤Φ(y) = σ2 exp
(
−∥x̃∥2/2

)
exp

(
−∥ỹ∥2/2

) 1 + p∑
n=1

1
n!
ϕn(x̃)⊤ϕn(ỹ)

 with E[k̂p(x, y)] = kp(x, y), (6)

where the expectation is with respect to the random feature distribution. The dimension of the feature map Φ(x) is
D = 1+D1+ · · ·+Dp, where {Dn}

p
n=1 are the number of random features allocated to the polynomial sketches {Φn}

p
n=1.

While the {Dn}
p
n=1 were chosen randomly in the past [10], it was shown in [20] that their allocation under a given

budget D − 1 has a significant impact on the quality of the kernel approximation. The authors in [20] show that the
feature allocation task can be formulated as a discrete resource allocation problem for which the so-called Incremental
Algorithm [6, p. 384] can be applied. Due to space limitations, we refer the reader to [20, Chapter 5.3 and Algorithm 3]
that describes the procedure of finding an optimal degree p∗ and an optical allocation (D1, . . . ,Dp∗ ) using a subsample
of the training data. We will use this method from now on whenever the input dimension d of the data is at least two,
otherwise no approximation is needed and explicit polynomial feature maps Eq. (4) can be used.

3. Localized random Maclaurin features for the Gaussian kernel

In this section, we develop our main theoretical and methodological contribution. We begin by uncovering a pathol-
ogy of Maclaurin-based approximations of the Gaussian kernel that appears when ∥x̃∥ or ∥ỹ∥ become large.

3.1. Pathology of the Maclaurin method

We derive the following Theorem in Appendix B that characterizes the pathology of Maclaurin-based approxima-
tions leading to poor GPR predictions for high-frequency data.

Theorem 3.1 (Vanishing Maclaurin approximation of Gaussian kernels). The magnitude of the finite Maclaurin ap-
proximation kp(x, y) = σ2 exp(−(∥x̃∥2+∥ỹ∥2)/2)

∑p
n=0 1/n!(x̃⊤ ỹ)n of the Gaussian kernel approaches zero as ∥x̃∥2+∥ỹ∥2

increases. The error |k(x, y) − kp(x, y)| between the exact kernel k and its approximation kp is the largest for parallel
x, y and zero when they are orthogonal.

We visualize the implications of Theorem (3.1) in Fig. (1), where we compare the approximation kp(x, y) with the
exact Gaussian kernel k(x, y) for p = 3 over a range of values ∥x̃∥ , ∥ỹ∥ as well as the angle θxy between x and y. One
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Fig. 1. kp(x, y) (dashed) vs. k(x, y) (transparent and solid) for fixed p = 3 and σ2 = l = 1, where we use the relationship x̃⊤ ỹ = ∥x̃∥ ∥ỹ∥ cos(θxy).

can see that kp(x, y) approaches zero with increasing ∥x̃∥2+ ∥ỹ∥2 regardless of θxy. This deteriorates the approximation
quality, in particular as θxy goes to zero. This development accelerates when choosing a shorter length scale l. A
consequence of this pathology is that the GPR predictive means and variances in Eq. (1) collapse to zero for test
points x̃∗ with large ∥x̃∗∥ since kp(x∗, x) goes to zero for any x ∈ Rd in this case. This effect is shown in the middle
plot of Fig. (2). We will discuss this example in greater detail in Section 4.

A similar pathology was identified for the Relevance Vector Machine [18] that was solved by adding new basis
functions centered on the test points [15]. In the following, we present a similar strategy by centering our entire
approximation around individual test points.

3.2. Curing the pathology for GP regression

We will now exploit a property of the Gaussian kernel that allows us to cure the aforementioned pathology. The
Gaussian kernel is shift-invariant, i.e., k(x + δ, y + δ) = k(x, y) for any δ ∈ Rd, because ∥(x + δ) − (y + δ)∥ = ∥x − y∥.
Thus, when making a prediction at a test input x∗, one can subtract x∗ from all inputs used in Eq. (1) without changing
the result of the prediction. More specifically, the values µ∗ and σ2

∗ in Eq. (1) do not change if we substitute k(x, y) by
k(x − x∗, y − x∗) for the computation of kf∗, Kff and k∗∗.

However, the approximate kernel k̂p (6) is greatly affected by this change. To see this, we define:

k̂∗p(x, y) := k̂p(x − x∗, y − x∗) = σ2 exp
(
−
∥x − x∗∥2

2l2

)
exp

(
−
∥y − x∗∥2

2l2

) p∑
n=1

1
n!
Φn

(
x − x∗

l

)⊤
Φn

(
y − x∗

l

)
, (7)

where E[k̂∗p(x, y)] = kp(x − x∗, y − x∗) =: k∗p(x, y). As all {Φn}
p
n=1 are sampled independently, we have

V[k̂∗p(x, y)] = V[k̂p(x − x∗, y − x∗)] ∝
p∑

n=1

(
1
n!

)2

V
[
Φn

(
x − x∗

l

)⊤
Φn

(
y − x∗

l

)]
, (8)

where the variance is with respect to the random feature distribution. When setting x = x∗ or y = x∗, the variance
terms in Eq. (8) become zero for any of the polynomial sketches presented in 2.3 as can be seen from Table (1).
k̂∗p(x∗, y), k̂∗p(x, x∗) and k̂∗p(x∗, x∗) thus become deterministic.

We further have k̂∗p(x∗, y) = σ2 exp(−∥x∗ − y∥2/(2l)2), k̂∗p(x, x∗) = σ2 exp(−∥x − x∗∥2/(2l)2) and k̂∗p(x∗, x∗) = σ2

which are all equal to the exact kernel k evaluated at these points. Therefore, kf∗ and k∗∗ in Eq. (1) become exact for
our Maclaurin approximation. Kff unfortunately remains affected by the vanishing approximate kernels described by
Theorem (3.1) and by non-zero random feature variances. A crucial advantage of using k̂∗p instead of k̂p is that the
GP predictive distribution (1) does not collapse to zero anymore as ∥x̃∗∥ grows. We illustrate this on the following
synthetic example data set. As it is one-dimensional, we stick to the deterministic feature map in Eq. (4) for now.

Approximating the sinc function. We draw 50 noisy observations {yi}
50
i=1 with yi = sinc(5xi)+ϵi and ϵi

i.i.d.
∼ N(0, σ2

noise =

0.01), where {xi}
50
i=1 are sampled independently and uniformly from the interval [−1.5, 1.5]. We then fit a reference GPR

on this data set using the Gaussian kernel (3), where the hyperparameters l and σ2 > 0 are found through a gradient
based optimization of the log marginal likelihood [14, Chapter 5.4]. The length scale found for the reference GPR
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Fig. 2. Approximating the predictive distribution of a reference GPR using different approximation methods and D = 10.

is l = 0.11 and is rather short compared to 0.92, which is the median pairwise Euclidean distance of the training
data, a standard heuristic for choosing the length scale without optimization [7]. This reflects the frequent oscillations
of the function sinc(5x). We show the reference GPR along with three different approximation schemes in Fig. (2).
The baseline Random Fourier features (RFF) [13] (left) struggles to recover the reference GPR for D = 10 random
features. The dimension D of the feature map (4) is equal to p + 1 for the Maclaurin approximation. So we chose
p = 9 for a fair comparison against RFF.

The Maclaurin approach using k∗p (right) gives the best approximations while the predictive distribution of the one
using kp (middle) collapses to zero very quickly at points x∗ ∈ R away from zero. This is because ∥x̃∗∥ becomes large
very quickly and kp vanishes when being evaluated at these points. For values x∗ far away from the training data, the
GP predictor (1) using k∗p even recovers the GPR prior distribution as desired, which can be explained as follows.
When x∗ is far from the training data, kf∗ becomes zero. Then µ∗ = 0 and σ2

∗ = k∗∗ = σ2 in Eq. (1). Since k∗∗ and kf∗
in Eq. (1) are accurate when using k∗p as explained earlier, the convergence to the prior is kept for k∗p.

3.3. Reducing computational costs through clustering

A caveat of using the approximate kernel k̂∗p(x, y) (7) described in Section 3.2 is that we need to recompute the
GPR predictor (1) for every test point x∗ separately, which becomes expensive when many test points need to be
predicted, even when using the featurized version (2) of the predictor. We denote the number of test inputs by N∗. A
direct computation of Eq. (2) now costs a total of O(N∗ND2) for all test points.

The problem is “embarrassingly parallel” and the computation of Eq. (2) for every x∗ could be easily distributed on
a cluster of compute nodes or parallelized using a single GPU, e.g., using JAX [2]. However, we propose a different
approach here that requires no separate training at test time while staying as close as possible to the training time of
O(ND2) as is generally desired for random feature approximations.

Our approach is to cluster the training data into NC clusters and to use the centroids of these clusters as pseudo
test inputs. We choose a farthest point clustering for simplicity as it does not require convergence verification and
determines the number of clusters using a threshold θ > 0, but any clustering algorithm can be used instead (even a
random selection of training points). As the centroids are known during training, we can pretrain a set of NC predictors
using Eq. (2) and assign a new test point x∗ to the closest centroid at prediction time. We summarize the complete
procedure in Alg. (1). The computational cost is now O(NC ND2) and is thus much lower than O(N∗ND2) if NC ≪ N∗.

4. Empirical evaluation on real-world data

In this section, we evaluate our proposed method in Section 3.2 on real-world data of different dimensions. Since
d > 2 holds in all examples, we employ the polynomial sketches (5) as presented in Section 2.3. As for the synthetic
example in Fig. (2), we use the Gaussian kernel with hyperparameters l and σ2 > 0 that are found through gradient
based optimization of the log marginal likelihood of a reference GPR, along with σ2

noise.
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Algorithm 1: Precomputing Localized Maclaurin Features for the Gaussian Kernel

Input: Hyperparameters l, σ2, σ2
noise > 0; training data {xi}

N
i=1; test data {x∗i }

N∗
i=1; number of features D ≥ 1;

// 1) Training

if d > 1 then // We use random features

Center the training data by subtracting the training mean ;
Find (p∗,D1, . . . ,Dp∗ ), the optimal feature allocation for the random Maclaurin method (see Section 2.3) ;

end
C := {(

∑N
i=1 xi)/N} // Initialize centroids with training mean ;

while True do // Farthest point clustering

Let δi = min{∥xi − c∥ | c ∈ C} for i = 1, . . . ,N ;
if max{δi}Ni=1 < θ then // Training Max.-Min.-Distance is below threshold θ

break;
end
Add xi with i = arg maxi{δi}

N
i=1 to C ;

Precompute A−1
c :=

(
Φ(X − c)⊤Φ(X − c)/σ2

noise + I
)−1

with Φ defined in Eq. (4) ;
// Use explicit features for d = 1, else use polynomial sketches (5) in Eq. (4)

end
forall {x∗i }

N∗
i=1 do // 2) Inference

Assign x∗i to closest centroid c ∈ C ;
Compute µ∗ and σ2

∗ in Eq. (2) by setting A−1 = A−1
c , x∗ = x∗i − c and X = X − c ;

end

We compare our method against a random Fourier features baseline [13] as well as its structured extension [23]
when the data is sufficiently high dimensional2. We also add the vanilla optimized Maclaurin method (Section 2.3) to
this comparison. It is equivalent to Alg. (1) using only a single cluster with its centroid being the training mean. We
measure the approximation quality with respect to the reference GPR using the Kullback-Leibler (KL) divergence [14,
Chapter A.5] between the predictive means and variances in Eq. (1) and Eq. (2). We measure downstream regression
performance using the root mean squared error (RMSE).

4.1. UK apartment price data

We downloaded the monthly property sales data for England and Wales from the HM land registry3. We filtered
for sold apartments for the month of January 2022 leading to a data set with 24 553 observations. Matching the post
codes for each apartment sold with a database of latitudes and longitudes4 allowed us to obtain a two-dimensional
data set (latitude, longitude) that we could regress against the logarithm of the sales prices. We randomly split the data
into 10 000 training points and kept the rest for testing.

In our first experiment, we aim to recover the reference GPR predictive distribution on a regular grid of latitudes
(between +50◦ and +55◦) and longitudes (between −6◦ and +2◦) of size 100 by 100. Fig. (3) shows the results of this
experiment. As for the sinc-example in Fig. (2), random Fourier features struggle to recover the predictive distribution
using D = 100 random features and the vanilla Maclaurin method using k̂p (6) suffers from vanishing kernels due
to the short (compared to the scaling of the data) length scale of l = 0.25. Our proposed kernel k̂∗p (7) improves
predictions considerably leading to the lowest KL divergence with respect to the reference GP predictive distribution.
It also converges to the prior for test points far from the training data.

2 Otherwise, the structured random Fourier features induce a large bias.
3 https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
4 https://www.freemaptools.com/download-uk-postcode-lat-lng.htm

https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.freemaptools.com/download-uk-postcode-lat-lng.htm
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9.932 10.366 10.800 11.234 11.668 12.102 12.536 12.970 13.404 13.838
log(Sales Price)

Fig. 3. Approximating the predictive mean of a reference GP using different approximation methods and D = 100. KL Divergences also include
predictive variances. The Maclaurin method using k̂p makes predictions centered around the mean of the training data (close to London).

In our second experiment, we evaluate the use of Alg. (1) to precompute the matrix inversion in Eq. (2) on a set of
pseudo test inputs. This time we report results on the left-out test data instead of a regular grid. The left part of Fig. (4)
shows these results. We can see that the KL divergence falls off considerably (top plot) as we add more clusters until
reaching 57 clusters. From then on the KL divergence remains roughly the same indicating that 57 clusters give a
good trade-off between efficiency and performance. In the bottom plot we show a comparison of RMSE values for
these 57 clusters, where the Maclaurin method outperforms random Fourier features, in particular for small D.

4.2. UCI data sets: Yacht and kin8nm

In the following, we repeat the evaluation of Alg. (1) for two higher dimensional data sets that are taken from the
UCI machine learning repository [4] in Fig. (4). We obtain very similar results for the UCI Yacht data set as for the UK
apartment price data set. Adding more clusters gives large gains initially but these diminish when setting θ > 2.0l in
Alg. (1) determining a good trade-off between performance and computational cost. This time we included structured
orthogonal random Fourier features [23] that are also outperformed by the Maclaurin method.

For the UCI kin8nm data set, results look quite different. Adding more clusters increases the KL divergence towards
the reference GP predictor, which is why only a single centroid, the mean of the training data, is chosen for the RMSE
comparison in the plot below. This corresponds to the vanilla optimized Maclaurin method (Section 2.3).

We explain this observation as follows. The length scales obtained for the sinc example, the UK apartment price
data and for UCI Yacht are short. For the UCI Yacht data set it is 0.32, i.e., much less than 3.28, the median pairwise
Euclidean distance of the training data, indicating that the data is fit by a reference GP of high frequency. For kin8nm
the length scale is 2.15 compared to 3.93 (median heuristic) indicating a much smoother GP than the ones before.

In this case, the values of kf∗ and k∗∗ in Eq. (1) are less affected by the vanishing kernels (Theorem 3.1) due to a
longer length scale. However, the approximation of Kff in Eq. (1) is more accurate when using the vanilla Maclaurin
approximation (6) because the data is centered around the training mean. This shows that the clusters need to be
chosen depending on the smoothness of the target GP. In this work, we have provided a generalization of the vanilla
Maclaurin method that (with an appropriate choice of clusters) can fit both, high and low-frequency data.

5. Conclusion

We have identified a major pathology when using Maclaurin-based approximations such as [3, 20] for the Gaussian
kernel. We have further presented an extension of the optimized Maclaurin method [20] that overcomes this problem
and makes it applicable to high-frequency data. The clustering method in Alg. (1) seems to have a strong impact on
predictive performance. Future work should investigate on optimal clustering schemes that automatically adapt to the
frequency of the target function. It would further be interesting to combine the advantages of random Fourier features
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Fig. 4. (Top) Test KL Divergence for a given number of clusters obtained from the training data using Alg. (1) with threshold θ. (Bottom) RMSE
over feature map dimension D for a fixed number of clusters.

and polynomial sketches, as both approximations have zero variances in different regimes (equal inputs for RFF and
orthogonal inputs for Maclaurin).
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Appendix A. TensorSRHT: A structured polynomial sketch

Algorithm 2: TensorSRHT according to [20]
Result: A feature map ϕn(x)
Pad x with zeros so that d becomes a power of 2 and let Hd ∈ {1,−1}d×d be the unnormalized
Walsh-Hadamard matrix [5]; Let B =

⌈
D
d

⌉
be the number of stacked projection blocks ;

forall b ∈ {1, . . . , B} do
forall i ∈ {1, . . . , n} do

Generate a random vector di = (di,1, . . . , di,d)⊤ ∈ Rd as di,1, . . . , di,d
i.i.d.
∼ Unif({1,−1});

Compute ϕb,i(x) := Hd(di ⊙ x) using the FWHT [5] and shuffle the elements of ϕb,i(x) randomly;
end
Compute ϕb(x) := (ϕb,1(x) ⊙ · · · ⊙ ϕb,n(x))/

√
D ;

end
Concatenate the elements of ϕ1(x), . . . , ϕB(x) to yield a single vector ϕn(x) and keep the first D entries ;

Appendix B. Proof of Theorem 3.1

Proof. We start by deriving an upper bound for |kp(x, y)|. We leave out the length scale here for ease of notation.

|kp(x, y)| = σ2 exp(−(∥x∥2 + ∥y∥2)/2)

∣∣∣∣∣∣∣
p∑

n=0

1/n!(x⊤y)n

∣∣∣∣∣∣∣ ≤ σ2 exp(−(∥x∥2 + ∥y∥2)/2)
p∑

n=0

1/n!(∥x∥ ∥y∥)n
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Next, we notice that ∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2x⊤y ≥ 0 for any x, y. Thus, we can choose them to be parallel. So
∥x∥ ∥y∥ ≤ (∥x∥2 + ∥y∥2)/2. From this inequality, it follows

p∑
n=0

1/n!(∥x∥ ∥y∥)n ≤

p∑
n=0

1/n!((∥x∥2 + ∥y∥2)/2)n ≤ exp((∥x∥2 + ∥y∥2)/2).

Now, the gap exp((∥x∥2+∥y∥2)/2)−
∑p

n=0 1/n!((∥x∥2+∥y∥2)/2)n =
∑∞

n=p+1 1/n!((∥x∥2+∥y∥2)/2)n increases as ∥x∥2+∥y∥2

increases, which must decreases the ratio
∑p

n=0 1/n!(∥x∥ ∥y∥)n/ exp((∥x∥2 + ∥y∥2)/2) and thus the upper bound of
|kp(x, y)| goes to zero as ∥x∥2 + ∥y∥2 increases.

Next, we look at the error |k(x, y) − kp(x, y)| = σ2 exp(−(∥x∥2 + ∥y∥2)/2)
∣∣∣∑∞n=p+1 1/n!(x⊤y)n

∣∣∣. If the angle between
x and y is zero such that x⊤y = ∥x∥ ∥y∥, all addends in the infinite sum are maximized. The error thus becomes the
largest. The error is zero when they are orthogonal.
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