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Abstract

Carrying out Bayesian inference over parameters of statistical models is intractable when the likelihood and the prior are non-
conjugate. Variational bootstrap provides a way to obtain samples from the posterior distribution over model parameters, where
each sample is the solution of a task where the labels are perturbed. For Bayesian linear regression with a Gaussian likelihood,
variational bootstrap yields samples from the exact posterior, whereas for nonlinear models with a Gaussian likelihood some
guarantees of approaching the true posterior can be established. In this work, we extend variational bootstrap to the Bernoulli
likelihood to tackle classification tasks. We use a transformation of the labels which allows us to turn the classification task into
a regression one, and then we apply variational bootstrap to obtain samples from an approximate posterior distribution over the
parameters of the model. Variational bootstrap allows us to employ advanced gradient optimization techniques which provide
fast convergence. We provide experimental evidence that the proposed approach allows us to achieve classification accuracy and
uncertainty estimation comparable with MCMC methods at a fraction of the cost.
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1. Introduction

The Bayesian treatment of statistical models is desirable in applications where quantification of uncertainty is a
primary requirement. For many classes of models, this is analytically intractable, and one needs to resort to approxi-
mations. Given a statistical model with parameters on which a prior distribution is assumed, such approximations yield
an approximation to the posterior distribution over these parameters either in closed form or in the form of samples.
Popular approaches include the Laplace Approximation, Variational Inference, and Markov chain Monte Carlo.

In this work, we focus on an alternative approach called variational bootstrap [21]. Variational bootstrap works by
producing a set of replicas of the data set with perturbed labels. Then, each of these perturbed problems is solved by
maximum-a-posteriori-type optimization. Perhaps not surprising, in the Bayesian linear regression case it is possible
to introduce perturbations in a way such that the set of solutions to the perturbed problems is distributed exactly
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as the posterior over the parameters. One remarkable property of this approach is that it transforms the problem
of characterizing the posterior distribution over model parameters into a set of easily parallelizable optimization
problems. Milios et al. [21] provide an extension of this result to the case of regression with deep neural networks
featuring ReLU activations, where certain theoretical guarantees are given for the minimization of the KL divergence
between the approximate and the true posterior. The main limitation of this approach is that no guarantees are provided
for non-Gaussian likelihoods, such as Bernoulli or Multinomial, which are associated with classification problems.

In this work, we broaden the scope of variational bootstrap by extending it to classification problems. We propose
to transform Bernoulli/Multinomial distributed labels to a latent representation with a Gaussian noise. We can then
apply a model with a Gaussian likelihood to solve a regression problem within this latent space. To carry out this
transformation, we follow the method in [20], where classification labels are interpreted as the output of a Dirichlet
distribution. We thus propose the combination of variational bootstrap with Dirichlet-based classification; this allows
one to obtain reliable uncertainty estimates for the classification model at a lower cost than other Bayesian inference
methods, and it enables easy parallelization.

We study the proposed extension to the nonlinear case on deep neural networks for classification with ReLU
activations. The transformation of the labels from discrete to continuous allows us to borrow the results obtained in
the Gaussian likelihood case. As a result, we obtain a method for which we have guarantees that the optimization of
the perturbed problems yields an improvement of the approximation to the posterior over model parameters. In the
experiments, we showcase results on various data sets demonstrating that this is a competitive approach to characterize
the posterior over model parameters. Crucially, our proposal is extremely easy to parallelize and we view this as a
considerable advantage compared to alternatives to obtain the posterior over model parameters.

The proposed extension is also relevant for Bayesian logistic regression applied to large datasets with a large
number of features. An interesting application of this approach that we showcase in the paper is the approximation
of Gaussian process classifiers with random features [24], which turns the model into a Bayesian logistic regression
model. The larger the set of random features, the better the approximation, but this has a negative impact on the
computational cost. The proposed approach yields a very practical and effective method to overcome these difficulties.

The paper is organized as follows. Section 2 discusses the related work. In Section 3, we introduce some back-
ground concepts, while Section 4 discusses variational bootstrap and the transformation of the labels which we need
to frame classification problems as regression. Finally, Section 5 reports the results and Section 6 concludes the paper.

2. Related Work

In recent years, neural networks (NN) have gained popularity due to their effectiveness on a broad variety of tasks
including image classification [12], natural language processing [5] and many others [2, 10, 23, 22]. One of the most
persistent challenges is that NNs tend to make overconfident decisions [11, 14, 16]. In the literature, overconfident
decisions are treated by introducing uncertainty to outputs of a NN. In practice, it means that the model produces a
predictive distribution of outputs for each input vector. This practice offers ways to quantify uncertainty of predictions,
as high predictive variance implies lack of confidence. Methods that provide uncertainty quantification for NNs include
deep ensembles [17], Monte Carlo dropout [9] and Bayesian Neural Networks (BNN) [19].

In this work, our focus is on BNNs. In contrast with the deterministic networks, BNNs consider parameters to be
random variables that are associated with some prior distribution. Instead of a training procedure based on optimiza-
tion, this treatment requires characterizing a posterior distribution over their weights given observations by means of
Bayes theorem. The main challenge is that this procedure is intractable for nonlinear models, which has motivated the
development of approximations using, for instance, Variational Inference (VI) [1, 8]. These techniques, while being
relatively cheap in terms of computational resources, require selecting a family of distributions, that is used for ap-
proximation of the posterior distribution. The choice of a family of approximate posteriors has a crucial effect on the
performance of the model and on the reliability of uncertainty estimations. Because different models and tasks require
different families of approximate posterior distributions, there are no reliable heuristics for this task. As an alternative
to approximate inference, it is possible to use Markov Chain Monte Carlo (MCMC) techniques, that allows one to get
samples from the true posterior distribution of the weights. The recently proposed Stochastic Gradient Hamiltonian
Monte-Carlo (SGHMC) method [4] allows obtaining samples from a true posterior distribution over the weights for
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large-scale problems using mini-batching. Despite a significant reduction of the time complexity comparing to other
MCMC methods, SGHMC may still be slow to converge.

Another family of Bayesian inference techniques is particle-optimization variational inference (POVI) [18, 6, 21].
Methods from this family use particles that are different instances of the model, which are optimized independently.
The resulting set of optimized particles serves as an approximate posterior distribution that is more flexible than
VI solutions. In this work we focus on variational bootstrap [21], which provides a theoretical connection between
POVI and parametric bootstrap [7] for regression tasks, and our contribution is to extend this method to classification
problems.

3. Preliminaries

In classification and regression tasks, the objective is to tune the parameters θ of a function f (x, θ) so that it best
explains a set of given observations. The Bayesian paradigm dictates that we specify a prior distribution p(θ), which
captures any prior knowledge about the model. For a datasetD{(xi, yi) | i = 1 . . . n} of n input vectors xi and labels yi,
it is possible to define the posterior distribution over θ after observing the dataD by means of Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

(1)

where p(D|θ) is known as the likelihood model, while the integral term in the denominator above is referred to as
marginal likelihood or evidence.

Bayesian Neural Networks. We consider f to be defined as a fully-connected multi-layer perceptron (MLP) with L
layers, each of which is given by the following formula:

fl(x) =
1
√

Dl−1

(
Wl φ( fl−1(x))

)
+ bl, l ∈ {1, ..., L + 1}, (2)

where Wl and bl are the weights and the biases of the l-th layer, φ is some non-linear function (i.e. ReLU), and Dl

denotes the dimension of the input for the corresponding layer. By dividing each layer with
√

Dl, we ensure that the
variance of the output does not explode in the limit where the width of the network tends to infinity; this specification
is known as NTK parameterization [13]. We shall use θ to refer to the set of the parameters: θ B {Wl, bl}

L
l=1, while we

define θ B vec(θ) ∈ Rm to be the corresponding vectorized form.

Random Fourier Features Approximation of Gaussian Processes. We shall also examine the case of linear models,
as they can serve as scalable approximations to another class of Bayesian models, namely Gaussian processes [25].
Following the random Fourier features (RFF) approximation [24], we consider ϕ(xi) ∈ RD×1 to be the projection of
an input point xi ∈ Rd×1 onto a feature space of D trigonometric basis functions. Then Φ ∈ RD×N denotes the design
matrix of the entire training set in the feature space. In this case, the model parameters can be directly described
as a vector: θ B w ∈ Rm. Given a Gaussian likelihood N(y; f (x,w), σ2) and a Gaussian prior over the weights
w ∼ N(0, α2Im), then the posterior distribution over w after observing the datasetD is known to be Gaussian, yielding
the following predictive mean and variance for a test point x∗:

E[ f (x∗)] =
1
σ2 ϕ(x∗)

⊤A−1Φy, Var[ f (x∗)] = ϕ(x∗)⊤A−1ϕ(x∗), where A =
1
σ2ΦΦ

⊤ +
1
α2 I. (3)

We observe that in order to make a prediction, one has to solve two D×D linear systems: A−1Φy is solved only once,
but A−1ϕ(x∗) has to be solved for every new test point x∗. So for n∗ test points, this translates to O(n∗×D2) complexity.
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If the number of test points is large, then it is preferable to directly calculate the decomposition of the matrix A, so
that it can be reused to solve the linear systems needed to calculate the predictive distribution for new test points. In
many problems however, a large number of features might be required to obtain an accurate approximation of a GP.
Later, we show that variational bootstrap can keep the computational cost down, when both D and n∗ are large.

4. Methods

4.1. Variational Bootstrap for Neural Network Regression

In its original formulation, variational bootstrap was defined as an alternative to Bayesian inference for regression
tasks. More specifically, the objective is to approximate the posterior distribution of a nonlinear model with a Gaussian
likelihood and a Gaussian prior as follows:

p(D|θ) =
n∏

i=1

N(yi; f (xi, θ), σ2) and p(θ) = N(0, α2Im). (4)

For this model, variational bootstrap yields a set of samples that represents an empirical distribution q and approxi-
mates the posterior distribution of the parameters θ. These samples are obtained by optimization of a set of particles.
Each particle is defined as the maximum a posteriori (MAP) estimate for a regression task on a perturbed version of
the joint log-likelihood, with its own set of training labels and mean parameters of the prior distribution. The train-
ing labels for each particle are obtained by a parametric bootstrap procedure. For each given label yi, we generate a
perturbed label ỹi according to the likelihood function, that is Gaussian with variance σ2 and mean yi:

ỹ(k)
i ∼ N

(
yi, σ

2
)
, k = 1...K (5)

Also, each particle is associated with a unique sample from the prior distribution θ̃(k). So the new prior for each model
in the ensemble becomes as follows:

p(θ(k), θ̃
(k)) ∼ N(θ̃(k)

, α2Im), where θ̃(k)
∼ N(0, α2Im), k = 1...K (6)

After resampling K perturbed sets of the labels and parameters of the prior distribution, we can obtain K samples from
the approximate posterior, by solving K optimization problems of the form:

argminθ(k)
1

2σ2
n

N∑
i=1

(ỹ(k)
i − f (xi, θ

(k)))2 +
1

2α2 ||θ
(k) − θ̃

(k)
||2, k = 1...K (7)

The parameters of the particles are updated by a gradient descent algorithm. For the case of NNs under the additional
assumption of linear or piecewise linear activation functions, it is shown in [21] that each gradient step optimizes the
joint log-likelihood of each model and moves the distribution of parameters q(θ) closer to the true posterior p(θ|D).

4.2. Variational Bootstrap for Random Fourier Features

We demonstrate here that variational bootstrap can induce computational advantages also for the RFF approxi-
mation of Gaussian processes. If the labels are perturbed according to the likelihood so that ε ∼ N(0, σ2), and the
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regularization term is a sample from the prior so that w̃ ∼ N(0, α2Im), then the MAP solution is:

ŵ =
1
σ2 A−1Φ(y + ε) +

1
α2 A−1w̃, (8)

The MAP estimate ŵ is a Gaussian random vector, as it is a linear combination of two Gaussian random perturbations:
ε and w̃. According to [21], we can calculate the expectation and the covariance of ŵ to obtain the true posterior mean
and covariance for the weights of the linear model:

Eε,w̃[ŵ] =
1
σ2 A−1Φy C w̄, Eε,w̃[(ŵ − w̄)(ŵ − w̄)⊤] = A−1 (9)

Equation (8) yields samples from the true posterior distribution. From a computational perspective, we observe that it
behaves differently from the predictive posterior in (3). Here, exactly two linear systems have to be solved for every
sample, as opposed to every test point as in (3). Let K denote the number of samples; then the complexity becomes
O(K × D2). If the number of test points is larger than the number of posterior samples, this can induce significant
computational gains, as we demonstrate in the experimental section.

4.3. Dirichlet Label Transformation

The goal of Bayesian classification is to estimate the distribution of class probabilities for an input data point. The
Gaussian likelihood model we discussed in the previous section is not appropriate for a classification task; it is more
reasonable to use a Multinomial likelihood instead. For a C-class classification problem, the class label y for the input
point x is a sample from the Multinomial distribution y ∼ Cat(π). The authors of [20] propose to use a C-dimensional
Dirichlet distribution to model the distribution of class probabilities π ∼ Dir(α), with parameters α = [α1, ..., αC]T .
Any label observations are treated as Dirichlet distributions: if an input point x belongs to a class k, then it corresponds
to the following Dirichlet parameters:

αi =

1 + αϵ , if i = k.
αϵ , if i , k.

(10)

The term αϵ > 0 represents a small quantity added to the Dirichlet parameters in order to guarantee a valid Dirichlet
distribution. Then it is possible to represent samples from the C-dimensional Dirichlet distribution as samples from C
Gamma distributions: πi =

zi∑C
c=1 zc

, where zi ∼ Gamma(αi, 1), for i ∈ {1, ...,C}.

The original paper proposes to approximate the Gamma distribution by a Lognormal(ỹi, σ
2
i ) distribution whose

parameters are determined by moment matching. Because the logarithm of the log-normally distributed random vari-
able has a Gaussian distribution N(ỹi, σ

2
i ), it becomes possible to use a Gaussian likelihood and thus transform the

classification problem into a regression problem: the transformed labels ỹi become the new targets for the inputs xi

and σ2
i becomes the variance parameter of the Gaussian likelihood.

σ2
i = log(1/αi + 1) ŷi = logαi − σ

2
i /2 (11)
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It is worth mentioning, that the expression (11) produces different noise parameters σ2 for each observation y. This
means that after the transformation, we are dealing with heteroskedastic linear regression.

In order to train the whole classification model, it is required to solve C regression problems, one for each dimension
of the Dirichlet distribution. To make predictions, one has to apply a softmax transformation to the outputs of the C
regression models f = [ f1, ..., fC]T , as follows:

E[πi|x] =
∫

exp( fi(x))∑C
c=1 exp( fc(x)

p( fi(x)|X)df(x) (12)

4.4. Classification with Variational Bootstrap

One of the key components of variational bootstrap for regression is the data resampling via parametric bootstrap.
In the case of classification, it is not straightforward to adjust this strategy to produce perturbed versions of the class
labels in a way that reflects the nature of the Bernoulli (or the Multinomial) likelihood. For example, a class label y
can take values in {0, 1}; if we locally fit a distribution Bern(p) to each y, the maximum-likelihood parameter will be
the one-sample mean, i.e., p = 0 or p = 1. If we use this fitted model (i.e. Bernoulli with parameter 0 or 1) to resample
new labels, this will deterministically produce either 0 or 1, depending on the original label.

Therefore, we have adopted a strategy that combines variational bootstrap with the Dirichlet labels transformation.
Consider a dataset D = {xi, yi}

N
i=1 of input vectors xi and labels yi for a C-class classification problem. As a first step,

we transform each label yi into a pair {ŷi,σi}, ŷi ∈ RC , σi ∈ RC by the means of the Dirichlet label transformation.
The C-class classification problem is then transformed into a C-dimensional heteroskedastic regression problem with
labels ŷi and observation noise variances σ2

i ; each training sample and each dimension of the output has observation
noise with its own variance.

The second step involves an application of the variational bootstrap method, where we generate K independent sets
of regression labels, as well as K sets of prior parameters. Perturbations of each transformed label ŷi from the training
set are sampled from the corresponding distribution with variance σ2

i as follows:

ỹi ∼ N(ŷi,Diag(σ2
i )) where Diag(σ2

i ) = I ⊙ (σ2
i 1⊤) (13)

Algorithm 1 Variational bootstrap for MLP
1: Input: X, y, α, αϵ , h
2: Output: w ∼ q(w)
3: for i← 1 to N do
4: ŷi,σi ← DirichletTransform(yi, αϵ) ▷ Eq. (11)
5: end for
6: for k ← 1 to K do
7: ỹ(k)

1 , . . . ỹ
(k)
N ∼ N(ŷ1,σ

2
1), . . . ,N(ŷN ,σ

2
N)

8: Draw sample w̃ from N(0, α2I)
9: Initialize w(k) ← w̃

10: w(k) ← for each output dimension optimize (7)
11: end for

Algorithm 2 Variational bootstrap for RFF
1: Input: Φ, y, α, αϵ
2: Output: {w(1), . . . ,w(K)} ∼ p(w|Φ, y)
3: for i← 1 to N do
4: ŷi,σi ← DirichletTransform(yi, αϵ)
5: end for
6: for k ← 1 to K do
7: ỹ(k)

1 , . . . ỹ
(k)
N ∼ N(ŷ1,σ

2
1), . . . ,N(ŷN ,σ

2
N)

8: Draw sample w̃ from N(0, α2I)
9: w(k) ← for each output dimension solve (8)

10: end for

The procedure for applying variational bootstrap to classification is summarized in Algorithm 1 for MLP models,
and in Algorithm 2 for the RFF Gaussian process approximation. In both cases, parameters of the prior distribution
for each particle are sampled according to (6), while the labels are perturbed as in (13). Then in Algorithm 1 we
optimize K models independently. For Algorithm 2, the main difference is that we obtain the solution of regression
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problem (7) analytically instead of using gradient optimization. After optimization of the K particles, it is possible to
perform predictions using a Monte Carlo approximation of Equation (12). As a final remark, our choice to employ
the Dirichlet label transformation and to treat the classification problem as regression implies that our methods enjoys
any convergence guarantees that can be proven for the regression case.

5. Results

5.1. Toy dataset

We first demonstrate the application of variational bootstrap on a synthetic one-dimensional binary classification
problem. We considered a Gaussian process classifier based on a radial basis function (RBF) kernel, and we approx-
imated it with a Bayesian logistic regression model on a set of random features. We used Random Fourier Features
approximation of the RBF kernel proposed in [24]. For our experiment we considered 5, 000 random features. On the
left panel of Fig. 1, we show the distribution over functions corresponding to the approximate posterior distribution
over the parameters obtained with variational bootstrap with the Dirichlet label transformation; optimization was per-
formed via the L-BFGS algorithm. In the middle panel of the figure, we report the distribution over functions obtained
by the same approximation of the model, but where inference is carried out by Markov chain Monte Carlo (MCMC).
On the right panel of the figure, we show the distribution of functions obtained with the Laplace approximation.
For the toy dataset, we used the Metropolis-Hastings algorithm with 100 chains. For the prediction, we took the last
sample from each chain. R-hat convergence diagnostic [3] showed that it takes around 106 steps before convergence.
The comparison shows a remarkable property of the proposed approach to accurately approximate the posterior over
model parameters without the need for expensive or excessively long computations. In fact, the L-BFGS algorithm
converged for variational bootstrap after 16 iterations only.

5.1.1. UCI Datasets

Table 1. UCI datasets used for evaluation.

Dataset Classes Training instances Test instances Dimensionality

Magic 2 14020 5000 10
HTRU2 2 12898 5000 8
MiniBoo 2 120064 10000 50
Drive 11 48509 10000 54
Letter 26 15000 5000 16
Mocap 5 68095 10000 37

We evaluated our method on several UCI classification problems outlined in Table 1. We applied variational boot-
strap with the Dirichlet label transformation on two different models. First, we considered a two-hidden layer MLP
model with a ReLU activation function and 512 neurons in each hidden layer. We used Adam [15] to optimize the
parameters of the model. This model is referred to as VBoot-MLP. The second model we considered is the RFF
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Fig. 1. Comparison between the predictions with the regression weights, obtained by the variational bootstrap (left), MCMC (middle) and Laplace
approximation (right)
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approximation [24] of a GP, where 5, 000 random features were used to approximate an RBF kernel with fixed hy-
perparameters. In this case, we generated 50 samples as prescribed in Equation (8); this required solving 50 linear
systems of order O(D2), instead of thousands as required by Equation (3). This model is referred to as VBoot-RFF.

The performance of variational bootstrap is compared against a regular BNN, whose posterior has been approxi-
mated by means of MCMC sampling, and in particular SGHMC [4]. The baseline BNN uses the same prior distribution
over the parameters and a Bernoulli likelihood, while its output is given by a softmax activation function. VBoot-RFF
is compared against the Dirichlet transformation with a Sparse GP approach proposed in [20]. The hyperparameters
of this model were optimized as in the original paper. We evaluate performance using several metrics, including clas-
sification error and mean negative log-likelihood (MNLL). The results are outlined in Tables 2 and 3, respectively.
The models considered are referred to as VBoot-MLP, VBoot-RFF, Sparse GP, and MCMC-MLP respectively.

Considering the MLP models, our experiments show that the proposed approach is competitive when compared
against principled framework such as MCMC. Most importantly, our approach has significantly different behavior
in terms of convergence speed, as it relies on optimization rather than sampling. We demonstrate this property em-
pirically by monitoring the progression of validation error for variational bootstrap and MCMC. In Fig. 2, we report
classification error on held-out data over the first 200 training epochs. These results indicate that variational bootstrap
technique provides much faster convergence compared to SGHMC. On the other hand, only in some cases SGHMC
eventually settles to significantly lower validation error. We used Wilcoxon test [27] to compare classification errors
and MNLLs for VBoot-MLP and MCMC-MLP methods. The test did not show any statistically significant difference
regarding the performance of these two methods within 0.05 significance level. The lack of statistical significance
appears partly due to the small number of used data splits. Nevertheless, variational bootstrap is shown to achieve
a good trade-off between accuracy and efficiency. This trade-off can be further exploited in practice, as variational
bootstrap is trivially parallelizable.

Regarding the GP-based models, we also see that VBoot-RFF is highly competitive against traditional sparse GPs
that rely on inducing points. In fact, according to the one-sided Wilcoxon signed-rank test, the VBoot-RFF results are
slightly better than Sparse GP in a statistically significant way for some of the datasets (marked with “*” in Tables 2
and 3). Our variational bootstrap framework allowed us to use a large number of random features (i.e., 5, 000), which
would not be possible for many of the datasets considered. This can be seen in Fig. 3, which shows the computation
time for VBoot-RFF and Sparse GP models as a function of the number of random features and inducing points
correspondingly. Of course, using more random features/inducing points results in a better approximation of the full
GP model, but it also increases computational complexity. We see that VBoot-RFF has better scalability properties
compared to sparse GPs. Regarding the computation times reported for Sparse GPs, we note that we have excluded
the initial K-Means step needed to initialize the inducing locations, so in practice, sparse GPs are more expensive
than what we report here. Interestingly, sparse GPs could not scale beyond 1, 000 or 2, 000 inducing points for some
datasets, due to memory errors.

Table 2. Classification error for variational bootstrap with the Dirichlet transformation and Markov-chain Monte Carlo approaches.

Dataset VBoot-MLP MCMC-MLP VBoot-RFF Sparse GP

Magic 0.12±0.01 0.12±0.01 0.13±0.01 0.13±0.01
HTRU2 0.02±0.01 0.02±0.00 0.02±0.00 0.02±0.01
MiniBoo 0.11±0.01 0.09±0.01 0.08±0.01 0.08±0.01
Drive 0.01±0.00 0.001±0.000 0.01±0.00∗ 0.02±0.01
Letter 0.05±0.01 0.03±0.01 0.05±0.01∗ 0.08±0.01
Mocap 0.005±0.000 0.007±0.000 0.02±0.00∗ 0.03±0.01

6. Conclusions

In this paper we proposed a novel way to carry out Bayesian inference for classification models based on Neural
Networks and Gaussian processes. For NNs, this is important because, while they achieve state-of-the-art performance
in many tasks, they lack a principled way to characterize uncertainty in predictions, so they represent a class of models
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Table 3. MNLL for variational bootstrap with the Dirichlet transformation and Markov-chain Monte Carlo approaches.

Dataset VBoot-MLP MCMC-MLP VBoot-RFF Sparse GP

Magic 0.31±0.00 0.29±0.00 0.33±0.01∗ 0.35±0.01
HTRU2 0.08±0.00 0.07±0.00 0.07±0.01 0.07±0.01
MiniBoo 0.25±0.01 0.22±0.00 0.20±0.01∗ 0.21±0.01
Drive 0.06±0.00 0.01±0.00 0.08±0.03 0.08±0.01
Letter 0.31±0.00 0.24±0.00 0.28±0.01 0.25±0.01∗

Mocap 0.02±0.00 0.03±0.00 0.09±0.01∗ 0.13±0.01
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Fig. 2. Convergence of the classification error on validation data for variational bootstrap and SGHMC methods
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Fig. 3. Computation time complexity for VBoot-RFF and Sparse GP as function of the number of random features and inducing points correspond-
ingly.

for which a Bayesian treatment is highly desirable but mathematically and computationally challenging. For Gaussian
processes, instead, while the Bayesian treatment is at the core of its formulation, classification tasks are difficult to
handle because they require expensive approximations. Our work provides a practical and easily parallelizable way to
tackle all these limitations.

We are currently investigating parallel implementations of the proposed approach to considerably accelerate in-
ference of large-scale problems by operating on clusters of computing machines. In addition, we are exploring the
application of our approach to problems involving optical-based computing hardware, also known as Optical Process-
ing Units [26]. OPUs offer a fast and low-power way to approximate Gaussian processes through random features,
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and because they are capable of generating millions of these at the speed of light, we believe that our approach could
be the key to exploit these computations effectively.

Another possible direction is the adaptation of our framework towards a more efficient marginal likelihood max-
imization for GPs, which is a standard practice to tune kernel hyperparameters [25]. In this work, we have treated
GPs by means of fixed feature map approximations, which correspond to fixed hyperparameter values. Estimating
marginal likelihoods through samples is an open research question, and it can be the subject of future work.
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List of changes from the original submission

The following changes have been made according to the comments from the reviewers.

General changes

We replaced the abbreviation VB, that states for variational bootstrap with VBoot, to avoid confusion with Varia-
tional Bayes. We fixed several typos and incoherences in mathematical notation.

Changes in the Related work section

We have emphasized the key differences between our method and parametric Variational inference techniques in
terms of flexibility of approximated posterior distribution and over MCMC techniques in terms of computational
speed. Regarding particle-based methods, which are more closely related to ours, we emphasized that our method
extends to classification problems, which was not explored in the context of variational bootstrap.

Changes in the Methods section

We added pseudocode algorithms that describe the application of our method to multilinear perceptrons and Ran-
dom Fourier Feature linear models.

Changes in the Results section

We added Sparse Gaussian process (GP) baseline, and we have revised the discussion of the experimental results
by focusing on the qualitative differences between our method (VBoot-MLP & VBoot-RFF) and the baselines.

We used the one-sided Wilcoxon signed-rank test to verify that our method is comparable with the baselines in
terms of classification error and MNLL. We used a Wilcoxon pairwise statistical test because it allows to compare the
performance of two methods within different splits of each dataset. The performances of two methods on a single data
split represented by a pair of two values. The statistical analysis of the whole experiment boils down to a comparison
of the performance metrics within pairs for all data splits. That is why we needed a pairwise test. And given the
fact, that we do not have any assumptions about the distribution of the analyzed values, Wilcoxon test is an adequate
choice.

We also performed an additional set of experiments for Random Fourier Feature and Sparse GP models. In these
experiments, we showed that our method demonstrates better scalability properties than regular Sparse GPs.


