
Throughput and Energy Tradeoffs for
Retransmission-based Random Access Protocols

Derya Malak
Communication Systems Department, EURECOM

derya.malak@eurecom.fr

Abstract—The fifth-generation of wireless communication net-
works is required to support a range of use cases such as
enhanced mobile broadband (eMBB), ultra-reliable, low-latency
communications (URLLC), massive machine-type communica-
tions (mMTCs), with heterogeneous data rate, delay, and power
requirements. The 4G LTE air interface is designed to support
fewer devices with large payloads, and uses extra overhead to
enable scheduled access, which is not justified for small payload
sizes. In this paper, we employ a random access communication
model with retransmissions for multiple users with small pay-
loads at the low spectral efficiency regime. The radio resources
are split non-orthogonally in the time and frequency dimensions.
Retransmissions are combined via different Hybrid Automatic
Repeat reQuest (HARQ) methods, namely Chase Combining and
Incremental Redundancy with a finite buffer size constraint Cbuf ,
via a conventional matched filter receiver. We determine the best
scaling of the spectral efficiency (SE) versus signal-to-noise ratio
(SNR) ρ per bit and the scaling for the user density (number
of users per real degrees of freedom, rdof) versus SNR per bit,
for the sum-optimal regime and when the interference is treated
as noise, using a Shannon capacity approximation. Numerical
results show that the scaling results are applicable over a range of
η, T , Cbuf , J , at low received SNR values. The proposed analytical
framework can provide insights for resource allocation strategies
in general random access systems and in specific 5G use cases
for massive URLLC uplink access.

Index Terms—Multiple access, NOMA, HARQ, Chase combin-
ing, Incremental redundancy, spectral efficiency, SNR per bit,
user density, and matched filter decoding.

I. INTRODUCTION

The fifth-generation (5G) communication networks will
support a wide range of use cases beyond high data rate appli-
cations, including Ultra-reliable, low-latency communication
(URLLC) settings with small payload sizes transmitted by
a large number of users with stringent power requirements.
4G LTE cannot effectively handle the heterogeneity because
it ensures interference-free transmission via scheduled access
and is designed to support fewer devices with large payloads.
The overhead of scheduled access in 4G LTE is not desirable
in URLLC applications.

We consider a wireless multiple access communication
channel (MAC) model where a set of users sends their fixed
payloads (in bits) given a preallocation of uplink resources. A
given set of shared spectral resources of bandwidth ω Hertz
(Hz) is partitioned into B frequency bins which are shared
by the users in a non-orthogonal manner via non-orthogonal
multiple access (NOMA), and the time of duration τ second
(sec) uniformly divided into T time slots, i.e., transmit oppor-
tunities. For a given blocklength n, the total dimension in a

given channel use is m = n/T . We consider different forms
of Hybrid Automatic Repeat reQuest (HARQ): (i) HARQ with
Chase Combining of NOMA transmissions, CC-NOMA, (ii)
HARQ with chase combining of OMA transmissions, CC-
OMA, and (iii) HARQ with Incremental Redundancy, IR-
OMA. The general challenge is to design a random access
protocol to maximize the scaling of the density of users versus
the SNR per bit.

A. Related Work

Random access models and scaling of throughput.
Random-access protocols have been pioneered with the emer-
gence of ALOHA [1], which later yielded the development
of carrier sense multiple access (CSMA). However, these
contention-based schemes do not have desirable throughput
and delay performances and do not guarantee a deterministic
load. Recently, different uplink schemes have been proposed
to accommodate massive access [2]. In general, the resource
being shared is on a time-frequency grid, and each transmis-
sion costs one time-frequency slot [3]. Other models include
sparse coding for grant-free multiple access [4], multi-user
detectors (MUDs) that improve the performance of random-
CDMA [5] for spread spectrum systems (in different bases),
e.g., orthogonal multiple access (OMA) coded OFDM, or
CDMA with random non-orthogonal spreading, and generally
NOMA [6]. Other works have focused on the capacity of
Gaussian multiple access channels (MAC) [7], many-access
channels with user identification [8], and quasi-static fading
MAC [9].

Interference management and resource sharing. Interfer-
ence management techniques have been studied under different
spectral efficiency models. To accommodate massive random
access, interference cancellation [10], collision resolution [2],
load control [11], and interference cancellation given a target
outage rate [12] have been proposed.

In [13], we characterized the scaling of throughput (user
density) with deadline under outage constraints for a sub-
optimal but more practical random access system where the
time and frequency domains are slotted. The receiver uses
conventional SUD, which decodes a desired user’s data by
treating other users’ interfering signals as noise, subject to an
SINR-based outage constraint. However, the main limitation is
the fixed per-user power, which causes a linear scaling between
the received SNR and the number of users.

HARQ models and coding sequences. HARQ is a combi-
nation of Automatic Repeat reQuest (ARQ) and forward error



correction (FEC) [14]. In particular, there are three models
known as HARQ with Selective Repeat, HARQ with CC, and
HARQ with IR [15]. This one is a salient variant of HARQ that
captures puncturing via parity bits [16] and effects of HARQ
buffer sizes [17].

Coding sequences have been devised for massive access,
including Walsh sequences [18], or almost affinely disjoint
subspaces [19], and Khachatrian-Martirossian construction to
enable K > n users signal in n dimensions simultaneously,
where K ≈ 1

2n log2 n is the optimal scaling [20]. Zadoff-Chu
sequences provide low complexity and constant-amplitude
output signals, and have been widely used in 3GPP LTE
air interface, including the control and traffic channels [21].
Sequence design for grant-free MAC has been studied in [22],
where the authors devised uniquely-decodable multi-amplitude
sequences. However, this approach induces a high Eb/N0,
which is not desirable in a practical massive access scenario
with small payloads.

B. Overview, Contributions and Organization

The goal of this paper is to analyze a retransmission-based
general random access framework that unifies the properties
of NOMA-based transmissions with HARQ-based protocols
that rely on CC and IR to provide insights on uplink resource
allocation strategies for future 5G wireless communication net-
works. In Section II, we describe the system model for random
access and detail the key performance metrics, SE (bits/rdof),
the SNR per bit (Eb/N0), and user density (users/rdof). We
delineate the retransmission-based random access schemes in
Section III and analyze their SE and the SNR per bit for the
sum-optimal and TIN cases. More specifically, we consider (i)
the classical transmission scheme with no retransmissions, and
the retransmission-based schemes using different combining
techniques, namely (ii) CC-NOMA, (iii) CC-OMA, and (iv)
IR-OMA. In Section IV, we numerically evaluate the scaling
results, namely the SE versus SNR per bit and user density
versus SNR per bit tradeoffs, and show the behavior with an
increasing number of transmissions T , received SNR ρ, the
HARQ buffer size Cbuf , the non-orthogonality factor η, and
the total number of users J . The key design insights for the
proposed random access framework are as follows:

• The low ρ regime is relevant. Our framework exploits
the conventional MFR for SUD and is suitable at low
SNRs ρ. We show that the user density of NOMA-based
models scales significantly better at low ρ versus high
ρ. The interference cannot be exploited at high ρ, which
degrades the performance of TIN-based models.

• The SE of the sum-optimal strategy improves with
NOMA. Compared to OMA-based transmissions, CC-
NOMA has a better SE vs Eb/N0 performance. The
performance of IR-OMA approaches the performance of
the classical model as Cbuf at the receiver increases.

• The SE of the TIN strategy is optimal at low ρ. If
Cbuf is sufficiently large, TIN is good at low SE. If not,
a higher T is required. The scaling results are sensitive

to η for CC-NOMA, and a codebook with smaller η can
significantly improve the SE of TIN.

• User density is sensitive to retransmissions. For the
sum-optimal model, although the performances of CC-
OMA, IR-OMA, and the classical techniques degrade
with increasing T , CC-NOMA does not sacrifice the
number of users per rdof as much. A higher number of
users J , when the per user power is kept fixed, results in a
lowered received SNR ρ per user, which improves the SE
for the sum-optimal CC-NOMA model, yet for the TIN-
based model, the SINR drops due to the higher effective
interference, which degrades the SE for a given SNR per
bit. For TIN, CC-OMA and CC-NOMA perform well
at low ρ values and CC-OMA can effectively combine
retransmissions even at higher values of ρ. However, the
SNR per bit requirement of CC-NOMA is very sensitive
to ρ, which deteriorates the performance at high ρ values.

• User density scales up with SNR per bit. The user
density J/n can superlinearly scale with Eb/N0 (where
the scaling does not necessarily degrade with T in the
case of CC-NOMA versus the other models that rely on
OMA) in the infinite blocklength (IBL) regime, which
gives an upper bound to the actual user density scaling.
As n increases, these upper bounds become tighter.

Our insights could be applied to 5G wireless system de-
sign with delay and resource-constrained communications,
which is critical in use cases such as URLLC or mMTC.
Nevertheless, the scaling results in our framework provide
an upper bound on the achievable SE and the user density
because of the following additional assumptions: ideal negative
acknowledgment with no error or delay, the IBL regime
capacity-achieving encoding, perfect power control, perfect
synchronization among users, and decoding via a suboptimal
receiver, through matched filtering and SUDs, which could
strictly improve performance of random-CDMA.

II. SYSTEM MODEL

We consider a random access communication model where a
set of users transmits over shared radio resources to a common
receiver. The goal of each user is to transmit its payload of
fixed size (L bits) within a latency constraint (blocklength n).
A user is granted T retransmission attempts to communicate
its payload. The users use non-orthogonal signatures (kept
identical at each retransmission attempt) to transmit their
payloads, as shown in Fig. 1-(a).

Frame structure. A frame has a total bandwidth of ω
Hertz (Hz) and the time of duration τ second (sec), which is
partitioned into B frequency bins of equal width, and T time
slots, i.e., transmit opportunities, of equal duration. We refer
to a given frequency bin and time slot as a time-frequency
slot (TFS). For the proposed frame structure, the number of
resources or rdof in a frame is N = ωτ . The total number
of rdof N is evenly split into T retransmissions. The time-
frequency resources in a frame are shared by a collection
of users in a non-orthogonal manner. Each user attempts to
transmit its payload of fixed size L bits over shared resources.



Given ω, τ , m, and T , the number of symbols in a TFS is
ωτ/(BT ). Under the orthogonal division of the resources, the
coding rate is LBT/(ωτ) bits per symbol.

User (source) model. Given T (re)transmission attempts,
the total blocklength n per user is split uniformly across T at-
tempts to accommodate the retransmission of a packet. Hence,
the blocklength per transmission at each time slot is m = n/T .
Let Jt be the number of users at slot t ∈ {1, . . . , T}, Jt be
the set of users at slot t such that J =

∑T
t=1 Jt, and J be

the set of all users in the frame.
Let Uj = (Uj1, Uj2, . . . , UjK) be the K dimensional

source vector corresponding to user j ∈ J . In the case of
no feedback, we model each retransmission from user j with
a blocklength m by Xtj = (Xtj1, Xtj2, . . . , Xtjm), where
we assume that the transmitted signal from user j is given
by Xtj = φtji(Uj) = atjSj , where atj ∈ C denotes the
complex amplitude of the transmitted symbol of user j at
slot t, and Sj denotes its signature (spreading sequence). Let
φtji : UKj → Xj for i = 1, . . . ,m be the encoder function of
j ∈ J for retransmission attempt t ∈ {1, . . . , T}.

User signatures. The number of rdof N in a frame can
be thought of as the total length of the signature sequences
of the active users over B frequency bins. Each user has the
same signature across all time-frequency resources. The TFSs
are shared in a non-orthogonal manner, where each waveform
at a given time slot is a sum of non-orthogonal signatures,
as indicated in Fig. 1-(a). We assume that Sj are unitary,
‖Sj‖ = 1, and |〈Sj ,Sj′〉| = η for any {(j, j′) ∈ Jt : j 6= j′}.
The maximum value of Jt to ensure that all j ∈ Jt is decoded
with zero-error is given by the Khachatrian-Martirossian con-
struction [20] allows Jt > m users. Under this setup, when
Sj’s are random and m is large η ≈ 1√

m
with high probability.

We illustrate the frame structure with overlapping NOMA
traffic in Fig. 1-(b).

Received signal and matched filter decoding. We de-
note the received signal vector during transmission t ∈
{1, . . . , T} by Yt = (Yt1, Yt2, . . . , Ytm). We also let Yi

t =
(Yt1, Yt2, . . . , Yti). The channel is additive such that the re-
ceived signal vector during transmission t is

Yt = atjSj +
∑

j′∈St,−j

atj′Sj′ + Zt, (1)

where St,−j is the collection of the interferers of j ∈ Jt in
the same time slot t, i.e., St,−j = {j′ ∈ Jt : j′ 6= j}, and
Zt ∼ CN (0, σ2

t Im) is a complex Gaussian random variable.
We consider the conventional matched filter receiver (MFR)

for decoding, which performs approximately optimal when
the target SINR is low. In this case, the effective bandwidth
required by the conventional approach is small versus the
linear decorrelator receiver, which is desired as it allows many
users per dof, where the other users’ signals are treated as
additive white Gaussian noise (AWGN) [5]. On the other hand,
when the target SINR is high, both the linear minimum mean-
square error (MMSE) and the linear decorrelator receiver
decorrelate a user from the rest, yielding no more than one
dof per interferer [5]. In the case that {Sj}j∈J are known to

the receiver, an MMSE-based receiver provides a better signal-
to-interference ratio (SIR) per user via exploiting the structure
of the interference [5].

Maximum ratio combining. The receiver’s HARQ buffer
size equals the number of coded symbols per coded packet,
where retransmitted packets are summed up with previously
received erroneous packets via maximum ratio combining
(MRC) of retransmissions prior to decoding.

The common receiver has the decoder function ΦT : Yn →
{UKj }j that combines T retransmissions to decode the indi-
vidual source vectors {Uj}j from the received signal vector
Yt during transmission t ∈ {1, . . . , T} from the transmitted
signals {Xtj}j∈Jt . Using (1), the MRC of T transmissions
results in the following combined signal:

Y = Uj +

T∑
t=1

a∗tj
∑

j′∈St,−j

atj′Sj′ + Z , (2)

where Y =
∑T
t=1 a

∗
tjYt, and Uj =

∑T
t=1 |atj |2Sj , and Z =∑T

t=1 a
∗
tjZt are m dimensional vectors.

Per user received SNR. The noise power each user sees
is assumed to be additive and constant with value σ2

t , t ∈
{1, . . . , T} per dimension, i.e., E[〈Zt,Zt〉] = mσ2

t , where
mσ2

t is the total noise power across the number of frequency
bins, which is B. The energy constraint for each source j ∈ J
at any given t ∈ {1, . . . , T} is

1

T
E[Uᵀ

jUj ] = E[Xᵀ
tjXtj ] = mσ2

t ρtj ≤
KEj
T

, (3)

i.e., the total power of channel input linearly scales with the
message size K, where the received power of user j ∈ J
normalized with respect to K is Ej . We assume that E[Xtji] =
0 and Xtji’s across j ∈ J are not independent such that
E[Xᵀ

tjXtj′ ] ≤
KEjj′

T for {(j, j′) : j 6= j′}.
Assuming that E[X2

tji] does not change with i ∈
{1, . . . ,m}, from (3) and assuming that σ2

t = σ2, we have

ρtj =
E[Xᵀ

tjXtj ]

mσ2
=

E[X2
tji]

σ2
=
|atj |2

mσ2
, j ∈ J .

We further assume that ρtj are identical and denoted by ρ.
Given a constant received power of σ2ρ, the received SNR
equals ρ. The relation between ρ and σ2 is given as ρ =
1
σ2E[Xᵀ

tjXtj ]. The total power spent by all users is

Ptot = Jσ2ρ . (4)

The overall problem is to determine some key performance
metrics and their joint behavior. We will explore the behavior
of the spectral efficiency, the SNR per bit, and the user density,
which we describe in the sequel.

a) Spectral efficiency: The spectral efficiency, SE, is the
maximum number of bits per channel use (bits/s/Hz):

SE = Total number of data bits/rdof , (5)
where rdof represents the total number of real dof, n.

Definition 1. (Achievable rate [23].) A rate R is achievable
with complete feedback for a discrete memoryless channel
(DMC) p(y |x) if for any ε > 0, there exists for sufficiently
large n an (n, M) code such that 1

n logM > R− ε.
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Fig. 1: (a) Non-orthogonal user signatures at time slots 1 and t. Each user uses the same signature across all time-frequency resources. The
second user in slot 1 is repeated in slot t (same signature). (b) The frame structure where time is partitioned into T transmit opportunities,
and the time-frequency resources are shared in a non-orthogonal manner by the users.

Assume that a user attempts to transmit a payload of fixed
size L bits over the channel. Hence, the relation between the
required codebook size M and L is L = logM . Hence, the
blocklength n should be chosen sufficiently large so that the
achievable transmit rate, Ln , satisfies:
L

n
≤ C =

1

2
log2(1 + SINR) bit/rdof, n ≤ N , (6)

where C is Shannon’s channel capacity, and SINR represents
the signal-to-interference-plus-noise ratio, for an AWGN chan-
nel where interference is treated as noise (TIN). Shannon’s
channel capacity is achievable at an arbitrarily low error rate
when coding is performed in the IBL regime, i.e., using a code
block of n→∞. However, since N is finite, the ratio L/N is
always finite. Hence, given L, the IBL scheme gives an upper
bound on the achievable rate, and a lower bound on n.

For finite n, the rate achievable is approximated by [24]

R(n, ε) =
1

n
logM(n, ε) ≈ C −

√
V

2n
Q−1(ε) , (7)

where M(n, ε) is the maximal code size achievable with
a given blocklength n and average error probability ε, and
Q(x) = 1√

2π

∫∞
x
e−u

2/2 du is the tail probability of the stan-
dard normal distribution and Q−1 is its inverse. Furthermore,
in (7), V is the channel dispersion given by V = 1− 1

(1+SINR)2 ,
and for the AWGN channel model by TIN, C is Shannon’s
channel capacity, which satisfies (6).

b) SNR per bit: The SNR per bit, Eb/N0, represents the
ratio of the energy-per-bit to the noise power spectral density,
which is a normalized SNR measure:

Eb
N0

=
Total energy spent

2× Total number of bits
. (8)

c) User density: User density (users/rdof), J/n, repre-
sents the total number of users per rdof that can transmit within
the same frame (of which Jt/n denotes the density of users
that can simultaneously transmit in slot t), for a given total

blocklength n for the given frame duration. From (5), (6), and
(8) the achievable user density for a given n is affected by the
SE vs SNR per bit tradeoffs of the retransmission schemes,
which we detail in Section III.

III. COMBINING NOMA-BASED RETRANSMISSIONS

We focus on the scaling behaviors of the SE, the SNR per
bit, and the user density for the retransmission-based random
access schemes. The senders must contend not only with the
receiver noise but also with interference from each other. To
that end, we next analyze the behavior of the SE and SNR per
bit performances of the HARQ schemes for the sum-optimal
regime and via TIN.

A. No Multiplexing of Retransmissions

We commence with the classical interference-based model
with no multiplexing across different time slots. The time re-
sources are split uniformly across T slots. There are Jt = J/T
users per slot sharing the frame resources. The SE of the
classical sum-optimal transmission approach is given as

RClas.
sum =

1

2
log2

(
1 + ρ

J

T

)
bit/rdof . (9)

The SNR per bit of this model is equal to
Eb
N0

=
Jσ2ρn

m log2

(
1 + ρ JT

) =
Jσ2ρT

log2

(
1 + ρ JT

) . (10)

The SE of the classical model via TIN is expressed as

RClas.
TIN =

J

2T
log2

(
1 +

ρ

ρ( JT − 1) + 1

)
bit/rdof. (11)

Similarly, the SNR per bit for this model is given as
Eb
N0

= Tσ2ρ
/

log2

(
1 +

ρ

ρ( JT − 1) + 1

)
. (12)

In general, transmissions are exposed to different channel
conditions, more specifically the fading (e.g., exponentially
distributed interference power, i.e., Rayleigh fading) or path



loss. The channel gains |Hjt|2, as function of t = 1, . . . , T and
j ∈ J can be incorporated into the system model, assuming
that |Hjt|2 has unit power and is independent across the
slots with a known cumulative distribution function, F|H|2 .
Incorporating the channel gains, we can express the SE of the
classical sum-optimal model as

RClas.
sum =

1

2T

T∑
t=1

log2

(
1 + ρ

∑
j∈Jt

|Hjt|2
)

bit/rdof .

The SNR per bit for the classical sum-optimal model is

Eb
N0

= Jσ2ρn
/m
T

T∑
t=1

log2

(
1 + ρ

∑
j∈Jt

|Hjt|2
)
.

A more comprehensive SINR model that incorporates the
channel gains will be considered as a future direction.

In the case of no retransmissions, TIN is essentially optimal
for low SE [20]. However, for strategies that combine the
retransmissions, the classical TIN may not be optimal even
at low SE. We will later demonstrate in Sections III-B, III-C,
and III-D, and via simulations (Section IV) that sum-optimal
capacity models could be more energy efficient via combining
of retransmissions versus TIN.

B. Chase Combining with NOMA-based Retransmissions

The receiver’s HARQ buffer size for CC-HARQ equals the
number of coded symbols per coded packet, where retransmit-
ted packets are summed up with previously received erroneous
packets via MRC of retransmissions prior to decoding. We
next derive the SE for the Chase combining of NOMA-based
retransmissions (CC-NOMA) for the sum rate optimal model.
In CC-HARQ, each transmission contains the same data and
parity bits.

Proposition 1. The SE of CC-NOMA for the sum rate optimal
model is expressed by the following upper bound:

RCC,NOMA
sum =

1

2
log2

(
1 + ρT

[
1 + η2

(J
T
− 1
)2])

. (13)

Proof. See Appendix.

Using (8), the SNR per bit for CC-NOMA for the sum rate
optimal model is given as

Eb
N0

= Jσ2ρ
/

log2

(
1 + ρT

[
1 + η2

(J
T
− 1
)2])

. (14)

The SE for CC-NOMA with TIN is

RCC,NOMA
TIN =

J

2T
log2

(
1 +

ρT 2

T + ρη2(J − T )2

)
. (15)

The SNR per bit of RCC,NOMA
TIN is given as:

Eb
N0

= Jσ2ρn
/
n
J

T
log2

(
1 +

ρT 2

T + ρη2(J − T )2

)
(16)

= Jσ2 ·
1
T (2

2T
J SE − 1)

1− η2
(
J
T − 1

)2
(2

2T
J SE − 1)

· 1

2SE

≥ −1.59dB + 10 log10 σ
2 ,

where we used 22SE−1
2SE ≥ −1.59dB as SE→ 0.

C. Chase Combining with OMA-based Retransmissions

Here, the retransmissions of each user are combined to
enhance its received SNR. This scheme is a simplified version
of CC-NOMA where the users have orthogonal messages,
namely OMA with chase combining or CC-OMA, which was
introduced in [13]. We next provide its SE.

Proposition 2. The SE for CC-OMA with the sum-optimal
capacity model is given as

RCC,OMA
sum =

1

2
log2

(
1 + ρT

[
1 +

1

T

(J
T
− 1
)])

. (17)

Proof. The final result follows from Prop. 1 in [13].

The SNR per bit of RCC,OMA
sum is given as

Eb
N0

= Jσ2ρ
/

log2

(
1 + ρT

[
1 +

1

T

(J
T
− 1
)])

. (18)

The SE of CC-OMA with TIN is given as

RCC,OMA
TIN =

J

2T
log2

(
1 +

ρT

1 + ρ
(
J
T − 1

)) . (19)

In the limit as J → ∞, it holds that RCC,OMA
TIN ≤ T

2 log 2 . The
subsequent result follows using (8) and (19).

The SNR per bit of RCC,OMA
TIN is given as

Eb
N0

= Jσ2ρn
/
n
J

T
log2

(
1 +

ρT

1 + ρ
(
J
T − 1

))
= Jσ2 ·

1
T (2SE

2T
J − 1)

1− 1
T

(
J
T − 1

)
(2SE

2T
J − 1)

· 1

2SE

≥ −1.59dB + 10 log10 σ
2, (20)

where the second step follows from using (19), and the last
step follows from the same intuition as in (16).

D. Incremental Redundancy with OMA Retransmissions

In this section, we consider an incremental redundancy
model with OMA (IR-OMA). From Sections III-B and III-C,
due to the finite HARQ buffer size, the throughput of CC-
NOMA is determined by the addition of all active users’
signals at any given time slot. Hence, a finite HARQ buffer has
an impact on the throughput of HARQ. Unlike CC-NOMA, in
IR-OMA every retransmission contains different information
than the previous one. Furthermore, different from CC, where
the buffer size is the same as the number of packets per
transmission, in IR-OMA, which is also known as HARQ Type
III, the buffer size is equal to the number of coded bits of
the total transmitted coded packets, where each retransmitted
packet is self-decodable.

In IR-HARQ, multiple different sets of code bits are gen-
erated for the same information bits used in a packet. These
sets consist of different redundant flavors obtained by different
puncturing configurations. The retransmitted packets provide
successive refinement [25] by iteratively improving the rate-
distortion as more information is sent.

Expected quantization distortion. Using the refinement-
based approach in [25], the average quantization distortion is
characterized as the mean squared error distortion between
the quantized signal Ŷt,T and the received signal Yt. The



quantized m dimensional signals are given by Ŷt,T = Yt +
Qt,T . The quantization noise satisfies the relation Qt,T ∼
CN
(
0,

2σ2
q(t,T )

m Im
)
, where σ2

q (t, T ) represents the total quan-
tization noise power per rdof (the quantization distortion per
frequency bin is σ2

q (t, T )/B) for IR-OMA at slot t given
a total number of T retransmissions, where attempt t is
unsuccessful if 1 ≤ t < T and is successful at attempt T .
From (1), Yt has a dimension m = n/T .

Proposition 3. The SE for IR-OMA with the sum-optimal
capacity model is given as

RIR,OMA
sum =

T∑
t=1

B

2
log2

(
1 +

ρJσ2/B

σ2 + σ2
q (t, T − 1)/B

)
, (21)

which has the units of bit/rdof/(T slots).

Proof. Given the buffer size normalized with respect to the
packet lengths, Cbuf , the transmit rate is given by mCbuf

n =
Cbuf

T . Using (1) at transmission attempt t < T , it holds that
Cbuf

T
= I(Yt; Ŷt) =

B

2
log2

(
1 +

Jρσ2/B + σ2

σ2
q (t, T )/B

)
,

which leads to a quantization noise as function of Cbuf :

σ2
q (t, T ) =

B(Jρ/B + 1)σ2

2
2Cbuf
TB − 1

, t < T ,

where in (21) σ2
q (T, T ) = 0, i.e., at retransmission T , YT =

ŶT , i.e., the receiver recovers YT . We also have the notational
convention σ2

q (T, T − 1) = 0. Combining the retransmissions,
each providing an addendum to the first transmission so that
the signal as a result of T transmissions achieves the desired
distortion, we obtain (21).

The SNR per bit of IR-OMA for sum-optimal case is

Eb
N0

= Jσ2ρ
/B
T

T∑
t=1

log2

(
1 +

ρJ/B

1 + σ2
q (t, T − 1)/(Bσ2)

)
.

As Cbuf → ∞, Eb

N0
→ Jσ2ρ

log2(1+ρJ)
. For smaller Cbuf , Eb

N0
>

Jσ2ρ
log2(1+ρJ)

. We note that as Cbuf increases the IR-OMA sum
SE matches the sum SE for the classical problem without
combining transmissions (sum-optimal case). When Cbuf is
small the gap between the SE for the classical transmission
model and the IR-OMA sum SE grows as T increases.

Proposition 4. The SE for IR-OMA with TIN is given as

RIR,OMA
TIN =
T∑
t=1

JB

2T
log2

(
1 +

ρσ2/B

ρσ
2

B

(
J
T − 1

)
+ σ2 +

σ2
q(t,T−1)
B

)
, (22)

which has the units of bit/rdof/(T slots), where the buffer
size normalized with respect to the packet lengths, i.e., Cbuf ,
more precisely the transmit rate satisfies:
Cbuf

T
=
B

2
log2

(
1 +

ρσ2/B + σ2

((J/T − 1)ρσ2 + σ2
q (t, T ))/B

)
,

which implies that as σ2
q (t, T ) → 0 for Cbuf ≥ BT

2 log2

(
1 +

ρσ2/B+σ2

(J/T−1)ρσ2/B

)
, where the size of Cbuf could be tuned to the

channel capacity (7) in the FBL regime. The relation between

Cbuf and σ2
q (t, T ) leads to the following relation between

σq(t, T ) and the buffer size:

σ2
q (t, T ) =

B(ρ/B + 1)σ2

2
2Cbuf
TB − 1

− (J/T − 1)ρσ2 . (23)

The proof of next proposition can be obtained from (22)
and (23), which we skip due to space limits.

Proposition 5. The SNR per bit of IR-OMA for TIN equals

Eb
N0

= Tσ2ρ
/B
T

T∑
t=1

log2

(
1 +

ρ/B

ρζt/B + 1

)
, (24)

where ζt =
(
J/T − J/(T − 1) + 1/(2

2Cbuf
(T−1)B − 1)

)
+ B/ρ ·

1/(2
2Cbuf

(T−1)B − 1) for t < T , and ζT = (J/T − 1).

In general as ρ → 0 for large buffer sizes Cbuf , it is
immediate from Prop. 5 that Eb

N0
→ log 2 · Jσ2ρ. For smaller

Cbuf , the ratio Eb

N0
is typically larger vs classical TIN.

IV. NUMERICAL EVALUATION OF SCALING RESULTS

Contrasting SE vs SNR per bit. We first study the SE
(bits/rdof) versus the Eb/N0 (dB) tradeoff for the different
HARQ-based retransmission combining models in Section III.
The set of chosen parameters for the sum-optimal and the TIN
schemes is indicated on the plots. Our numerical results in Fig.
2 are for the IBL regime, providing upper bounds to the actual
scaling behaviors for the SE models.

Number of retransmissions T. Increasing T degrades the
SE of the sum-optimal model (with CC-NOMA (13) and CC-
OMA (17)). The SE for the TIN (with CC-NOMA and CC-
OMA) improves. We note for IR-OMA that as T increases,
unlike the CC-NOMA and CC-OMA models, each retransmis-
sion contains less information for successive refinement of the
signal. In terms of the SE vs Eb/N0 behavior, for T > 1, TIN
CC-OMA is better than TIN IR-OMA and TIN classical. This
trend is also obvious from relations (11), (15), (19), and (22).
The gap between TIN CC-OMA and TIN IR-OMA grows with
increasing T .

Finite buffer size Cbuf at the decoder. The SNR per bit for
the classical TIN and the IR-OMA models have a matching
fundamental Eb/N0 limit when Cbuf is sufficiently large for
ρ = 0 for any given T . For large Cbuf , TIN IR-OMA can
perform better than TIN CC-NOMA when interference is high.
When Cbuf is small, i.e., under high quantization noise, the
performance of TIN IR-OMA could be worse than TIN CC-
NOMA and classical TIN for T > 1.

Scaling of user density J/n versus Eb/N0. We investigate
this scaling behavior in Figs. 3 and 4 as a function of ρ.
A high ρ value yields a higher Eb/N0 to achieve the same
user density. As T increases, m = n/T decreases, and the
supported user density drops. As the received SNR ρ increases,
the user scalings of different models for the sum-optimal
strategy become similar under high Cbuf . This is because the
growth of Eb/N0 is not much sensitive to ρ at low ρ and the
approximate growth rate for the sum-optimal models is ρ

log2 ρ

for high ρ, which causes a significant drop in J/n. However,
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Fig. 2: Scaling of SE vs Eb/N0 for varying T for η = 1 and J = 10, and moderate buffer size, Cbuf = T .
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Fig. 3: (Sum-optimal) Scaling of J/n vs. Eb/N0 for varying ρ and Cbuf = 0.1T , for T = 1, T = 2, and T = 3.

with the conventional MFR, the optimal SE performance of the
sum-rate optimal model cannot be accurately captured when
ρ is high [5].

While retransmissions are inevitable in HARQ-based proto-
cols, retransmission-based access schemes in general degrade
the SE vs Eb/N0 performance and similarly for J/n vs
Eb/N0. For the sum-optimal model, in terms of the sensitivity
of the J/n versus Eb/N0 tradeoff with respect to increasing T ,
we have the ordering as the CC-NOMA model, the IR-OMA
model, the CC-OMA model, and the classical model from
the less sensitive (best) to the most sensitive (worst). For the
TIN-based model, the CC-NOMA and the CC-OMA models
improve the user density by increasing T , and the IR-OMA
and the classical models are not robust to retransmissions.
While the scaling performance improves with T , increasing
T causes diminishing returns in gains. According to [7], the
scalings for the FBL are linear instead of being exponential
(subject to BER constraints). However, unlike the setting in
[7], where the total power Ptot is kept constant, we have a
per user power constraint such that Ptot = Jσ2ρ, which scales
linearly with J under fixed ρ.

From Fig. 4, we observe that the different models we
considered in this paper perform the best at low spectral
efficiency. In other words, increasing ρ decreases the user
density scaling performance for IR-OMA, CC-NOMA, and
CC-OMA. To compensate for the loss of CC-NOMA, even
though better coding signatures (lower η) can be incorporated,
this model still requires a higher minimum SNR per bit versus
the other models with a higher sensitivity to ρ. As T increases
it is possible to achieve a higher number of users per rdof, and
similarly, via increasing Cbuf we can achieve a better scaling

for IR-OMA. At high Cbuf (or high ρ = 10), IR-OMA yields
a better performance over CC-OMA where CC-OMA scales
better due to the combining of transmissions as given by the
SNR per bit in the first step of (20) than IR-OMA with an
SNR per bit given in (24) (versus vice versa for lowered Cbuf

(or smaller ρ ≤ 1)).

V. CONCLUSIONS

We considered HARQ-based random access models for 5G
wireless communication networks, where the receiver jointly
decodes retransmissions via different combining techniques,
namely CC-NOMA, CC-OMA, and IR-OMA. We character-
ized the SE vs SNR per bit, and the user density vs SNR
per bit tradeoffs, and demonstrated via numerical simulations
that retransmissions can improve the scaling behaviors of SE
and the user density. We further showed that the SE of the
sum-optimal strategy improves with NOMA, and the SE via
TIN is optimal at low SNR. In CC-NOMA, the user density
is not affected much by retransmissions, and for IR-OMA the
sensitivity decreases with Cbuf .

Critical future directions include incorporating feedback and
optimizing the number of retransmissions T and the number
of frequency bins B. From a resource-allocation perspective,
handling the issues of identification of user IDs, asynchrony,
and traffic burstiness are of critical importance and left as
future work. It is crucial to support heterogeneous traffic type
requirements on one platform where distinct classes of users
are under different SINR requirements. The generalization of
the classical capacity models to the FBL regime is of primary
interest via incorporating channel gain, fading, or path loss,
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Fig. 4: (TIN) Scaling of J/n vs. Eb/N0 for ρ = .1 and varying Cbuf , Cbuf = 0.1T .

as well as techniques to achieve optimal performance for the
SU and the MU settings.

APPENDIX

Total received signal power (for decoding j) is given as
PS =

(∑T
t=1 |atj |2

)2
. Computing the expected value of the

total noise (by TIN), we obtain

PN = η2
∣∣∣ T∑
t=1

∑
j′∈St,−j

atja
∗
tj′

∣∣∣2 +

T∑
t=1

|atj |2mσ2
t .

Using PS and PN , the total received power is (Tmσ2ρ)2 +
η2(J − T )2(mσ2ρ)2. Rescaling this by the noise power, the

SINR equals Tρ
[
1+η2

(
J
T −1

)2]
. Incorporating (3), the total

capacity RCC,NOMA
sum (in bit/rdof) of the J =

∑T
t=1 Jt user

Gaussian MAC is given as in (13).
The SU decoder sees an effective SINR given as

SINR =
PS
PN

=
(Tρ)2

η2
( T∑
t=1

(Jt − 1)ρ
)2

+ Tρ

, (25)

which follows from dividing both the numerator and the
denominator terms by (mσ2)2, and letting ρtj = ρ, and
defining

∑
j′∈St,−j

1atj′ 6=0 = Jt − 1.
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