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Résumé — Dans le cadre du codage par transformée, nous comparons en terme de gain de codage deux approches : ’approche
causale optimale (factorisation LDU, Lower-Diagonal-Upper) et 'approche unitaire optimale (Karhunen-Loeve Transform, KLT).
Les deux transformations produisent le méme gain quand elles sont basées sur le signal original. Le but de ce travail est de comparer
les comportements de ces transformations quand elles sont perturbées. Cette comparaison est menée pour deux cas courants
de perturbation. Le premier cas est celui du bruit de quantification lié a I'adaptation en boucle fermée des transformations.
Nous montrons que dans le cas causal, un retour de bruit dégrade le gain de codage. Le deuxiéme cas de perturbation est le
bruit d’estimation lié au nombre limité de données disponibles. Ce cas est traité sous I’hypotheése de vecteurs indépendants
identiquement distribués. L’espérance du gain de codage dans le cas causal apparait comme indépendante de la matrice de

covariance R, alors que dans le cas unitaire cette espérance dépend fortement de la distribution des valeurs propres de R.

Abstract — In a transform coding framework we compare, in terms of coding gain, the optimal causal approach (LDU,
Lower-Diagonal-Upper) to the optimal unitary approach (Karhunen-Loeve Transform, KLT). Both transforms are known to
vield the same gain when they are based on the original signal. The purpose of this paper is to compare the behaviour of
the two transformations when the ideal transform coding scheme gets perturbed. This comparison is made in two usual cases
of perturbation. The first perturbation we consider is due to the quantization noise (occuring when the transformations are
backward adapted). We show that under high resolution assumption, a quantization noise feedback occurs in the causal scheme,
which decreases the coding gain. The second perturbation considered in this work is the estimation noise, due to a finite number
of available data, under the assumption of independent identically distributed vectors. The expectation of the coding gain in the
causal case is shown to be independent of the covariance matrix R, whereas in the unitary case, the expectation of the coding

gain appears strongly sensitive to the distribution of the eigenvalues of R.

1 Introduction

Consider a vectorial signal whose samples are X;. In the
transform coding framework, a matricial transformation
is applied to each vector X; to produce a vector Y;. Each
component of Y; is then independently quantized using a
scalar quantizer @);. The optimal causal transform has
recently been shown [3, 2] to correspond to an LDU tri-
angular factorization of the autocorrelation matrix of the
signal. The optimal unitary transform is the well-known
KLT. When these transformations are adapted on the
original signal, the causal (LDU) and unitary transforma-
tions are both optimal. The aim of this paper is to com-
pare the behaviour of the causal and unitary approaches
when the ideal scheme gets perturbed. The optimal causal
transform and the coding gains for the two approaches are
reviewed in the second part.

We consider then separately two types of perturbations.
The first type is due to the quantization noise occuring
in backward adapted schemes . Though both transfor-
mation were compared in [3], the performance of the op-
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timal causal transformation in terms of coding gain was
not investigated when the transformation is adapted on
the quantized signal. Besides, it was shown in [4] that
under some assumptions the backward adapted KLT con-
verges to the optimal KLT. The comparison between the
two approaches in the presence of quantization noise is
made in the third part.

The second type of perturbation we consider in this paper
is the estimation noise : the transformation is computed
on the basis of a finite amount data, whose statistics are
thus not perfectly known. We suppose in this case inde-
pendent identically distributed X; (which is for example
the case when the sampling period is low in comparison
with the typical time of correlation of the Xj.)

2 Coding Gains
without Perturbation

The optimal causal transform may be described as follows.
Let us consider the generalization of the classical DPCM
coding scheme applied to a vector X = [zi..any]f. A
matrix transformation L is applied to the vector X : Y =
LX = X — LX, where LX is the reference vector. The
difference vector Y = [y;...yn]7 is then quantized using a



set Q of quantizers @;. The output X7 is Y +LX. Note
that the reconstruction error X equals the quantization
error Y:

X=X-X'=X- X-LX-Y'=Y-Y'=Y,

(1)
as in the unitary case. The constraint imposed on the
transformation here is causality, which imposes a lower
triangular structure. The unitary aspect of the transform
appears in the unicity of the main diagonal (f =1—1Lis
hence strictly lower triangular and represents the degrees
of freedom of the transformation). The notion of causal-
ity could be generalized by working with the permuted
components of X and Y, which gives PY = L P X or
Y = (PT LP)X, where P is a permutation matrix. The

coding gain for a transformation L is

(YI4+ILX) =

o, = PRIy _ BIXI, o)
BIXIZ, ~ EIVIE,

where I is the identity matrix (which corresponds to the
absence of transformation), and the notation ||X||

notes the variance of the quantization error on the Vector
X, obtained for a transformation 7. The second equality
in (2) follows from the equality (1), as in the unitary case.
Thus, the coding gains for both transforms are equal and
can be derived as follows. A quantizer ); introduces an in-
dependent white noise g; on the component y;, of variance
0'2~ =c2” 2R’0'y where R; is the number of bits assigned
to the quantizer @;, and ¢ is a constant depending on the
probability density function of the signal to be quantized
(one should assume a Gaussian distribution, linear trans-
form invariant).

For a given L, the optimal bit assignment has to minimize
E||§~’||(2LJ = Zf\;l 0'5102_21%’ under the constraint

Zf\;l R; = NR, where R is the average number of bits
assigned to the N quantizers @;. Using well-known tech-
niques, and making abstraction of the fact that the R; are
integer and non negative, one shows that N

~
2 _ . 9-2R: 2 _ .o-2R 2
oy = c2 Oy = c2 (H O'yl)
i=1
2

Note that the optimal quantization error variances o;, are
equal (independent of i).

As shown in [2],the optimal L (in terms of coding gain) is
such that

)

LRxx LY D = diag{s? ,..c2 }, 4)

= Ryy = Y1’ yN

where diag{...} represents a diagonal matrix whose ele-
ments are 0'51. In other words, the components y; are the
prediction errors of z; with respect to the past values of
X, the Xy.;_1, and the optimal coefficients —L; 1.;_1 are
the optimal prediction coefficients. Since each prediction
error y; is orthogonal to the subspaces generated by the
X7.i—1, the y; are orthogonal, and D is diagonal. It follows
that

(5)

which represents the LDU factorization of Rxx. Refer-
ring to (2), the coding gain without perturbation for the

Rxx = L7 'Ryy LT,

optimal causal transform can be written as

© _ det [diag(Rx x)] N
GL' = (det [diag(LRXXLT)])

(6)

where diag(R) denotes here the diagonal matrix that cor-
responds to the diagonal of the matrix R.

Since the diagonalizing transformation matrix L is uni-
modular, det(diag(Ryy)) = det(Rxx) = det A, where A

is the eigenvalue matrix of Rxx. Thus

2~

o = (
- (e

3 Quantization Effects
on the Coding Gains

det[diag(Rx x)]
det[diag(LRx x LT ]

et] dzag Rxx)]
det A

\_/

(7)
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Let us now inspect the case where the tranformations are
not based on the original signal but on its quantized ver-
sion. Thus, the asymptotic (with respect to the amount of
data) estimated covariance matrix of the quantized data
is Rxx + AR, where AR denotes the perturbation term
due to the quantization.

3.1 Causal Approach

In this case, the difference vector of (1) becomes

Y=X-IX'=X-L(X-X)=LX+LY. (8
Y now not only contains the prediction error LX of X,
but also the quantization error Y filtered by the optimal
predictor L. In this case again, the optimal bit assign-
ment has to minimize the sum of the 0'51,. It follows

that the variances of the quantization noises are 0'57 =

cQ_QR(Hf\;l 0'5 )N = 0'y~ , independent of . The autocor-

relation matrix of the noise is hence Ryy = O'y~lf, and
Rxexe = Rxx + AR= Rxx + 0531.

To optimize L, one should consider ming, (det [diag(Ryy)])
with this time Ryy = LRXXLT—FO';IZIT . One can show
that the resolution of the normal equations leads to the
following expression for the coding gain G(Ll), taking into
account the perturbations up to first order

det [diag(Rxx)]
det |diag(LRx x LT + 0'5 HT)

G w 9)

with LRxx LT = D and 02 = c2728(det D)% where
Y1
D is the diagonal matrix of the non perturbed predic-
tion error variances, and L and L are also non perturbed
quantities. This expression is established under the high
resolution assumption (oajv I is small in comparison with
1

Rxx). The term o2 HT

Y1
ror variance of the current sample y; is increased by the
quantization noise of the previous samples, filtered by the

(1)

shows that the prediction er-

energy of L; 1,1 . Another interesting expression of G



1s
o2

GV~ G (1 _n (EN —uN,

1
— 1
n (o5 U)) (10)
where G(O) is the coding gain in the ideal case, {A;} the
elgenvalues of the autocorrelation matrix of X, and 0'~

the quantization noise in the ideal case, assumed to be
white. Thus, maximizing the coding gain entails max-
imizing the sum of the inverses of the prediction error
variance. Whereas the coding gain in the ideal case is in-
variant by permutation, there is in the backward adapted
causal transform coding scheme an optimal ordering of the

components of the Xj;.
3.2 Unitary Approach

The authors in [4] have studied transform coding schemes
based on a backward adapted KLT. Under some assump-
tions, (use of a dither, no estimation noise) they have es-
tablished the convergence of the sequence of successive es-
timates of T' (based on the successive estimates of Rxax4q)
to an optimal KLT T of Rxx. Let T denote a KLT of
Rxx. Then T(Rxx + UEII)TT =A+ ovjvlf, and 7' is also

a KLT of Rxx + 02 I. Thus, the perturbation term o2 I

on Rxx does not clﬁange the backward adapted transfyolr—
mation, and

G(IpLT = G;?)LT' (11)
The previous expression and (9) are asymptotic gains, that
is, obtained with an infinite number of datas. An interest-
ing question is that of the effects of the estimation noise
on the computation of the transformations. This is the
point of the following section.

4 Estimation Noise

Consider a vectorial process whose samples X; are i.i.d. .
The typical estimate of Ris R = R+AR = % Zle X; XTI,
In this case, it is easy to see that AR is symmetric. AR =
R — R is the perturbating term occuring when a finite
amount of k£ samples is used to compute the estimate R
of the covariance matrix R (in the following, Rx x will be
denoted by R). Note that no quantization effect is taken
into account here. The question we want to address is
: how does AR affect the expected coding gains G° of
the two transformations, and which approach should be
preferable 7

4.1 Perturbation of the LDU

The estimate of the prediction matrix based on R + AR
is L + AL, with

(L + AL)(R+ AR)(L + AL)T = Ryy + A(Ryy), (12)

where A(Ryy) is a diagonal matrix, AL is strictly lower
triangular, and L, R and Ryy are non perturbed quanti-
ties. Thus using (5), we have up to the first order of the
perturbation

LARLT + ATL'Ryy +Ryy L"TAL" = A(Ryy). (13)

Since ALL"'Ryy and Rny_TAfT
triangular, we get

_ A(Ryy)
ALL 'Ryy +»(LARLY)

are strictly lower

diag{ LARL™}
0,

(14)

where >(.) (resp. <(.)) denotes the strictly lower trian-

gular (resp. upper) matrix made with the strictly lower

triangular part of (.). Now, the perturbed matrix L + AL
is applied to the signal to be coded, and we have

(L + AL)R(L + AL)T = Ryy + A(Ryy)', (15)

where A(Ryy)’ is the perturbation matrix of Ryy. Then,
up to the first order of the perturbation

diagA(Ryy)' = diag{ ATL'Ryy + RyyL-TAT } = 0.

(16)
The diagonal matrix of the perturbation of the prediction
error variances remains unchanged. Up to the second or-
der, one finds

diagA(Ryy)' = diag{ATRAT }
= diag{ATL 'Ryy RyL Ryy L-TAL" },
(17)

and using (14),

diagA(Ryy) = diag{—v> (LARL")Ryy (—<(LARLT))}
= diag{o(LARLT Ry £)(a(Ry£)LARLT))}.
(18)

Let 5; be the i-th element of A(Ryy)l then

{LARLTRYY}Z 1i— 1{LARLTRyy}z 161
= |(LARLTRy3)i i1l
(19)

7 obtained with the transfor-

. . (1)
Now, the coding gain GL+A

mation L + AL is

1

N L

10 — 1;[,:1092% "
L+AL [T (o3, 4+00)

V L ¥
~ (Hoios)” . (20)
~ HN > ~ Py
i=1 7 Zz=11+05
~ GOU- &L+ 3 i)
With (19), we have
N N
Z 0; EH(Ry YLARLTRYY)Z Li— 1|| (21)
i=1 " Yi i=1
that is, the sum of the lower off diagonal elements of

_1 _1
Ryf,LARLTRyf,, which is symmetric. Hence, denoting
by ||Al|r the Frobenius norm of the matrix A, and by ¢r
the trace operator,
N 6,
Zz’:l f
_1 _1 . _1 _1
= & IRy § LARLT Ry§|[} — diag{|| Ry LARL Ry ¢ |[3}]

= & [r{Ry§ LARLT Ry Ry§ LARLT Ry 3} — ||R7y A(Ryy )13

= 3 [tr{ARRT'ARR™'} — || Ryy A(Ryy)|17] o)
22



We get finally the following gain when the estimation noise
is taken into account

¢ _ g (1 - % [trARRT'ARR™'] — ||R;1YA(RYY)||§)

L+AT
(23)

The expectations of the two terms in (23) are now com-

puted separately.

First term in (23): Let K = R=*ARR™7, then this term

becomes tr{ K K } which is also ||vec(K)||? = vec? (K)vec(K).

By using the following property

vec(K) = (R_% ® R_%)vec(AR), (24)

where ® denotes the Kronecker product, one can show
that for i.i.d. vectors, vec(K) ~ N(0, R), with

1

R = Bvec(K)vec (K) = TNz (25)

Thus, taking expectation of the first term yields

N
Etr{ARR™'ARR™'} = tr{ Evec(K)vec’ (K)} = —.
(26)
Expectation of the second term in (23) :
1 9 _1 _1 N
EHRYYA(RYY)HF = NEtT’{ARR ARR }N:l = ?
27)

—_

Finally, the expectation of the perturbed gain is

W _ao . LNV =D o N1
56\ =G ( S O )

2k

(28)
The expected coding gain in the presence of estimation
noise is independent of R.

4.2 Perturbation of the KLT

A similar analysis of the perturbation can be lead in the
unitary case. First, the estimated transformation 7'+ AT
is such that

(T+ AT)(R+ AR)(T + AT)T = A + AA, (29)

where AA is a diagonal matrix. Note also that ATT7T is
antisymmetric since

717" =T = ATTT + TATT = 0. (30)
Similarily to (15), we have
(T+ AT)R(T + AT)T = A+ AN/, (31)

where AA’ is the perturbation matrix due to the use of
T 4+ AT in the coding procedure. Then, one shows from
(31) and (30) that

diag{ AN} = diag{ ATT RAT}. (32)

Also, the perturbed coding gain G(TliAT can be expressed

as
N

1 S\
Gflar ~ GO (1 N >+ N )) (33)

i=1

where the 6)\;- denote the diagonal elements of AA’. Thus
from (32)

N
' 1 1

G(TliAT ~ GO (1 N E TATZTRATZ) . (34)
i=1 "t

and by taking the expectation of (34), we get

N
1 1
O [1- =N —tr{RE AT,ATTY} | .

(35)
Using the following classical result in perturbation theory
of matrices ([1])

1
B G(TiAT ~

7, (36)

EATAT! = %Z

Ai
T
S g —x)?

and the expectation of the perturbed gain is

EGriar =G 1‘%22()\7._7)\.)2
i=1 j#i '

(37)

4.3 Discussion

On the one hand, the expected coding gain in (28) is inde-
pendent of the signal statistics and the bias is linear in the
dimension of the problem (N). The number of measure-
ments k should be several times bigger than the dimension
of the problem in order to be close to optimality.

On the other hand, the expected coding gain for the KLT
depends on the signal, and the degradation term in (37)
involves this time N (N — 1) terms. Nevertheless, it is dif-
ficult in general to determine which approach yields the
best coding gain. One can see that EG(Tl_i_AT can for some
R be better and for some other worse. Let us take for
example a very ill-conditoned matrix R whose eigenvalues
are 1,¢,¢2, ...,V ™1 and let € go to zero. Then each term

of the double sum in (37) will be arbitrarily small and
EG(TllAT close to G(®). If now two consecutive eigenval-
ues are very close, EG(Tl_i_AT can decrease arbitrarily. Such
variations do not occur with the causal LDU approach.
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