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Abstract— In decentralized optimization environments, each
agent i in a network of n nodes has its own private function fi,
and nodes communicate with their neighbors to cooperatively
minimize the aggregate objective

∑n
i=1 fi. In this setting,

synchronizing the nodes’ updates incurs significant commu-
nication overhead and computational costs, so much of the
recent literature has focused on the analysis and design of
asynchronous optimization algorithms, where agents activate
and communicate at arbitrary times without needing a global
synchronization enforcer. However, most works assume that
when a node activates, it selects the neighbor to contact based
on a fixed probability (e.g., uniformly at random), a choice that
ignores the optimization landscape at the moment of activation.
Instead, in this work we introduce an optimization-aware
selection rule that chooses the neighbor providing the highest
dual cost improvement (a quantity related to a dualization of
the problem based on consensus). This scheme is related to
the coordinate descent (CD) method with the Gauss-Southwell
(GS) rule for coordinate updates; in our setting however, only a
subset of coordinates is accessible at each iteration (because each
node can communicate only with its neighbors), so the existing
literature on GS methods does not apply. To overcome this
difficulty, we develop a new analytical framework for smooth
and strongly convex fi that covers the class of set-wise CD algo-
rithms –a class that directly applies to decentralized scenarios,
but is not limited to them– and we show that the proposed set-
wise GS rule achieves a speedup factor of up to the maximum
degree in the network (which is in the order of Θ(n) for highly
connected graphs). The speedup predicted by our analysis is
validated in numerical experiments with synthetic data.

I. INTRODUCTION

Many timely applications require solving optimization
problems over a network where nodes can only communicate
with their direct neighbors. This may be due to the need of
distributing storage and computation loads (e.g. training large
machine learning models [1]), or to avoid transferring data
that is naturally collected in a decentralized manner, either
due to the communication costs or to privacy reasons (e.g.
sensor networks [2], edge computing [3]).

Specifically, we consider a setting where the nodes want
to solve the decentralized optimization problem

minimize
θ∈Rd

n∑
i=1

fi(θ), (1)

where each local function fi is known only by node i and
nodes can exchange optimization values (parameters, gradi-
ents) but not the local functions themselves. We represent the
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communication network as a graph G = (V, E) with n = |V|
nodes (agents) and E = |E| edges, which are the links used
by the nodes to communicate with their neighbors.

Problem (1) was formally introduced in [4] and widely
studied ever since. A convenient reformulation often adopted
in the literature assigns to each node a local variable θi and
forces consensus between node pairs connected by an edge:

minimize
θ1,...,θn∈Rd

n∑
i=1

fi(θi) (2a)

subject to θi = θj ∀ (i, j) ≡ ℓ ∈ E , (2b)

where ℓ ≡ (i, j) indicates that edge ℓ ∈ E links nodes
i and j. Decentralized algorithms to solve (2) allow all nodes
to find the minimum value of (1) by just communicating with
their neighbors and updating their local variables. This is in
contrast with broadcast AllReduce algorithms [5] or parallel
distributed architectures [6], which were recently shown to
be slower than decentralized schemes in some scenarios [1].

Here we use reformulation (2) to propose an asynchronous
decentralized algorithm where nodes activate at any time
uniformly at random, and once activated they choose one of
their neighbors to make an update. Methods with such mini-
mal coordination requirements avoid incurring extra costs of
synchronization that may also slow down convergence, which
is the reason why many algorithms for this asynchronous set-
ting have been proposed in the literature [7]–[12]. However,
most of these works assume that when a node activates, it
simply selects the neighbor to contact randomly, based on a
predefined probability distribution. This approach overlooks
the possibility of letting nodes choose the neighbor to contact
taking into account the optimization landscape at the time of
activation. Therefore, here we depart from the probabilistic
choice and ask: can nodes pick the neighbor smartly to make
the optimization process converge faster?

In this paper we give an affirmative answer and propose
an algorithm that achieves this by solving the dual problem
of (2). In the dual formulation, there is one dual variable
λℓ ∈ Rd per constraint θi = θj , hence each dual variable
can be associated with an edge ℓ in the graph. Our algorithm
lets an activated node i contact a neighbor j so that together
they update their shared variable λℓ with a gradient step.
In particular, we propose to select the neighbor j such that
the updated λℓ is the one whose directional gradient for the
dual function is the largest, and thus the one that provides
the greatest cost improvement at that iteration. Such optimal
choice for asynchronous decentralized optimization has not
yet been considered in the literature.



Interestingly, the above protocol where a node activates
and selects a λℓ to update can be seen as applying the
coordinate descent (CD) method [13] to solve the dual
problem of (2), with the following key difference: unlike
standard CD methods, where any of the d coordinates may
be updated, now only a small subset of coordinates are
accessible at each step, which are the coordinates associated
with the edges connected to the node activated. Moreover,
our proposal of updating the λℓ with the largest gradient is
similar to the Gauss-Southwell (GS) rule [14], but applied
only to the parameters accessible by the activated node.

We name such protocols set-wise CD algorithms, and we
analyze both random uniform and GS coordinate selection
within the accessible set. To the best of our knowledge,
set-wise CD schemes have not yet been explored in the
decentralized setting, and thus the speedup achievable by
the GS rule compared to uniform sampling is not known.
Furthermore, three difficulties complicate the analysis and
constitute the base of our contributions: (i) for arbitrary
graphs, the dual problem of (2) has an objective function
that is not strongly convex, even if the primal functions fi
are strongly convex, (ii) the fact that the GS rule is applied
to a few coordinates prevents the use of standard norms to
obtain the linear rate, as commonly done for CD methods
[13]–[15], and (iii) the coordinate sets are overlapping (i.e.
non-disjoint), which makes the problem even harder.

For this reason, we develop a methodology where we
prove strong convexity in norms uniquely defined for each
algorithm considered. In particular, for the set-wise GS rule
this requires relating the norm that we originally define to
an alternative norm that considers non-overlapping sets, for
which the problem becomes easier and solvable analytically.

Finally, our results also apply to the parallel distributed
setting where the parameter vector is stored at a single server
and workers can update different subsets of its entries [6],
[16], [17]. We show an example in our simulations.

Our contributions can be summarized as follows:
• We introduce the class of set-wise CD algorithms and

analyze two variants to pick the coordinate to update in
the activated set: one that uses uniform sampling (SU-
CD), and another that applies the GS rule (SGS-CD).

• We show that this class of algorithms can be used to
solve (2) asynchronously, and we provide the linear
convergence rates of the two variants considered when
the primal functions fi are smooth and strongly convex.

• To obtain these rates for SU-CD and SGS-CD, we
prove strong convexity in uniquely-defined norms that,
respectively (i) take into account the graph structure to
show strong convexity in the linear subspace where the
coordinate updates are applied, and (ii) account for both
the random uniform node activation and the application
of the GS rule to just a subset of the coordinates.

• We show that the speedup of SGS-CD with respect to
SU-CD can be up to Nmax (the size of the largest
coordinate set), which is analogous to the that of the
GS rule with respect to random uniform coordinate
sampling in centralized CD [14].

II. RELATED WORK

A number of algorithms have been proposed to solve
(1) asynchronously. In [12], the activated node chooses a
neighbor uniformly at random and both nodes average their
primal local values. In [7] the authors adapted the ADMM
algorithm to the decentralized setting, but it was the ADMM
of [8] the first one shown to converge at the same rate as the
centralized ADMM. The algorithm of [9] tracks the average
gradients to converge to the exact optimum instead of just a
neighborhood around it, as many algorithms back then. The
algorithm of [10] can be used on top of directed graphs,
which impose additional challenges. A key novelty of our
scheme, compared to this line of work, is that we consider the
possibility of letting the nodes choose smartly the neighbor
to contact in order to make convergence faster.

Work [18] is, to the best of our knowledge, the only
work similarly considering smart neighbor selection. The
authors propose Max-Gossip, a version of [4] where the
activated node averages its local (primal) parameter with
that of the neighbor with whom the parameter difference
in the largest. They consider convex scalar functions fi, and
use Lyapunov analysis to prove convergence to an optimal
value. In contrast, here we obtain linear convergence rates
for smooth and strongly convex fi using duality theory.

Moreover, our theorems extend the results in [14], where
the GS rule was shown to be up to d times faster than uniform
sampling for f : Rd→R, to the case where this choice is
constrained to a subset of the coordinates only, sets have
different sizes, each coordinate belongs to exactly two sets,
and sets activate uniformly at random. This matches not only
the decentralized case, but also parallel distributed settings
such as [6], [16], [17]. For the latter, [19] also analyzed the
GS applied to coordinate subsets, but their sets are disjoint,
accessible by any worker, and they do not quantify the
speedup of the method with respect to uniform sampling.

III. DUAL FORMULATION

In this section, we define the notation, obtain the dual
problem of (2), and analyze the properties of the dual objec-
tive function. We will assume throughout that the functions
fi are Mi-smooth and µi-strongly convex:

fi(y) ≤ fi(x) + ⟨∇f(x), y − x⟩+ (Mi/2) ∥y − x∥22
fi(y) ≥ fi(x) + ⟨∇f(x), y − x⟩+ (µi/2) ∥y − x∥22 .

We define the concatenated primal and dual variables
θ = [θT1 , . . . , θ

T
n ]

T ∈ Rnd and λ = [λT
1 , . . . , λ

T
E ]

T ∈ REd,
respectively. The graph’s incidence matrix A ∈ Rn×E

has exactly one 1 and one -1 per column ℓ, in the rows
corresponding to nodes i, j : ℓ ≡ (i, j), and zeros elsewhere
(the choice of sign for each node is irrelevant). We call
ui ∈ Rn the vector that has 1 in entry i and 0 elsewhere; we
define eℓ ∈ RE analogously. We use k ∈ [K] to indicate k =
1, . . . ,K. Vectors 1 and 0 are respectively the all-one and
all-zero vectors, and Id is the d× d identity matrix. Finally,
we define the block arrays Λ = A ⊗ Id ∈ Rnd×Ed and
Ui = ui ⊗ Id ∈ Rnd×d, where ⊗ is the Kronecker product.



We can rewrite now (2b) as ΛT θ = 0, and the node
variables as θi = UT

i θ. The minimum value of (2) satisfies:

inf
θ:ΛT θ=0

n∑
i=1

fi(U
T
i θ)

(a)
= inf

θ
sup
λ

[
n∑

i=1

fi(U
T
i θ)− λTΛT θ

]
(b)
= sup

λ
inf
θ

[
n∑

i=1

fi(U
T
i θ)− λTΛT θ

]

= − inf
λ

sup
θ

n∑
i=1

[
(UT

i Λλ)TUT
i θ − fi(U

T
i θ)

]
= − inf

λ

n∑
i=1

f∗
i (U

T
i Λλ) ≜ − inf

λ
F (λ), (3)

where (a) holds due to Lagrange duality and (b) holds by
strong duality (see e.g. Sec. 5.4 in [20]). Functions f∗

i are
the Fenchel conjugates of the fi, and are defined as

f∗
i (y) = sup

x∈Rd

(
yTx− fi(x)

)
.

Our set-wise CD algorithms converge to the optimal
solution of (2) by solving (3). In particular, they update a
single dual variable λℓ, ℓ ∈ [E] at each iteration and converge
to some minimum value λ∗ of F (λ).

Since
∑n

i=1 fi(U
T
i θ) in (2a) is Mmax-smooth and µmin-

strongly convex in θ, with Mmax = maxi Mi and µmin =
mini µi, function F is L-smooth with L = γmax

µmin
, where γmax

is the largest eigenvalue of Λ+Λ (Sec. 4 in [21]). We call
γ+
min the smallest non-zero eigenvalue1 of Λ+Λ.
However, as shown next, function F is not strongly convex

in the standard L2 norm, which is the property that usually
facilitates obtaining linear rates in optimization literature.

Lemma 1. F is not strongly convex in ∥·∥2.

Proof. Since Λ does not have full column rank in the general
case (i.e., unless the graph is a tree), there exist w ∈ REd

such that w ̸= 0 and F (λ) = F (λ+ tw) ∀t ∈ R.

Nevertheless, we can still show linear rates for the set-wise
CD algorithms using the following result.

Lemma 2 (Appendix C of [22]). F is σA-strongly convex
in the semi-norm ∥x∥A ≜ (xTΛ+Λx)

1
2 , with σA =

γ+
min

Mmax
.

Above, Λ+ denotes the pseudo-inverse of Λ. A key fact
for the proofs in the next section is that matrix Λ+Λ is a
projector onto range(ΛT ), the column space of ΛT .

To simplify the notation, in what follows we assume that
d = 1, so that Λ = A, Ui = ui, and the gradient ∇ℓF (λ) =
∂F (λ)
∂λℓ

of F (λ) in the direction of λℓ is a scalar. In Sec. IV-C
we discuss how to adapt our proofs to the case d > 1.

IV. SET-WISE COORDINATE DESCENT ALGORITHMS

In this section we present the set-wise CD algorithms,
which can solve generic convex problems (and (3) in particu-
lar) optimally and asynchronously. We analyze two possibili-
ties for the coordinate choice within the accessible coordinate

1The “+” stresses that γ+
min is the smallest strictly positive eigenvalue.

subset: (i) sampling uniformly at random (SU-CD), and (ii)
applying the GS rule (SGS-CD).

If coordinate ℓ is updated at iteration k and assuming
d = 1, the standard CD update applied to F (λ) is [13]:

λk+1 = λk − ηk∇ℓF (λk)eℓ, (4)

where ηk is the stepsize. Since F (λ) is L-smooth, choosing
ηk = 1/L ∀k guarantees descent at each iteration [14]:

F (λk+1) ≤ F (λk)− 1

2L

(
∇ℓF (λk)

)2
. (5)

Eq. (5) will be the departure point to prove the linear
convergence rates of SU-CD and SGS-CD.

We now define formally the set-wise CD algorithms.

Definition 1 (Set-wise CD algorithm). In a set-wise CD al-
gorithm, every coordinate ℓ ∈ [E] is assigned to (potentially
multiple) sets Si, i ∈ [n], such that all coordinates belong
to at least one set. At any time, a set Si may activate with
uniform probability among the i; the set-wise CD algorithm
then chooses a single coordinate ℓ ∈ Si to update using (4).

The next remark shows how the decentralized problem (2)
can be solved asynchronously with set-wise CD algorithms.

Remark 1. By letting (i) the E coordinates2 in Definition 1
be the dual variables λℓ, and (ii) the Si, i ∈ [n] be the sets of
dual variables corresponding to the edges that are connected
to each node i, nodes can run a set-wise CD algorithm to
solve (3) (and thus, also (2)) asynchronously.

In light of Remark 1, in the following we illustrate the
steps that should be performed by the nodes to run the set-
wise CD algorithms to find a λ∗. We first note that the
gradient of F (λ) in the direction3 of λℓ for ℓ ≡ (i, j) is

∇ℓF (λ) = Aiℓ∇f∗
i (u

T
i Aλ) +Ajℓ∇f∗

j (u
T
j Aλ). (6)

Nodes can use (4) and (6) to update the λℓ that they have
access to (i.e., those corresponding to the edges they are
connected to) as follows: each node i keeps in memory the
current values of λℓ, ℓ ∈ Si, which are needed to compute
∇f∗

i (u
T
i Aλ). Then, when edge ℓ ≡ (i, j) is updated (either

because node i activated and contacted j, or vice versa), both
i and j compute their respective terms in the right hand side
of (6) and exchange them through their link. Finally, both
nodes compute (6) and update their copy of λℓ applying (4).

Algorithms 1 and 2 below detail these steps for SU-CD
and SGS-CD, respectively. We have used Ni to indicate the
set of neighbors of node i (note that Si = {ℓ : ℓ ≡ (i, j), j ∈
Ni}). Table I shows this and other set-related notation that
will be frequently used in the sections that follow.

We now proceed to describe the SU-CD and SGS-CD
algorithms in detail, and prove their linear convergence rates.

2If d>1, the standard CD terminology calls each λℓ a “block coordinate”,
i.e. a vector of d coordinates out of the E ·d coordinates of function F (λ).

3This is equivalent to saying “the ℓ-th (block) entry of the gradient
∇F (λ)”.



TABLE I: Set-related definitions
Si Set of edges connected to node i

Ni Set of neighbors of node i

Ni Degree of node i, i.e. Ni = |Si| = |Ni|
Nmax Maximum degree in the network, i.e. maxi Ni

Ti Selector matrix of set Si (see Definition 2)
S′
i Subset S′

i ⊆ Si such that S′
i ∩ S′

j = ∅ if i ̸= j

T ′
i Selector matrix of set Si

S′
i Complement set of S′

i such that S′
i = Si \ S′

i

T ′
i Selector matrix of set S′

i

A. Set-wise Uniform CD (SU-CD)

In SU-CD, the activated node chooses the neighbor uni-
formly at random, as shown in Alg. 1. We can compute the
per-iteration progress of SU-CD taking expectation in (5):

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2L
E
[(
∇ℓF (λk)

)2 | λk
]

= F (λk)− 1

2Ln

n∑
i=1

1

Ni

∑
ℓ∈Si

(
∇ℓF (λk)

)2
≤ F (λk)− 1

LnNmax

∥∥∇F (λk)
∥∥2
2

(7)

where Ni = |Si| and Nmax = maxi Ni.
The standard procedure to show the linear convergence of

CD in the centralized case is to lower-bound ∥∇F (λ)∥22 us-
ing the strong convexity of the function [13], [14]. However,
since F is not strongly convex (Lemma 1), we cannot apply
this procedure to get the linear rate of SU-CD.

We can, however, use F ’s strong convexity in ∥·∥A instead
(Lemma 2). The next result gives the core of the proof.

Lemma 3. It holds that

∥∇F (λ)∥2 = ∥∇F (λ)∥A = ∥∇F (λ)∥∗A ,

where ∥·∥∗A is the dual norm of ∥·∥A, defined as (e.g. [20])

∥z∥∗A = sup
x∈Rd

{
zTx

∣∣∣∣ ∥x∥A ≤ 1

}
. (8)

Proof. Note that ∀w ̸= 0 such that F (λ + tw) = F (λ) ∀t,
it holds that wT∇F (λ) = 0 and thus ∇F (λ) ∈ range(AT ).
This means that A+A∇F (λ) = IE∇F (λ), and therefore it
holds that ∥∇F (λ)∥A = ∥∇F (λ)∥2. Finally, since the dual
norm of the L2 norm is again the L2 norm, we have that
also ∥∇F (λ)∥∗A = ∥∇F (λ)∥2, which gives the result.

We now use Lemma 3 to prove the linear rate of SU-CD.

Theorem 1 (Rate of SU-CD). SU-CD converges as

E
[
F (λk+1) | λk

]
− F (λ∗) ≤(
1− 2σA

LnNmax

)[
F (λk)− F (λ∗)

]
.

Proof. Since F (λ) is strongly convex in ∥·∥A with strong
convexity constant σA (Lemma 2), it holds

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σA

2
∥y − x∥2A .

Algorithm 1 Set-wise Uniform CD (SU-CD)

1: Input: Functions fi, step η, incidence matrix A, graph G
2: Initialize θ0i , i = 1, . . . , n and λ0

ℓ , ℓ = 1, . . . , E

3: for k = 1, 2, . . . do
4: Sample activated node i ∈ {1, . . . , n} uniformly
5: Node i picks neighbor j ← U{h : h ∈ Ni}
6: Node i computes ∇f∗

i (u
T
i Aλ) and sends it to j

7: Node j computes ∇f∗
j (u

T
j Aλ) and sends it to i

8: Nodes i, j: (i, j) ≡ ℓ use (6) to update their local
copies of λℓ by λk

ℓ ← λk−1
ℓ − η∇ℓF (λ)

9: λk
m ← λk−1

m ∀ edges m ̸= ℓ

Algorithm 2 Set-wise Gauss-Southwell CD (SGS-CD)

1: Input: Functions fi, step η, incidence matrix A, graph G
2: Initialize θ0i , i = 1, . . . , n and λ0

ℓ , ℓ = 1, . . . , E

3: for k = 1, 2, . . . do
4: Sample activated node i ∈ {1, . . . , n} uniformly
5: All h ∈ Ni compute ∇f∗

h(u
T
hAλ) and send it to i

6: Node i computes ∇f∗
i (u

T
i Aλ)

7: Compute ∇ℓF (λ) ∀ℓ ∈ Si (equivalently, ∀h ∈ Ni)
with (6) using the received ∇f∗

h(u
T
hAλ)

8: Node i selects j ← maxh∈Ni |∇ℓF (λ)| , ℓ≡(i, h)
9: Node i sends ∇f∗

i (u
T
i Aλ) to j

10: Nodes i, j: (i, j) ≡ ℓ use (6) to update their local
copies of λℓ by λk

ℓ ← λk−1
ℓ − η∇ℓF (λ)

11: λk
m ← λk−1

m ∀ edges m ̸= ℓ

Minimizing both sides with respect to y as in [14] we get

F (x∗) ≥ F (x)− 1

2σA

(
∥∇F (x)∥∗A

)2
, (9)

and rearranging terms we can lower-bound
(
∥∇F (x)∥∗A

)2
.

Finally, we can use Lemma 3 to replace (∥∇F (x)∥2)
2

with
(
∥∇F (x)∥∗A

)2
in (7), and use the lower bound on(

∥∇F (x)∥∗A
)2

given by (9) to get the result.

Note that vector λ has 1
2

∑
i Ni = E ≤ nNmax

2 coordi-
nates, where the inequality holds with equality for regular
graphs. We make the following remark.

Remark 2. If G is regular, the linear convergence rate of
SU-CD is σA

LE , which matches the rate of centralized uniform
CD for strongly convex functions [13], [14], with the only
difference that now the strong convexity constant σA is
defined over norm ∥·∥A.

In the next section we analyze SGS-CD and show that its
convergence rate can be up to Nmax times that of SU-CD.

B. Set-wise Gauss-Southwell CD (SGS-CD)
In SGS-CD, as shown in Alg. 2, the activated node i

selects the neighbor j to contact applying the GS rule within
the edges in Si:

ℓ = argmax
m∈Si

(∇mF (λ))
2
,



Fig. 1: Example of sets Si and one possibility for S ′i and S ′i

and then j satisfies ℓ ≡ (i, j). In order to make this choice,
all nodes h ∈ Ni must send their ∇f∗

h(u
T
hAλ) to node i

(line 5 in Alg. 2). We discuss this additional communication
step of SGS-CD with respect to SU-CD in Sec. VI.

To obtain the convergence rate of SGS-CD we will follow
the steps taken for SU-CD in the proof of Theorem 1. As
done for SU-CD, we start by computing the per-iteration
progress taking expectation in (5) for SGS-CD:

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2Ln

n∑
i=1

max
ℓ∈Si

(
∇ℓF (λk)

)2
.

(10)
Given this per-iteration progress, to proceed as we did for

SU-CD we need to show (i) that the sum on the right hand
side of (10) defines a norm, and (ii) that strong convexity
holds in its dual norm. We start by defining the selector
matrices Ti, which will significantly simplify notation.

Definition 2 (Selector matrices). The selector matrices Ti ∈
{0, 1}Ni×E

, i = 1, . . . , n select the coordinates of a vector
in RE that belong to set Si. Note that any vertical stack of
the unitary vectors

{
eTℓ
}
ℓ∈Si

gives a valid Ti.

We can now show that the sum in (10) is a (squared) norm.
Since the operation involves applying max(·) within each set
Si, we will denote this norm ∥x∥SM, where the subscript SM
stands for “Set-Max”.

Lemma 4. The function ∥x∥SM ≜
√∑n

i=1 ∥Tix∥2∞ =√∑n
i=1 maxj∈Si

x2
j is a norm in RE .

Proof. Using maxj∈Si

(
x2
j+y2j

)
≤maxj∈Si

x2
j+maxj∈Si

y2j
and
√
a+ b ≤

√
a +
√
b we can show that ∥·∥SM satisfies

the triangle inequality. It is straightforward to show that
∥αx∥SM = |α| ∥x∥SM and ∥x∥SM = 0 iff x = 0.

Following the proof of Theorem 1, we would like to
show that F is strongly convex in the dual norm ∥·∥∗SM.
Furthermore, we would like to compare the strong convexity
constant σSM with σA to quantify the speedup of SGS-CD
with respect to SU-CD. It turns out, though, that computing
∥·∥∗SM is not easy at all; the main difficulty stems from the
fact that sets Si are overlapping (or non-disjoint), since each
coordinate ℓ ≡ (i, j) belongs to both Si and Sj . The first
scheme in Figure 1 illustrates this fact for the 3-node clique.

To circumvent this issue, we define a new norm ∥·∥∗SMNO
(“Set-Max Non-Overlapping”) that we can directly relate to

∥·∥∗SM (Lemma 5) and whose value we can compute explicitly
(Lemma 6), which will later allow us to relate its strong
convexity constant σSMNO to σA (Theorem 2).

Definition 3 (Norm ∥·∥∗SMNO). We assume that each coordi-
nate ℓ ≡ (i, j) is assigned to only one of the sets S ′i ⊆ Si or
S ′j ⊆ Sj , such that the new sets {S ′i}

n
i=1 are non-overlapping

(some sets can be empty), and all coordinates ℓ belong to
exactly one set in {S ′i}. We name the selector matrices of
these new sets T ′

i , so that each possible choice of {S ′i}
defines a different set {T ′

i}. Then, we define

∥z∥∗SMNO = sup
x

zTx

∣∣∣∣
√√√√ n∑

i=1

∥T ∗
i x∥

2
∞ ≤ 1

 , (11)

with the choice of non-overlapping sets

{T ∗
i } = argmax

{T ′
i}

n∑
i=1

∥T ′
ix∥

2
∞ . (12)

Note that the maximizations in (11) and (12) are coupled.
We denote the value of x that attains (11) as x∗

SMNO.

The definition of sets S ′i corresponds to assigning each
edge ℓ to one of the two nodes at its endpoints, as illustrated
in the second scheme of Figure 1. Therefore, for each
possible pair ({S ′h} , {T ′

h}) we can define a complementary
pair ({S ′h}, {T ′

h}) such that if ℓ ≡ (i, j) was assigned
to S ′i in {S ′h}, then it is assigned to S ′j in {S ′h}. This
corresponds to assigning ℓ to the opposite endpoint (node)
to the one originally chosen, as shown in the third scheme
of Figure 1. With these definitions, it holds (potentially with
some permutation of the rows):

Ti =

[
T ′
i

T ′
i

]
=

[
T ′
i

0

]
+

[
0

T ′
i

]
, i = 1, . . . , n.

We remark that the equality above holds for any {T ′
i} cor-

responding to a feasible assignment {S ′i}, and in particular it
hols for ({S∗i } , {T ∗

i }). This fact is used in the proof of the
following lemma, which relates norms ∥·∥∗SM and ∥·∥∗SMNO.
This will allow us to complete the analysis with ∥·∥∗SMNO,
which we can compute explicitly (Lemma 6).

Lemma 5. The value of the dual norm of ∥·∥SM, denoted
∥·∥∗SM, satisfies

(
∥·∥∗SM

)2 ≥ 1
2

(
∥·∥∗SMNO

)2
.

Proof. By definition

∥z∥∗SM = sup
x

zTx

∣∣∣∣
√√√√ n∑

i=1

∥Tix∥2∞ ≤ 1

 .

By inspection we can tell that the x that attains the
supremum, denoted x∗

SM, will satisfy
∑n

i=1 ∥Tix
∗
SM∥

2
∞ = 1.

We note now that

n∑
i=1

∥Tix∥2∞ =

n∑
i=1

∥∥∥∥∥
[
T ′
i

0

]
x+

[
0

T ′
i

]
x

∥∥∥∥∥
2

∞

≤
n∑

i=1

∥T ′
ix∥

2
∞ +

n∑
i=1

∥∥∥T ′
ix
∥∥∥2
∞
≤ 2

n∑
i=1

∥∥∥T̂ ′
ix
∥∥∥2
∞

, (13)



with

{T̂ ′
i} = arg max

{T ′
i},{T ′

i}

(
n∑

i=1

∥T ′
ix∥

2
∞ ,

n∑
i=1

∥∥∥T ′
ix
∥∥∥2
∞

)
. (14)

Note that if we evaluate (14) at x∗
SMNO, due to (12) we have

{T̂ ′
i} = {T ∗

i }. Also, by inspection of problem (11) we know
that x∗

SMNO satisfies
∑n

i=1 ∥T ∗
i x

∗
SMNO∥

2
∞ = 1. Therefore,

(13) says

1

2

n∑
i=1

∥Tix
∗
SMNO∥

2
∞ =

n∑
i=1

∥∥∥∥Ti
x∗

SMNO√
2

∥∥∥∥2
∞
≤ 1,

from where we conclude that coordinate-wise it must hold
x∗

SM ⪰ 1√
2
x∗

SMNO, and thus ∥z∥∗SM ≥
1√
2
∥z∥∗SMNO.

The next lemma gives the value of ∥x∥∗SMNO explicitly,
which will be needed to compare the strong convexity
constant σSMNO with σA.

Lemma 6. It holds that ∥x∥∗SMNO =
√∑n

i=1 ∥T ∗
i x∥

2
1.

Proof. Since the sets {S∗i } are non-overlapping and in (11)
norm ∥·∥∞ is applied per-set, the entries xℓ of x∗

SMNO will
have |xℓ| = x(i) ≥ 0 ∀ ℓ ∈ S∗i and the sign will match that of
the entries of z, i.e. sign(xℓ) = sign(zℓ). The maximization
of (11) then becomes

maximize
{x(i)}

n∑
i=1

∑
ℓ∈S∗

i

(
|zℓ| · x(i)

)

subject to

√√√√ n∑
i=1

(
x(i)
)2 ≤ 1.

Factoring out x(i) in the objective and noting that∑
ℓ∈S∗

i
|zℓ| = ∥T ∗

i z∥1, we can define w = [x(1), . . . , x(n)]T

and y = [∥T ∗
1 z∥1 , . . . , ∥T ∗

nz∥1]
T so that (11) now reads

∥z∥∗SMNO = sup
w

{
yTw

∣∣∣∣ ∥w∥2 ≤ 1

}
.

The right hand side is the definition of ∥·∥∗2, the dual of
the L2 norm, evaluated at y. Since ∥·∥∗2 = ∥·∥2, we have that

∥z∥∗SMNO = ∥y∥2 =
√∑n

i=1 ∥T ′
iz∥

2
1.

We can now prove the linear convergence rate of SGS-CD.

Theorem 2 (Rate of SGS-CD). SGS-CD converges as

E
[
F (λk+1) | λk

]
− F (λ∗) ≤(
1− 2σSMNO

Ln

)[
F (λk)− F (λ∗)

]
,

with
σA

Nmax
≤ σSMNO ≤ σA. (15)

Proof. We start by proving (15) by showing that strong
convexity in ∥·∥A implies strong convexity in ∥·∥∗SMNO, which
will give the inequalities as a by-product of the analysis.
Below we assume that x ∈ range(AT ); the results here
can then be directly applied to the proofs above because

∥·∥A , ∥·∥SM , ∥·∥SMNO and their duals are applied to ∇F (λ),
which is always in range(AT ) (Lemma 3).

For x ∈ range(AT ) it holds that (Lemmas 3 and 6):

∥x∥2A = ∥x∥22 =

E∑
i=1

x2
i =

n∑
i=1

∥T ∗
i x∥

2
2

(
∥x∥∗SMNO

)2
=

n∑
i=1

∥T ∗
i x∥

2
1 .

We also note that, using the Cauchy-Schwarz inequality
and denoting [v]i the ith entry of vector v, it holds both that

n∑
i=1

∥T ∗
i x∥

2
2 ≤

n∑
i=1

( ∑
j∈S∗

i

|xj |

)2

=

n∑
i=1

∥T ∗
i x∥

2
1 , and

n∑
i=1

∥T ∗
i x∥

2
1 =

n∑
i=1

(
1T

[∣∣∣[T ∗
i x]1

∣∣∣, . . . , ∣∣∣[T ∗
i x]N∗

i

∣∣∣]T)2

C.S.
≤

n∑
i=1

N∗
i ∥T ∗

i x∥
2
2 ≤ Nmax

n∑
i=1

∥T ∗
i x∥

2
2 ,

where N∗
i = |S∗i |. We can summarize these relations as
1

Nmax

(
∥x∥∗SMNO

)2 ≤ ∥x∥2A ≤ (∥x∥∗SMNO

)2
.

Using these inequalities in the strong convexity definitions,
similarly to [14], we get both

F (y) ≥ F (x)+ ⟨∇F (x), y − x⟩+σA

2
(∥y − x∥A)

2

≥ F (x)+ ⟨∇F (x), y − x⟩+ σA

2Nmax

(
∥y − x∥∗SMNO

)2
,

(16)

and

F (y)≥F (x)+ ⟨∇F (x), y−x⟩+σSMNO

2

(
∥y−x∥∗SMNO

)2
≥ F (x)+ ⟨∇F (x), y − x⟩+σSMNO

2
(∥y − x∥A)

2
.

(17)

Equation (16) says that F is at least σA

Nmax
-strongly convex

in ∥·∥∗SMNO, and eq. (17) says that F is at least σSMNO-
strongly convex in ∥·∥A. Together they imply (15).

To get the rate of SGS-CD, and following the procedure of
SU-CD, we need to lower-bound the per-iteration progress
1

2Ln ∥∇F (λ)∥2SM in (10). For this we will use the strong
convexity in ∥·∥∗SM, which we can obtain from the strong
convexity that we just proved for ∥·∥∗SMNO, as shown next.

Stating that F is at least σSM-strongly convex in ∥·∥∗SM
and using Lemma 5 we obtain:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSM

2

(
∥y − x∥∗SM

)2
≥ F (x) + ⟨∇F (x), y − x⟩+ σSM

2

1

2

(
∥y − x∥∗SMNO

)2
,

(18)

from where we conclude that σSM = 2σSMNO.
Minimizing both sides of the first inequality in (18) with

respect to y we obtain

F (x∗) ≥ F (x)− 1

2σSM

(
∥∇F (x)∥SM

)2
, (19)

which is analogous to (9), and rearranging terms gives a
lower bound on ∥∇F (λ)∥2SM. Using this lower bound in (10)
and replacing σSM = 2σSMNO gives the rate of SGS-CD.



Theorem 2 states that SGS-CD can be up to Nmax times
faster than SU-CD. This result is analogous to that of [14] for
the GS rule compared to uniform sampling in centralized CD.

Although this maximum speedup is an upper bound and
may not always be achievable, we can think of the following
scenario where this gain is attained: let all sets have the
same size |Si| = Nmax ∀i, exactly m out of the Nmax

coordinates in each set have ∇mF (λ) = 0, and only one
ℓ have ∇ℓF (λ) ̸= 0. In this case, on average only 1

Nmax

times will SU-CD choose the coordinate that gives some
improvement, while SGS-CD will do it at all iterations.

Note that this example requires the gradients of all co-
ordinates to be independent, which is not verified in the
decentralized optimization setting: according to eq. (6), for a
∇mF to be zero, it must hold that ∇f∗

i = ∇f∗
j ,m ≡ (i, j).

But unless this equality holds for all (i, j) ∈ E (i.e., unless
the minimum has been attained), λ will continue changing,
and the ∇f∗

i will differ. Thus, the gains of SGS-CD in this
setting may not attain the upper bound.

Nevertheless, when it comes to parallel distributed setups,
the coordinates are not necessarily coupled as in the decen-
tralized case, and thus the Nmax speedup of SGS-CD is still
achievable, as shown in our simulations below.

C. Case d > 1

To extend the proofs above for d > 1, the block arrays Λ
and Ui should be used instead of A and ui, and the selector
matrices Ti should be redefined in the same way. Then, all
the operations that in the proofs above are applied per entry
(scalar coordinate) of the vector λ, should now be applied
to the magnitude of each vector (or “block” [15]) coordinate
λℓ ∈ Rd of λ ∈ REd. Also, since ∇mF ∈ Rd, in this case
the GS rule becomes argmaxm∈Si

∥∇mF (λ)∥22.

V. NUMERICAL RESULTS

Figure 2 shows the remarkable speedup of SGS-CD with
respect to SU-CD in both the decentralized (left plots) and
the parallel distributed (right plots) settings4.

For the decentralized setting we created two regular graphs
of n = 24 nodes and degrees Nmax = 8 and 12, respectively.
The local functions were fi(θ) = θT cIdθ with d = 5, and
c = 50 if (i modulo Nmax) = 0 and c = 1 otherwise, where
i is the index of each node. We chose these fi so that
each node would have (approximately) one neighbor out of
the Nmax with whom the coordinate gradient would have
maximum disagreement, thus maximizing the chances of
observing differences between SU-CD and SGS-CD.

For the parallel distributed setting, we created a problem
that was separable per-coordinate, and we tried to recreate the
conditions described in the previous section to approximate
the Nmax gain. We chose F (x) = xTDx with x ∈ Rd and
d = 48. Matrix D was diagonal with its non-zero entries
sampled from N (10, 3). We then created n sets of Nmax

coordinates such that each coordinate belonged to exactly
two sets, similarly to the parallel distributed scenario with

4The code is available at https://github.com/m-costantini

parameter server where each worker has access to a subset of
the coordinates only. We simulated two different distributions
of the d = 48 coordinates: one with n = 24 sets of Nmax = 4
coordinates each, and another with n = 12 sets of Nmax = 8
coordinates each. Following the reasoning in the previous
section, we set the initial value of (Nmax − 1) coordinates
in each set to x0

m = 1 (close to the optimal value x∗
m = 0),

and the one remaining to x0
ℓ = 100 (far away from x∗

ℓ = 0).
The plots in Figure 2 show the steep rate gain of SGS-

CD with respect to SU-CD as Nmax increases. To quantify
this gain we denoted (1 − ρ) the suboptimality reduction
factor and we estimated ρU , ρG for SU-CD and SGS-CD,
respectively, from the last third of the suboptimality curves.
Theorem 2 says that 1 ≤ ρG

ρU
≤ Nmax, and indeed, this is

verified in both settings. In particular, for the decentralized
setting ρG

ρU
is approximately in the middle of this range

for both regular graphs. In the parallel distributed setting,
however, the ratio is much closer to Nmax, as predicted.

VI. DISCUSSION

We have presented the class of set-wise CD algorithms,
where in a multi-agent system workers are allowed to modify
only a subset of the total number of coordinates at each iter-
ation. These algorithms are suitable for asynchronous decen-
tralized optimization and distributed parallel optimization.
We studied specifically two set-wise CD variants, SU-CD
and SGS-CD, which required developing a new methodology
that extends previous results on CD methods.

We obtained the convergence rates of SU-CD and SGS-CD
for smooth and strongly convex functions fi and showed that
they are analogous, except for the network-related parame-
ters, to those given in [14] for their centralized counterparts.
More precisely, we showed that SGS-CD can be up to
Nmax (the size of the largest coordinate set) times faster
than SU-CD; we further elaborated on the conditions under
which such speedup may be attainable, and confirmed these
predictions with numerical simulations.

A limitation of SGS-CD with respect to SU-CD is that
all the neighbors of the activated node i must compute their
∇f∗

h and send it to node i (line 5 in Alg. 2). This additional
overhead with respect to SU-CD is analogous to that of
the GS rule in centralized CD, which is the reason why
GS makes sense only for problems with certain separability
and sparsity structures [14], [15]. Designing algorithms that
approximate SGS-CD at the cost of SU-CD is a subject of
future work.

A possibility that was not accounted for in this study
is letting the nodes use different stepsizes to update each
λℓ [15]. Indeed, function F is coordinate-wise smooth with
constant Lℓ =

(
1
µi

+ 1
µj

)
for ℓ ≡ (i, j); this could be used

by each node to choose a different stepsize ηℓ ≥ 1
L for

each λℓ, which would make convergence faster. Methods to
estimate the per-coordinate smoothness when it is not known
a priori were discussed in [13], [15].

Another way of obtaining faster convergence is to use
Nesterov acceleration, as done in [22], now on top of the
smart neighbor choosing rule. Although this would entail



Fig. 2: Comparison of the convergence rates of SU-CD and SGS-CD in two settings: decentralized optimization over a
network (left plots), and parallel distributed computation with parameter server (right plots). Given the linear suboptimality
reduction F (λk)−F (λ∗) ≤ (1−ρ)k[F (λ0)−F (λ∗)], the thick transparent lines show the part of the curves used to estimate
ρU and ρG for SU-CD and SGS-CD, respectively. The ratio ρG

ρU
increases notably with Nmax, in agreement with the theory.

partially sacrificing the complete lack of coordination al-
lowed by the set-wise CD algorithms presented here (because
acceleration couples the coordinate updates), combined with
per-coordinate specific stepsizes and well-designed neighbor
sampling rules it would open the possibility of obtaining
the fastest decentralized set-wise CD algorithm, similarly to
recent results for accelerated centralized CD [23], [24].
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