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Abstract—We investigate the performance of coded caching
in land mobile-satellite (LMS) systems, where a satellite station
with full access to a content library serves K cache-aided land
users. The promising gains that coded caching provides for the
error-free shared-link Broadcast Channel are known to suffer in
some low signal-to-noise ratio (SNR) scenarios. For this reason,
we analyze to what extent the coded caching gains are preserved
in LMS systems, which are governed by low-to-moderate SNR
due to the long propagation distances. We model the satellite-
terrestrial channels through the widely adopted Shadowed-Rician
fading, and we show that the coded caching gains are partially
preserved even in the low-SNR limit due to the existence of line-of-
sight (LOS) components, which allows us to double the goodput
of LMS communication at low SNR. These results illustrate the
potential of coded caching in LMS systems and motivate further
research to design adapted and practical coded caching schemes
for LMS systems.

I. INTRODUCTION

One of the main challenges in current and future mobile
networks is dealing with the ever-increasing demand of video
content. Coded caching has arisen as a promising solution
to handle this problem, since it has shown that caching
modest amounts of information at the receivers can provide
remarkable improvements in content delivery time. Coded
caching capitalizes on the fact that this traffic considerably
fluctuates throughout the day, and do so by storing (or caching)
content at the end users beforehand during off-peak hours.

Coded caching was first proposed by Maddah-Ali and Niesen
in [1], where they presented a scenario in which a transmitter,
which has access to a library of N files, serves K users in
an error-free shared-link Broadcast Channel (BC) where each
user is endowed with a local memory (or cache) with capacity
to store a fraction γ ∈ [0, 1] of the library content. In a first
phase, these caches are filled during off-peak hours and, in
a second phase, each user requests a file from the library. In
order to deliver the content, the transmitter generates a common
message by applying XOR operations to several messages, each
one intended by a different user. Then, it sends this common
message over the physical-layer channel to serve Kγ+1 users,
thereby enhancing the content delivery rate by a factor of
Kγ+1 compared to uncoded caching with simple time-division
multiplexing (TDM). It is worth noting that in such uncoded
caching scheme every user caches a fraction γ of each file in
the library. During the delivery phase, the transmitter sends
the remaining content of the requested files one-by-one [1].
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We refer to the coded caching scheme presented in [1] as the
MN scheme and to the boost factor Kγ + 1 as the theoretical
coded caching gain. Motivated by these promising gains, the
implementation of coded caching in realistic wireless networks
has attracted great interest, including works that analyze e.g.
dense urban cells [2], cell-free networks [3], MIMO systems [4],
[5], among others [6], [7].

Another interesting use case is land mobile-satellite (LMS)
systems [8], whose integration in wireless networks is very
relevant due to their large service coverage, wide bandwidth
range, and high throughput. Indeed, the use of this type of
communications is rapidly growing in recent years [9]. LMS
systems can provide persistent and low-cost services in the
case where the terrestrial network connection is very weak or
even unavailable, such as in the case of network disruptions,
rural areas, civil aviation, or cruise ships. Furthermore, these
systems might serve an enormous amount of users once they
handle a bigger portion of the traffic, mainly due to their large
coverage area. These characteristics motivate us to analyze the
potential of coded caching in LMS systems. Some works that
jointly consider satellite and cache-aided terrestrial networks
can be found in [10]–[15], which have mostly focused on
uncoded caching. However, in practical scenarios we usually
have that the user cache size is much smaller than the total
size of the library (γ � 1), which makes the gain of uncoded
caching over the approach without caching insignificant [1]. In
contrast, coded caching provides a multiplicative multicasting
gain of Kγ + 1 even though the caches cannot cooperate [1].

Worst-User Bottleneck in Coded Caching:
There exists an important aspect that impacts the performance

of coded caching in wireless scenarios, which is referred
to as the worst-user bottleneck, and that results from the
fact that the achievable rate in multicast transmissions is
constrained by the user with the worst channel state among
the Kγ + 1 simultaneously served users [16]. This bottleneck
is unfortunately exacerbated as the signal-to-noise ratio (SNR)
decreases. Indeed, the gain of XOR-based coded multicasting
schemes (e.g., MN) has been shown to entirely vanish in the
low-SNR limit over symmetric Rayleigh fading channels [4],
[17], [18], where the content delivery rate of coded caching
deteriorates down to the rate of uncoded caching with TDM.

The worst-user bottleneck may be particularly important
in LMS systems because such systems tend to operate in
the low-SNR scenario due to the long distances between the
satellite and the terrestrial users. For example, the received



Fig. 1: Schematic representation of the considered setting.

SNR at a terrestrial user is typically below 10 dB in home TV
broadcasts from geosynchronous (GEO) satellites with 36 MHz
of bandwidth and several hundred of watts of power [19]. Yet,
while this problem may be tragic for the implementation of
coded caching in a variety of settings such as Rayleigh fading,
we need to explore if the same conclusion holds in LMS
systems, where the channel statistics are totally different from
Rayleigh fading [20] due to the existence of LOS components.
In this paper, we consider Rician-Shadowed fading [20] to
model the satellite-terrestrial channel. Our main contributions
can be summarized as follows:
• We analyze the goodput (which will be defined in (6)) of

the seminal MN scheme for first time in LMS systems. We
derive the analytical expression of the maximum achiev-
able goodput and validate these results with numerical
evaluations for several practical fading configurations.

• Our analysis shows that the goodput gain of coded
caching in practical low-SNR scenarios is maintained in
LMS settings when the LOS components are not heavily
obstructed, even in the low-SNR limit. This result allows
us to double the achievable goodput at very low SNR just
considering the seminal coded caching scheme, which
is tailored to the high-SNR regime. This deviates from
the results of previous works [4], [18], which proved that
this gain disappears at low SNR for Rayleigh fading, and
shows that coded caching has the ability to operate in
low-SNR-governed (i.e., below 10 dB) LMS systems.

II. SYSTEM MODEL

We consider a scenario in which a GEO satellite transmitter
serves K terrestrial users. Each user requests a file from a
content library composed of N files, each of size F bits. We
denote the n-th file of the library by Wn, such that the library
is given by {Wn}Nn=1. The broadcasting GEO satellite has
full access to the library,1 and each user has a local memory
(or cache) of size MF bits which is filled with content from
the library during off-peak hours. The ratio between the local
memory size and the total size of the library is denoted by
γ , M

N ∈ [0, 1] and is referred to as the normalized cache size
of the local memory. This scenario is depicted in Fig. 1. We
consider the MN coded caching scheme from [1], which we will

1This access can be either because all the content is stored at the satellite or
because this satellite is connected to a terrestrial satellite gateway via a feeder
link which can often sustain extremely high rates. This satellite gateway has a
wired connection to the core network and thus access to the library.

TABLE I: Parameters in four typical fading scenarios
Scenarios m b Ω

Frequent Heavy Shadowing (FHS) 1 0.063 8.97× 10−4

Overall Results (OR) 5 0.251 0.278

Average Shadowing (AS) 10 0.126 0.835

Infrequent Light Shadowing (ILS) 20 0.158 1.29

describe in Section II-B, such that as many as Kγ + 1 users
(marked with the same color in Fig. 1) are simultaneously
served via a satellite BC. In the following, we use | · | to
denote the cardinality of a set or the magnitude of a complex
number. We define [n] , {1, 2, . . . , n} for any positive integer
n, whereas [a, b] denotes the closed interval of real numbers.
We also use exp(·) , e(·), where e is Euler’s number.

A. Channel Model
In order to accurately describe the fluctuation of the signal

envelope, we consider the widely adopted Rician-Shadowed
fading [20] to model the satellite-terrestrial channel, which
can be nicely calibrated to capture both fixed and mobile land
terminals, and which can be applied for all types of orbits and
for a variety of frequency bands including S-band, L-band,
Ku-band, and Ka-band [13], [21], [22]. We recall that the
Rician-Shadowed fading model is calibrated by the following
set of parameters: the average power of the scatter component,
denoted by 2b, the average power of the LOS component,
denoted by Ω, the amplitude of the random shadowing LOS
component, denoted by Z, and m , (E{Z2})2

Var{Z2} , which reflects
the (average) obstruction of the LOS component (i.e., the
blockage of the LOS by buildings, trees, hills, etc.) and where
m = 0 stands for complete obstruction whereas m → ∞
corresponds to no obstruction [20]. To facilitate the analysis,
we assume the same channel statistics (i.e., same m, b and
Ω) among the K users, which is reasonable when the users
are uniformly distributed within a disk [22]. We consider that
the users are located within a disk of radius equal to several
kilometers [2]. As the radius is negligible to the height of the
GEO satellite, we assume that all the users have the same
path-loss. Therefore, we consider statistically symmetric users.

GEO satellites are static with respect to an observer from
Earth, which makes the Doppler spread negligible for static
terrestrial users [21]. Thus, we assume that the coherence
time is large, and we do not consider an ergodic channel.
Instead, we assume that the channel experiences quasi-static
fading, which generally comes about in the presence of longer
coherence periods and shorter latency constraints, and models
low-mobility scenarios which nicely capture coded-caching
use-cases where slow users are consuming video content.

While the results hold for any generic Rician-Shadowed
fading, in the numerical results we consider four fading
scenarios that have been used for performance analysis of
LMS systems, and which are obtained from [20, Table III].
Since we will refer to these cases thorough the document, we
present them in Table I.

The probability density function (PDF) of the instantaneous
channel power gain |hk|2 at user k ∈ [K] over Rician-



Shadowed fading channels is given by (cf. [20])

f|hk|2(x) = αe−βx 1F1(m; 1; δx), x ≥ 0, (1)

where α =
(

2bm
2bm+Ω

)m
, β = 1

2b , δ = Ω
2b(2bm+Ω) , and where

1F1(·; ·; ·) denotes the confluent hypergeometric function of
the first kind [23]. As a small difference in m reflects a similar
(average) obstruction of the LOS component, we consider
that m is a positive integer for mathematical tractability, which
is a simplifying assumption that is widely adopted in many
existing works [13], [21]. Let us denote the normalized transmit
power of the satellite as Pt, and the power of the Additive
White Gaussian Noise as N0. Therefore, the instantaneous SNR
at user k is SNRk , Pt|hk|2

N0
= ρ|hk|2, where ρ , Pt

N0
.

By considering [24, Eq. (24)], we simplify the confluent
hypergeometric function in (1) for any positive integer m as

1F1(m; 1; δx) = eδx
∑m−1

i=0

(
m− 1

i

)
(δx)i

i!
. (2)

Hence, upon defining ζ(i) ,
(
m−1
i

)
δi

i! , the PDF of SNRk =
ρ|hk|2 can be simplified for any integer m ≥ 1 as (cf. [21])

fSNRk(x) = α
∑m−1

i=0

ζ(i)

ρi+1
xie−

β−δ
ρ x, x ≥ 0. (3)

Let Γ(·,·) denote the upper incomplete Gamma function [23].
By integrating the PDF of SNRk in (3), we can easily obtain
the corresponding cumulative distribution function (CDF) as

FSNRk(x) = 1− α
m−1∑
i=0

ζ(i)

(β − δ)i+1
Γ

(
i+ 1,

β − δ
ρ

x

)
. (4)

B. MN Coded Caching Scheme

We recall that the coded caching framework in [1] consists
of two distinct phases: the placement phase, in which the local
cache of the users is filled, and which is carried out during off-
peak hours before the actual demand of each user is revealed,
and the delivery phase, in which each user requests a file from
the library, and the transmitter serves these users while aiming
at minimizing the total delivery time required to serve all users.

1) MN Placement phase: During the placement phase,
each file Wn is partitioned into

(
K
Kγ

)
non-overlapping

and equal-sized segments (subfiles), such that Wn →{
W Tn : T ⊆ [K], |T | = Kγ

}
. User k stores all the segments

W Tn such that k ∈ T , for any n ∈ [N ]. The content cached
at user k, denoted by Zk, is hence given by Zk = {W Tn :
T ⊆ [K], |T | = Kγ, T 3 k, ∀n ∈ [N ]}. It follows that the
total content cached at each user amounts to MF bits, which
satisfies the local cache size constraint.

2) MN Delivery phase: At the beginning of this phase, each
user requests a different file Wdk from the library, where dk ∈
[N ] denotes the index of the file demanded by user k ∈ [K].
The transmission is divided in different transmission stages. At
each transmission stage, the transmitter simultaneously serves
a unique set of Kγ+ 1 users. Since there are

(
K

Kγ+1

)
different

subsets of Kγ + 1 users in [K], the delivery phase consists of(
K

Kγ+1

)
transmission stages, and at each stage the transmitter

serves a different subset of users G ⊆ [K] of |G| = Kγ + 1
users. Specifically, for the transmission stage intended for a

particular set of users G, the transmitted signal is designed as
XG =

⊕
k∈GW

G\{k}
dk

, where
⊕

stands for the bit-wise XOR
operator, and the superscript G\{k} implies that the segment
transmitted to user k is the one stored at all other users in G.
In the physical layer, XG is mapped into a common multicast2

message which is then sent to the users in G via a BC.
After successfully receiving XG , user k can “cache out” the

undesired messages in XG by using its locally-cached content,
and thus it obtains the desired subfile WG\{k}dk

. This is possible

because all subfiles
{
W
G\{k′}
n

}N
n=1

, for k′ ∈ G and k′ 6= k,
have been stored in the cache of user k ∈ G. After

(
K

Kγ+1

)
transmission stages, all the users obtain their demanded files.
Note that even when Kγ is not an integer, the MN scheme can
still achieve the coded caching gain Kγ + 1 by considering
the memory-sharing strategy. We refer to [1] for more details
about the MN scheme.

III. GOODPUT ANALYSIS

Let us consider that, in each transmission stage of the
delivery phase of the MN scheme, the satellite adopts a constant
transmission rate (Cth) — which will be optimized in Lemma 1
— to serve the corresponding served users in G. In this way,
users do not require to feedback their channel state information
to the satellite, which can be energy demanding for the users
due to the long distances to the satellite. In this case, the
main metric of interest is the goodput [25], which is one of
the standard metrics for the performance evaluation of LMS
systems over fading channels [26]. We assume that the channel
state remains constant during a transmission stage and may
independently change to other values in the next stage.

We analyze in the following the goodput (i.e., the rate reliably
delivered to the users [25]) of the MN scheme. For a given
transmission to a user-set G, the satellite delivers a common
message to the users in G over the physical-layer channel.
Then, the total instantaneous goodput is defined as
Cout , |G|CthI

{
ln (1 + SNRMN) ≥ Cth

}
nats/s/Hz, (5)

where I {·} denotes the indicator function, which, for claim A,
takes the value I{A} = 1 if A is true and I{A} = 0 otherwise,
and SNRMN , mink∈G{SNRk}, since we need to guarantee
the successful decoding at the user with the weakest link
strength. In (5), the existence of the factor |G| = Kγ+1 is due
to the fact that |G| users are served at a time. Consequently,
we consider the worst case of outage inasmuch as an outage
event happens as long as a single user in G fails to decode this
common message. To analyze the coded caching gain later,
and in a similar way as in [4], we take the expectation of
Cout over channel states, which yields the (average) goodput as

Cout = |G|CthE
{
I
{

ln (1 + SNRMN) ≥ Cth
}}

= |G|Cth
∫ ∞

0

I{ln(1 + x) ≥ Cth}fSNRMN
(x)dx

= |G|CthP
(

ln (1 + SNRMN) ≥ Cth
)
, (6)

2There exists a variety of schemes that handle the worst-user bottleneck of
multicast transmission or the case with bounded number of subfiles in coded
caching. We restrict ourselves to the standard MN scheme to provide simple
but meaningful insights on the benefit of coded caching.



where fSNRMN
(x) denotes the PDF of SNRMN. Note that Cout

is just a statistical mean of Cout in (5), which should not be
confused by the long-term goodput [4].

We present our first main result, which consists of closed-
form expressions for Cout and the rate that maximizes Cout.

Lemma 1. The average goodput of the MN scheme is given by

Cout = |G|Cth

[
m−1∑
i=0

αζ(i)

(β − δ)i+1
Γ

(
i+ 1,

β − δ
ρ

(
eCth − 1

))]|G|
.

Further, the optimal Cout is C
?

out = maxCth∈C∗th Cout(Cth),
where C∗th is the set of solutions to the equation

C∗th=

∑m−1
i=0

ζ(i)
(β−δ)i+1 Γ

(
i+ 1, β−δρ (eC

∗
th − 1)

)
|G|eC∗th

∑m−1
i=0

ζ(i)
ρi+1 (eC

∗
th − 1)i exp

(
−β−δρ (eC

∗
th − 1)

) .
Proof. We can write (6) as

Cout = |G|CthP
(

mink∈G{SNRk} ≥ eCth − 1
)

= |G|Cth
[
1− FSNRk

(
eCth − 1

) ]|G|
. (7)

Then, we can apply (4) into (7) to obtain the expression of
Cout in Lemma 1.

To maximize the goodput over Cth, we obtain the first
derivative of Cout with respect to Cth. For the sake of
readability, let us define F̂SNRk(·) , 1 − FSNRk(·), and
θ , eCth − 1. Then, we have that
∂Cout

∂Cth
= |G|

(
F̂SNRk(θ)

)|G|−1
(
F̂SNRk(θ)

− |G|CthfSNRk(θ)e
Cth
)
. (8)

Since Cout is a continuous function over Cth ∈ (0,∞), the
maximum value will be in one of the extreme points. Thus,
letting this first derivative be equal to 0 allows us to obtain
C∗th in Lemma 1 by using the PDF and CDF of SNRk.

A. Low SNR Analysis

Next, we analyze the low-SNR regime by allowing the SNR
parameter ρ to approach to zero. When ρ→ 0, we can consider
the fact that ln(1 + ρx) = ρx+ o(x), where o(x) denotes that
limρ→0 o(x)/x = 0, to write that the goodput in (6) satisfies

Cout = |G|CthP
(
SNRMN ≥ Cth + o(SNRMN)

)
(9)

ρ→0
≈ C̃out , |G|Cth

[
1− FSNRk(Cth)

]|G|
, (10)

where C̃out is obtained by omitting the term o(SNRMN) in
(9), and where FSNRk(·) has been given in (4).

In the following, we present a simplified expression for the
values of Cth that maximize the goodput at low SNR.

Proposition 1. The extreme points C∗th ∈ C∗th that make the
derivative of C̃out equal to zero can be expressed by

C∗th =
ε∗

|G|(β − δ)
ρ, as ρ→ 0, (11)

where ε∗ ∈ [1,m] is a root of the following function:
m−1∑
i=0

ζ(i)

(β − δ)i+1

[
Γ

(
i+ 1,

ε∗

|G|

)
− exp

(−ε∗
|G|

) (ε∗)i+1

|G|i

]
=0.

(12)

TABLE II: Numerical results of ε∗ in four fading scenarios

|G|

ε∗ Scenarios
FHS OR AS ILS

1 1 1.3783 2.7121 3.4088

2 1 1.4342 3.4655 4.5529

3 1 1.4586 4.0111 5.4215

4 1 1.4723 4.4478 6.1422

5 1 1.4812 4.8149 6.7665

6 1 1.4874 5.1329 7.3215

7 1 1.4919 5.4139 7.8236

8 1 1.4954 5.6658 8.2836

9 1 1.4982 5.8943 8.7090

10 1 1.5005 6.1032 9.1054

Proof. The proof is relegated to the extended version of this
work [27] due to space constraints.

Note that ε∗ is independent of ρ, and it can have at most
m different values [27]. Moreover, it follows that ε∗ = 1 for
any scenario in which m = 1, e.g. FHS in Table I. Table II
lists some numerical values of ε∗ for the four typical fading
scenarios in Table I and for realistic values of the theoretical
coded caching gain |G|. For all the cases in Table II, (12) has
only a single (multiple) positive root. Therefore, if we use the
values of ε∗ in Table II, the derived C∗th in (11) is exactly the
global maximum point for C̃out.

By using Proposition 1, we can obtain an expression for the
optimal C̃out, shown in Lemma 2, and which reveals that the
optimal C̃out is actually a linear function of ρ.

Lemma 2. The maximum goodput C̃∗out in the low-SNR regime
can be expressed by

C̃?out =
α|G|

eε?

(
ε?

β − δ

)|G|+1

L
|G|
m−1

(
−ε?δ

|G|(β − δ)

)
ρ, (13)

where L·(·) denotes the Laguerre polynomial [23], and ε? ∈
[1,m] maximizes C̃out among the (at most m) roots of (12).

Proof. For the roots of (12), we have the following identity:∑m−1

i=0

ζ(i)

(β − δ)i+1
Γ

(
i+ 1,

ε?

|G|

)
=

ε?

β − δ
exp
(−ε?
|G|

)∑m−1

i=0

ζ(i)

(β − δ)i

(
ε?

|G|

)i
. (14)

Applying the identity (14) in FSNRk(x) (defined in (4)) and
incorporating this to (10) yields (13) after considering that∑m−1
i=0

(
m−1
i

)
xi

i! = Lm−1(−x).

Note that, if m = 1, we have that ε? = 1 and therefore

C̃?out =
α|G|

e(β − δ)|G|+1
ρ. (15)

Furthermore, when m = 1 and Ω = 0, we have α = β = 1
2b

and δ = 0, which means that Rician-Shadowed fading is
reduced to Rayleigh fading. The optimal goodput becomes

C̃?out =
α|G|

eβ|G|+1
ρ =

2bρ

e
, (16)

where 2bρ is the average SNR received at each user. Compar-
ing (16) to the average capacity at low SNR (which converges



to the average SNR in the low-SNR limit) [18], we can see that
there is a penalty of 1/e in the optimal goodput over Rayleigh
fading channels. Moreover, C̃?out in (16) is independent of
|G|, which leads to the same delivery performance as uncoded
caching with TDM transmission at low SNR, and which is
consistent with [18, Prop. 2].

B. Coded Caching Gain Analysis

To measure the benefit of coded caching over uncoded
caching with TDM at finite SNR, we make use of the effective
coded caching gain [2], [18], which is defined as the ratio of
the maximum goodput achieved by the MN scheme over the
maximum goodput achieved by uncoded caching with TDM.3

Note that the latter corresponds to setting |G| = 1 in the MN
scheme [1]. Thus, the effective coded caching gain (∆) is

∆ ,
maxCth≥0

{
Cout(|G|, Cth)

}
maxCth≥0

{
Cout(|G| = 1, Cth)

} , (17)

where Cout(|G|, Cth) is given in Lemma 1. The optimization
of Cout over Cth can be solved by using Lemma 1. In the
following, we focus on the behavior of this effective gain at
low SNR, which is presented in Corollary 1.

Corollary 1. In the low SNR limit, the effective coded caching
gain of the MN scheme is given by

∆
ρ→0
=

(
α

β − δ

)|G|−1 (ε?)|G|+1e−ε
?

L
|G|
m−1

(
− ε?δ
|G|(β−δ)

)
(ε?1)2e−ε

?
1Lm−1

(
− ε?1δ
β−δ

) , (18)

where ε?1 ∈ [1,m] maximizes C̃?out for |G| = 1 among the (at
most m) roots of (12).

Proof. The proof follows directly from considering Lemma 2
and the effective coded caching gain definition in (17).

Note that for |G| ≤ 10 (which is a realistic setting [18]),
and for the four typical fading scenarios listed in Table I, we
can directly take the numerical results of ε? and ε?1 in Table II
to evaluate the effective coded caching gain in the low-SNR
limit, which will be also shown in Fig. 5.

For m = 1, such as in FHS, we have ε? = ε?1 = 1, and ∆ in
Corollary 1 can be simplified as ∆ =

(
α
β−δ

)|G|−1
= 1, which

means that the MN scheme loses all gains in the low-SNR
limit when m = 1 (i.e., with heavy LOS obstruction).

IV. NUMERICAL RESULTS

In this section, we perform some numerical analysis to vali-
date the correctness of the derived expressions and present some
interesting comparisons. Every simulated result is averaged
over 105 channel realizations. We consider the four channel
fading scenarios listed in Table I.

First, we evaluate the goodput as a function of Cth in Fig. 2.
We can observe that the goodput has a single maximum, which

3Unlike some existing uncoded caching schemes where the cache hit/miss
probability is typically investigated by considering the statistics of the users’
requests, in the MN coded caching framework every user caches some content
of each file in the library. During the delivery phase, the transmitter sends the
remaining content of the requested files that is not cached in the users [1].
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can be found by applying Lemma 1. It is also worth noting that
Lemma 2 (based on the simplified expression of Proposition 1)
provides a very accurate result at low SNR.

Fig. 3 plots the maximum goodput (optimized over Cth)
versus ρ in the ILS, AS, OR and FHS scenarios. As mentioned
in Lemma 2, the optimal goodput linearly grows with ρ at low
SNR. For the same system settings as in Fig. 3, Fig. 4 shows
the effective coded caching gain, and we can observe that
the effective gain converges to a lower-bound as ρ decreases.
However, the lower-bound depends on the fading scenario.
Specifically, ILS has the largest effective coded caching gain
in the low-SNR limit, followed by the figures for AS and OR,
while the effective gain in FHS is the lowest (and equals 1).
The reason is that ILS enjoys the lightest obstruction of the
LOS component.

For the ILS scenario, the MN scheme almost doubles
the goodput with respect to uncoded caching with TDM
transmission even in the low-SNR limit. Note that this differs
from the results on Rayleigh fading, where it has been shown
that MN achieves no gain in the low-SNR limit [17], [18].
Moreover, except for the worst case (i.e., FHS), the MN scheme
shows a significant boost effect over uncoded caching also for
ρ ≤ 10 dB, which, by considering that E{|hk|2} = 2b + Ω,
corresponds to an average SNR = ρE{|hk|2} of less than
10 dB in the AS case and than 1.3 dB in the FHS case

Fig. 5 shows the effective coded caching gain in the low-
SNR limit versus the theoretical coded caching gain |G| (which
is only achieved in the high-SNR limit). We can see how the
effective gain increases for every scenario except for FHS.
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Fig. 4: Effective coded caching gain versus ρ for |G| = 5.
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Fig. 5: Effective coded caching gain versus |G| as ρ→ 0.

Thus, in those cases, simultaneously serving more users from
the single-antenna transmitter enhances the overall delivery
performance. The steeper gain boost for the ILS and AS cases
shows that the MN scheme (and coded caching) is advantageous
mainly when the LOS component is not heavily obstructed.

V. CONCLUSION AND FUTURE WORK

This work analyzes the goodput and the effective gain of
coded caching in a LMS system where Rician-Shadowed fading
is adopted to model the satellite-terrestrial channel. Our analysis
shows that even the simplest coded caching scheme can double
the goodput of LMS systems operating at very low SNR,
despite the fact that such scheme is tailored for the high-SNR
regime and suffers from the worst-user bottleneck. This implies
that coded caching has the ability to operate in such (low-SNR
governed) LMS systems. Satellite integration in beyond-5G
networks, as well as satellite networks, are expected to be a
relevant feature in the incoming communications developments.
These results motivate further research on cache-aided LMS
systems, e.g., by investigating the gain of more complex and
adapted coded caching schemes to compensate the worst-user
bottleneck for cases where the LOS component is heavily
obstructed, but also by developing new schemes that adapt to
the particular properties of LMS and other satellite systems.
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