
On using Deep Reinforcement Learning to reduce
Uplink Latency for uRLLC services

Karim Boutiba
EURECOM

Sophia Antipolis, France
karim.boutiba@eurecom.fr

Miloud Bagaa
CSC-IT Center for Science Ltd.

Espoo, Finland
miloud.bagaa@csc.fi

Adlen Ksentini
EURECOM

Sophia Antipolis, France
adlen.ksentini@eurecom.fr

Abstract—5G networks and beyond are shifting from dominant
Downlink (DL) traffic to a more equilibrate DL/UpLink (UL) and
dominant UL traffic for specific emerging services. Particularly
for ultra-Reliable and Low Latency Communications (uRLLC)
services, the UL latency becomes an essential factor to consider.
However, current UL scheduling methods are not efficient in
terms of Physical Resource Blocks (PRBs) allocation, latency,
or link adaptation. In this paper, we address the emerging
challenge related to the UL latency in 5G networks and beyond.
We introduce a solution based on Deep Reinforcement Learning
(DRL) to dynamically allocate the future UL grant by learning
from the dynamic traffic pattern. Simulation results demonstrate
the efficiency of the proposed methodology in reducing the UL
latency down to 0.25 ms and ensuring the generality by reacting
to different traffic models.

I. INTRODUCTION

Ultra-Reliable and Low Latency Communications (uRLLC)
is one of the most critical services in 5G networks and beyond,
requiring as stringent requirements as 1−10−5 reliability with
a user plane latency of 1 ms [1]. Emerging uRLLC use cases
are shifting from Downlink (DL)-dominant traffic to more
equilibrate DL and Uplink (UL) traffic. Hence, it is crucial
to ensure a low latency in UL and DL directions. However,
achieving low latency in UL is more challenging since the
next Generation Node-B (gNB) has to be aware of the User
Equipment (UE)’s queue status to allocate PRBs according
to the UE needs, which results in increasing the latency by
the signaling overhead. Semi-Persistent Scheduling (SPS) [2]
and Grant Free (GF) [3] scheduling methods are proposed
to overcome the signaling overhead, hence reducing the UL
latency. However, they are less efficient for dynamic traffic
patterns (dynamic inter-arrivals and dynamic data sizes) and
less adaptable to quick channel condition changes, especially
in FR2 frequencies (> 6Ghz) and high mobility users. Fur-
thermore, GF may impact the reliability of the services since
resource usage can collide in frequency between users.

To overcome the aforementioned challenges, we introduce
a novel DRL-based algorithm that reduces the UL latency
by predicting the subsequent arrival of data and its size. We
dubbed this solution Deep Reinforcement Learning (DRL)-
based Low Latency Scheduler (DRL-LLS). The latter monitors
the Buffer Status Report (BSR) sent by UEs and derives the
future inter-arrival time and the grant size that should be

allocated to the user in the next UL opportunity. DRL-LLS
is adapted to change happening in channel conditions very
quickly since it dynamically sends grants to the user before
the data arrival. Hence, when the data is ready to be sent, the
UE will find the grant and fully transmit all the data to gNB,
which decreases the overhead signaling latency while adapting
to the channel conditions.

The main contributions of this work are manifolds:
• We introduce a Deep Reinforcement Learning (DRL)

based framework (DRL-LLS) to reduce the UL latency
of uRLLC services.

• We introduce a DRL-based agent to predict the future UL
slot for a UE by leveraging its traffic inter-packets arrival
history.

• We introduce a DRL-based agent to compute the grant
size for the next UL slot according to the BSR history.

• We combine the above models to enhance the UL MAC
scheduler. The new methodology dramatically reduces
the signaling overhead. For instance, the UL latency will
decrease since the UE will not send a Scheduling Request
(SR) nor send BSR to get more grants for the same
transmission. More details are provided in Section II-A.

• We validate DRL-LLS on different traffic models [4] used
in 5G new use cases like eXtended Reality (XR) and near
real-time video streaming.

The rest of the paper is organized as follows: Section II
describes the UL scheduling problem in 5G New Radio (NR),
the related works to reduce the UL latency, and introduces
DRL algorithms. Our proposed solution is presented in Section
III and evaluated in Section IV. Finally, we conclude the paper
in Section V.

II. BACKGROUND

A. Problem description

The UL Dynamic Scheduling (DS) method is widely used
among network operators due to its efficiency to allocate PRBs
and high adaptation capability to channel conditions. However,
it is inefficient for uRLLC services due to its negative impact
on the latency. Indeed, the PRBs are allocated to a UE upon
the gNB receiving an SR on the Physical Uplink Control
Channel (PUCCH) channel. gNB then assigns PRBs to the
UE and sends back a Downlink Control Information (DCI),978-1-6654-3540-6/22 © 2022 IEEE



informing mainly the Modulation and Coding Scheme (MCS),
the number of PRBs, and the k2 parameter to be used for that
transmission. The UE will send the data after k2 slots from
receiving the DCI. The first DCI contains a minimum grant in
terms of the number of PRBs (since SR is just one bit and does
not inform the gNB about the current queue status of the UE).
If the UE needs to send more data (i.e., the minimum grant is
not enough), it piggy-backs a Buffer Status Report (BSR) with
the data to inform the gNB about the UL UE’s queues status.
Then, the gNB will send a DCI with an additional number
of PRBs. Figure 1 illustrates the 3gpp compliant dynamic UL
scheduling procedure. Since SR is sent each time before UE
sends data, UL’s dynamic schedule can adapt to changes in
channel conditions very quickly. However, this method leads to
a high latency which consists of the SR latency (delay between
generating the SR and receiving the Physical Uplink Shared
Channel (PUSCH) data) and the BSR delay (delay between
sending the BSR and receiving the last PUSCH of the same
transmission).

Figure 1: 3GPP dynamic UL scheduling procedure

Basically, the standard dynamic UL scheduling is unsuitable
for uRLLC services requiring a latency of less than 1 ms. SPS
and GF scheduling methods are proposed to reduce the latency.
The gNB allocates PRBs to the UE without waiting for an SR.
The PRBs are reserved for the UE periodically. However, these
methods give a fixed grant size regarding PRBs and periodic
slots, which is unsuitable for dynamic data patterns. Besides,
they respond to changing channel conditions much slower
than dynamic scheduling since the MCS is reported only
once at the activation step. Hence, it reduces the reliability of
transmissions, especially in very dynamic channel conditions
like FR2 and high mobility users, which is unsuitable for
uRLLC services.

This paper aims to overcome the shortcomings mentioned
above by providing a high dynamic scheduler that has the
ability to avoid the SR and BSR latency and adapt according
to channel conditions. To support uRLLC, gNB may anticipate
UL traffic and then dynamically send DCI grants (to avoid
the SR latency) with the adapted MCS (to adapt to channel
conditions) and with the right PRBs grant (to avoid the BSR

latency). To achive this, we propose to predict the future traffic
arrival time ∆Ti+1 and the future traffic size Xi+1. Once the
gNB knows ∆Ti+1, it will send a DCI grant, with f(Xi+1,
MCS) PRBs grant, k2 slots before t + ∆Ti, where t is last
arrival time slot and f(x, y) is the 3gpp compliant function
[5] that returns the number of PRBs needed to transport x
bytes under MCS y. The k2 parameter is computed by k2 =
t+∆Ti − tc, where tc is the time of sending the DCI. Figure
2 illustrates the dynamic UL scheduling featuring low latency.

Figure 2: 3GPP dynamic UL scheduling procedure featuring low
latency

B. Related work

Authors of [6] have used deep learning to predict future traf-
fic. They show that deep learning outperforms linear statistical
learning when the number of past observations is significant
enough to learn the traffic pattern. Meanwhile, authors in [7]
have studied the impact of NR scheduling timings (mainly the
k2 parameter) on the UL traffic latency. They have proposed
a heuristic approach to derive k2 value from the inter-packet
arrival time considering only periodic traffic with fixed packet
size. Authors in [8] have proposed an enhanced dynamic
scheduling method to reduce VoIP traffic UL latency. However,
they support only periodic traffic with fixed packet inter-arrival
times. They have reduced the latency by removing the SR de-
lay. However, the BSR delay was not reduced when the packet
size is significant and can not be handled with the minimum
grant allocated to the UE in the first grant. Authors in [9]
have presented a novel framework for traffic prediction of
Internet of Things (IoT) devices activated by binary Markovian
events modeled by an On-Off Markov process with known
transition probabilities. However, this work considered only
ON-OFF traffic distribution and did not consider packet size.
Authors of [10] leveraged Artificial Neural Network (ANN)
to predict the ON-OFF period of burst traffic and estimate
the bandwidth to be allocated to reduce the latency. However,
they only considered IoT traffic following a burst pattern
and over-estimated bandwidths compared to the real traffic.
In fact, the bandwidth is estimated using the data rate of
the network. Authors in [2] have suggested a predictive SPS



scheme to predict data size during the SPS period. However,
they considered only haptic data patterns, and the inter-packet
arrival time is deemed static during the SPS period. Besides,
the SR latency is not reduced. Authors of [11] developed
a Long-Short Term Memory (LSTM) architecture to predict
future traffic and minimize radio latency. However, they did
not consider the size of traffic in their prediction.

All the above solutions considered a specific traffic pattern
(either periodic, following Exponential distribution, or ON-
OFF distribution), and most of them did not consider joint
arrival prediction with data size prediction.

C. Deep Reinforcement Learning (DRL)

Machine Learning (ML) is playing an important role in
5G Networks and Beyond. Particularly DRL, a ML technique
that can be used without the need for data sets. DRL can be
leveraged to derive configuration or management decisions in
real-time [12] (i.e., less than 1ms) in a stochastic environment,
which makes it suitable for the Radio Access Networks (RAN)
domain. DRL can provide self-configured, and self-optimized
network functions, such as radio resource allocation [13]. A
DRL framework has two actors: An agent and an environment.
The agent observes a state St from the environment, applies
an action at, gets a reward rt+1, and hence the environment
moves to the next state St+1. In the case of St+1 is not
impacted by at, the RL problem becomes Contextual Bandit
problem. For instance, DRL can be used to solve the problem
by considering a continuous problem with a discount factor
of zero. The agent can be in two modes: i) exploration mode,
where the agent explores and builds the knowledge about
the environment, and ii) exploitation mode, where the agent
exploits the acquired knowledge by following the optimal
policy π∗ that gives for each state St the optimal action
a∗t . Accordingly, the ability of DRL to derive good decisions
quickly, deal with unseen environments, and be scalable make
it suitable for solving the UL scheduling problem in 5G
networks.

III. DEEP REINFORCEMENT LEARNING LOW LATENCY
SCHEDULER (DRL-LLS)

In this section, we present our solution dubbed Deep Rein-
forcement Learning Low Latency Scheduler (DRL-LLS). In
the balance of this section, we first present the DRL-LLS
design and then give a detailed description of DRL-LLS.

A. DRL-LLS design

DRL-LLS aims to reduce the UL latency for a set of UEs,
whereby each UE can serve more than one service. DRL-
LLS predicts the next UL slot for each UE u given its traffic
history and schedules it before the actual data arrival. The
environment is considered as a sliding window W i

u,j of size
T containing information about the inter-arrival time intervals
and BSR information history for each couple (UE u, service
j) at the ith data arrival. Formally:

W i
u,j = {Iiu,j , Di

u,j};
Iiu,j = (∆Ti−T ,∆Ti−(T−1), ...,∆Ti);

Di
u,j = (Xi−T , Xi−(T−1), ..., Xi)

where ∆Ti and Xi are the ith inter-arrival time interval
(in slot granularity) and BSR information (in bytes) of UE
u, service j, respectively. We differentiate the BSR belonging
to service j by the Logical Channel ID (LCID) available at
the MAC header, considering that each service has a separate
Logical Channel (LC) in the context of network slicing at the
Radio Access Network (RAN) [13]. For instance, by giving
W i

u,j as input, DRL-LLS schedules an UL slot for UE u
following service j traffic pattern. That gives the generalization
ability to our agent and makes our DRL-LLS independent from
the number of UEs and the number of services per UE.

We recall that the UL latency at the RAN is composed of
two parts: the SR and the BSR latency (Figure 1). In order
to reduce the SR latency, DRL-LLS predicts the next arrival
of UE’s u data. Whereas, to reduce the BSR latency, DRL-
LLS predicts the size of the future data arrival of UE u. To
achieve the two goals, DRL-LLS includes two agents: i) Inter-
Arrival Time (IAT) Agent; ii) Data Grant (DG) Agent. Since
traffic size and traffic inter-arrivals are independent [4], the two
agents can be independent if their states and rewards are well
designed. Figure 3 illustrates the architecture of DRL-LLS.

IAT Agent takes (∆Ti−T ,∆Ti−(T−1), ...,∆Ti) as input
and generates the next arrival interval ∆Ti+1.

DG Agent takes (Xi−T , Xi−(T−1), ..., Xi) as input, and
then generates the next arrival size Xi+1.

DRL-LLS combines the values of ∆Ti+1 and Xi+1, and to
schedule the future UL slot after t+∆Ti+1 slot with f(Xi+1,
MCS) PRBs grant, where t is the current slot (last data arrival)
and f(x, y) is the 3gpp compliant function [5] that returns the
number of PRBs needed to transport x bytes under MCS y.

1) IAT Agent:

• State: The observation of IAT agent at time t as normal-
ized value is

It
u,j

M for UE u, service j. M is the maximum
time interval in the system in slots.

• Actions: The action is ∆Tt+1, which takes values from
1 to M .

• Reward: r1 = Lmax−l
Lmax

, where Lmax is the maximum
latency and l is the observed latency. In order to make
the IAT agent independent from the DG agent, we ignored
the data size in l computation. Formally;

l =

{
p− c+ 1 + Smax ∗∆f if p > c

(Smax − c+ 1)− p+ Smax ∗∆f, otherwise

Where p is the predicted slot in the Time Division Duplex
(TDD) pattern, p = (t + ∆Ti+1 mod Smax), c is the
current slot, Smax is the number of slots in the frame
and ∆f is the difference between the current frame and
the predicted frame ∆f =| ⌈ (c+∆Ti+1)

Smax
⌉ − f ′ |, f ′ is the

frame offset of the actual data arrival.
The reward is negative when the predicted slot is far
from the actual data arrival. It increases when the latency
approaches Lmax and becomes positive when the latency
is smaller than Lmax.



Figure 3: DRL-LLS design

Reward and States are normalized since it is well-known
that the activation functions in the neural network work
well for small values, which positively impacts the model
convergence.

2) DG Agent:
• State: The observation of IAT agent at time t as normal-

ized value is
Dt

u,j

N for UE u, service j. N is the maximum
data size in the system in bytes.

• Actions: The action is Xt+1, which takes values from 1
to N . The unit is kbytes instead of bytes to reduce the
action space.

• Reward: r2 = −α∗ | ⌈Xt+1−dr

N ⌉ | +(1−α)∗l′, whereby,
dr is the real (t+1)th data arrival size. In order to make
the DG agent independent from the IAT agent, we ignored
the time slot prediction in l′ computation, Formally,

l′ =

{
0 if Xt+1 < dr

1 otherwise

The reward increases when the predicted size is slightly
bigger than the actual size. It decreases when the pre-
dicted size is smaller than the actual size or the predicted
size is much bigger than the actual size (over allocated
PRBs). α controls the contribution of each term of the
reward. For instance, it influences how much we tolerate
the gap between actual and predicted sizes.

B. DRL-LLS detailed description

For both agents, DRL-LLS leverages the Deep Q-Network
(DQN) algorithm [14], which is one of the most efficient DRL
algorithms for continuous state space and discrete actions.
DRL-LLS executes two steps: decision making and updating
the Q-Networks. In DQN, two networks are used: a local Q-
Network and a target Q-Network. The latter is the same as
the local network except that its parameters are updated every
τ−1 step. They are combined to help the convergence and
stabilization of the learning.

1) Decision making: IAT agent observes a state Itu,j ÷M
and feeds it to the local QNetwork to get the discrete action
distribution of ∆Tt+1. While DG agent observes a state
Dt

u,j ÷ N and feeds it to the local QNetwork to get the
discrete action distribution of Xt+1. Then, we apply an ϵ-
greedy approach to choose an action from each distribution,
which means IAT and DG agents will choose a random action

over the possible actions with ϵ probability and the best action
over the action distribution with a 1-ϵ probability. ϵ will
decrease over time during the learning pushing the agent to
explore the environment at the beginning of the training and
driving it to exploitation over time.

2) Updating the Q-Networks: At each step, the current
state, the action, the next state, and the reward are stored in
a buffer known as the replay buffer. The local Q-Network
is updated using a random sample from the replay buffer,
which reduces the correlation between the agent’s experiences
and increases the stability of the learning. Using mean square
error (MSE) and ADAM optimizer [15], the parameters of the
local Q-Network are optimized at every step by considering
the local and target values. In contrast, the parameters of the
target Q-Network are updated every τ−1 step to stabilize the
algorithm’s convergence.

IV. PERFORMANCE EVALUATION

In this section, we will introduce the simulation environment
and parameters used for training DRL-LLS agents. Then, we
will evaluate the trained agents in a 5G simulated environment
using different 5G traffic models from [4].

A. Simulation parameters and training phase

We have trained both IAT and DG agents using 5000
independent episodes. For each episode, a different traffic inter
-arrival and data size patterns are used in a circular way from
the list: Exponential distribution with a random λ; 0 < λ < 1

M
for IAT agent and 0 < λ < 1

N for DG agent, Static distribution
with a random value m (0 < m < M for IAT agent and
0 < m < N for DG agent), On-Off distribution (For IAT
agent only, λ, β1 and β2 are the parameters of the exponential
distributions for traffic inter-arrival during the ON period,
the intervals of ON period and the intervals of OFF period,
respectively) and the truncated Pareto distribution (random α,
1 < α < 3, 0 < m < M , m < max < M for IAT agent and
0 < m < N , m < max < N for DG agent). The value of
M was fixed by 100 slots and the value of N by 103 kbytes.
We have fixed the maximum number of steps at each episode
by 200 and the window size T by 1000. Before starting the
learning process, the window is filled by arrivals generated
by the current episode distribution. The different considered
parameters for both agents are presented in Table II



Table I: Traffic patterns parameters
Traffic model index packet inter-arrival packet size

0 Exponential distribution (λ = 1/20) Exponential distribution (λ = 1/10k)
1 Exponential distribution (λ = 1/5) Static (20k)
2 Static (10) Static (10k bits)
3 On-Off distribution (λ = 1/10, β1 = 1/20, β2 = 1/20) Static (15k bits)
4 On-Off distribution (λ = 1/10, β1 = 1/20, β2 = 1/10) Exponential distribution (λ = 1/20k)
5 Truncated Pareto distribution (α = 1.1, m = 5, max = 30) Truncated Pareto distribution (α = 1.2, m = 10k bits, max = 30k bits)
6 Truncated Pareto distribution (α = 1.2, m = 10, max = 40) Static (50k bits)

To evaluate DRL-LLS in a 5G environment, we extended
the 5G Simulator developed in [16] to support UL scheduling,
and we fixed the numerology by 2 (Sub-Carrier Spacing (SCS)
= 60 khz) which is available in both FR1 and FR2. We used a
TDD period of 1.25 ms, which is the smallest TDD period for
numerology 2. We used a random MCS for each episode in
the range of 20..26, which maps to medium or good channel
condition. Since DRL-LLS is independent of the number of
UEs and services, we focused on training and testing the
framework on a single UE with different traffic patterns to
show the ability of DRL-LLS to reduce the UL latency. We
have implemented our simulation environment using Python
and Pytorch library. We have used a machine with 32 CPUs,
an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (2.7 GHz
with Turbo Boost technology), and 128 GBs of RAM.

Table II: DRL-LLS parameters
Parameter Value

α 0.2
Lmax 4 slots (1 ms)

Number of hidden layers 3
Hidden layer size 64 nodes
discount factor γ 0

Batch size 128
Learning rate 5 ∗ 10−4

Replay buffer size 109

Soft update coefficient τ 0.001
Optimizer ADAM [15]
ϵ-start 1
ϵ-decay 0.9991
ϵ-end 0.01

Number of training episodes 5000

Figure 4 depicts the convergence evaluation of DRL-LLS
score (sum of rewards during an episode) averaged every 100
episodes. We observe that the DRL-LLS agents converge after
4800 episodes since the curve tangents tend toward 0.

B. Inference phase

We have evaluated the DRL-LLS framework in terms of: i)
The average UL latency between data chunk arrival and the
transmission of the whole chunk; ii) The number of PRBs
allocated during the test; iii) The average inference time of
both IAT and DG agents executed sequentially (one after the
other).

In Figure 5, The y-axis represents the UL latency (in ms),
which is measured by tct − tca, where tca is the arrival time of
a data chunk c and tca the transmission time of the last part of
the data chunk c. The x-axis represents the traffic pattern index
introduced in Table I. Each pattern has a packet inter-arrival
time and data size distribution. We used different distributions
with different parameters to show that DRL-LLS is able to

0 1,000 2,000 3,000 4,000 5,000

−100

−50

0

50

100

150

Episodes

Sc
or

e

DG Agent
IAT Agent

Figure 4: Convergence evaluation of DRL-LLS agents during the
training mode

0 1 2 3 4 5 6

0
1
2
3

L
at

en
cy

(m
s)

DRL-LLS aDS DS
Figure 5: Average UL latency comparison between DRL-LLS, aDS
and DS

predict the pattern of different distributions with different
parameters. We recall that these distributions correspond to
5G use case patterns [4]. We compared DRL-LLS with two
methods: a) DS, where the UE sends an SR to gNB when it
has data to transmit; b) always Dynamic Scheduling (aDS),
where gNB schedules a minimal grant in all the UL slots to
avoid the SR procedure. The minimum grant for both DS and
aDS is 5 PRBs. We should note that the time unit in packet-
inter arrival is slots. For instance, λ = 1

20 for an Exponential
distribution means that the mean of the inter-arrival intervals
is 20 slots. We run the test over 1000 packet arrival for
each pattern configuration. We observe that DRL-LLS offers
a lower latency compared to aDS and DS. Indeed, DS latency
includes both SR and BSR latency, while aDS only consists
of the BSR latency. However, DRL-LLS removes both SR and
BSR latency since it predicts the subsequent arrival and the
size of the next arrival. Hence, the UE sends the data directly
without sending the SR and does not need a BSR to extend
the transmission. The smallest achieved latency by DRL-LLS
is 0.25 ms (1 slot in numerology 2) in the case of periodic
traffic (traffic pattern index 2). This is due to the simplicity
of the pattern, which is predictable ideally by DRL-LLS. The
highest latency achieved by DRL-LLS is 1.1 ms, which makes



0 1 2 3 4 5 6

0
0.5
1

1.5
·105

N
um

be
r

of
PR

B
s

DRL-LLS aDS DS
Figure 6: Number of the allocated PRBs comparison between DRL-
LLS, aDS and DS

the framework suitable for uRLLC services with a latency
requirement of 1 ms.

Figure 6 depicts the number of allocated PRBs (for UL)
during the 1000 packet arrivals for each traffic pattern (Table
I). We notice that aDS consume much more PRBs compared
to DRL-LLS and DS. This is since aDS schedules 5 PRBs
in every UL slot even if there is no transmission. We should
shed light that DS is optimal in terms of resource allocation
since it allocates only the needed amount of PRBs to transmit
the data. We also observe a smaller difference between DRL-
LLS and DS in terms of resource allocation while achieving
a much better latency by DRL-LLS (Figure 5).

0 1 2 3 4 5 6

0
0.2
0.4
0.6

In
fe

re
nc

e
tim

e
(m

s)

DRL-LLS
Figure 7: Average inference execution time of DRL-LLS

Finally, Figure 7 shows the average execution time of DRL-
LLS inference over the 1000 data arrival for each traffic pattern
(Table I). We notice that the execution time does not exceed
0.62 ms, which is suitable for real-time scheduling and hence,
better adaptation with channel conditions and better latency.

CONCLUSION

This paper introduced DRL-LLS, a Deep Learning Rein-
forcement (DRL)-based solution that reduces the UL latency
in 5G NR. DRL-LLS will be leveraged by the 5G base station
before the UE scheduling process to derive i) the next UL
slot to schedule and ii) the number of PRBs to allocate to
the user. Without knowing the UEs traffic model, DRL-LLS
can learn the traffic inter-arrival and data size patterns. DRL-
LLS uses the available BSR information history to derive the
following UL grant. Simulation results clearly showed that
DRL-LLS is able to reduce the UL latency down to 0.25
ms. Our future focus is on implementing DRL-LLS on top
of OpenAirInterface (OAI) [17] 5G to validate real uRLLC
use cases.

ACKNOWLEDGMENT

This work was partially supported by the European
Union’s Horizon 2020 Research and Innovation Program under

5G!Drones project (Grant No. 857031) and MonB5G project
(Grant No. 871780).

REFERENCES

[1] Adlen Ksentini et al. “Providing Low Latency Guarantees for
Slicing-Ready 5G Systems via Two-Level MAC Scheduling”.
In: IEEE Network 32.6 (2018), pp. 116–123.

[2] Ye Feng, Ampalavanapillai Nirmalathas, and Elaine Wong.
“A Predictive Semi-Persistent Scheduling Scheme for Low-
Latency Applications in LTE and NR Networks”. In: ICC 2019
- 2019 IEEE International Conference on Communications
(ICC). 2019.

[3] Nurul Huda Mahmood and al. “Uplink Grant-Free Access
Solutions for URLLC services in 5G New Radio”. In: 2019
16th International Symposium on Wireless Communication
Systems (ISWCS). 2019.

[4] Jorge Navarro-Ortiz et al. “A Survey on 5G Usage Scenar-
ios and Traffic Models”. In: IEEE Communications Surveys
Tutorials (2020).

[5] 3GPP. “5G NR; Physical layer procedures for data”. In: TS
38.214 Release 15 (2018).

[6] Amin Azari et al. “User Traffic Prediction for Proactive
Resource Management: Learning-Powered Approaches”. In:
2019 IEEE Global Communications Conference (GLOBE-
COM). 2019.

[7] Natale Patriciello et al. “The Impact of NR Scheduling Tim-
ings on End-to-End Delay for Uplink Traffic”. In: 2019 IEEE
Global Communications Conference (GLOBECOM). 2019.

[8] Ahmet Gizik, Ozgun Alkin Sensoy, and Engin Masazade.
“Enhanced Dynamic Scheduling for Uplink Latency Reduc-
tion in Broadband VoLTE Systems”. In: 2021 55th Asilomar
Conference on Signals, Systems, and Computers. 2021.

[9] Mohammad Shehab and al. “Traffic Prediction Based Fast
Uplink Grant for Massive IoT”. In: 2020 IEEE 31st Annual
International Symposium on Personal, Indoor and Mobile
Radio Communications. 2020.

[10] Lihua Ruan, Maluge Pubuduni Imali Dias, and Elaine Wong.
“Machine Learning-Based Bandwidth Prediction for Low-
Latency H2M Applications”. In: IEEE Internet of Things
Journal (2019).

[11] Eslam Eldeeb, Mohammad Shehab, and Hirley Alves. “A
Learning-Based Fast Uplink Grant for Massive IoT via Sup-
port Vector Machines and Long Short-Term Memory”. In:
IEEE Internet of Things Journal (2022).

[12] N. C. Luong and al. “Applications of Deep Reinforcement
Learning in Communications and Networking: A Survey”. In:
IEEE Communications Surveys Tutorials (2019).

[13] Karim Boutiba, Miloud Bagaa, and Adlen Ksentini. “Radio
resource management in multi-numerology 5G new radio
featuring network slicing”. In: ICC 2022. Ed. by IEEE. Seoul,
2022.

[14] Volodymyr Mnih and al. “Playing Atari with Deep Reinforce-
ment Learning”. In: (2013).

[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. 2017.

[16] Karim Boutiba et al. “NRflex: Enforcing network slicing in
5G New Radio”. In: Computer Communications (2021).

[17] Florian Kaltenberger et al. “The OpenAirInterface 5G new
radio implementation: Current status and roadmap”. In: WSA
2019, 23rd ITG Workshop on Smart Antennas, Demo Session,
24-26 April 2019, Vienna, Austria. 2019.


