
LibAFL: A Framework to Build Modular and Reusable Fuzzers
Andrea Fioraldi

EURECOM
fioraldi@eurecom.fr

Dominik Maier
Google Inc.

dmnk@google.com

Dongjia Zhang
The University of Tokyo

toka@aflplus.plus

Davide Balzarotti
EURECOM

balzarot@eurecom.fr

ABSTRACT

The release of AFL marked an important milestone in the area of
software security testing, revitalizing fuzzing as a major research
topic and spurring a large number of research studies that attempted
to improve and evaluate the different aspects of the fuzzing pipeline.

Many of these studies implemented their techniques by fork-
ing the AFL codebase. While this choice might seem appropriate
at first, combining multiple forks into a single fuzzer requires a
high engineering overhead, which hinders progress in the area
and prevents fair and objective evaluations of different techniques.
The highly fragmented landscape of the fuzzing ecosystem also
prevents researchers from combining orthogonal techniques and
makes it difficult for end users to adopt new prototype solutions.

To tackle this problem, in this paper we propose LibAFL, a frame-
work to build modular and reusable fuzzers. We discuss the different
components generally used in fuzzing and map them to an extensi-
ble framework. LibAFL allows researchers and engineers to extend
the core fuzzer pipeline and share their new components for fur-
ther evaluations. As part of LibAFL, we integrated techniques from
more than 20 previous works and conduct extensive experiments
to show the benefit of our framework to combine and evaluate dif-
ferent approaches. We hope this can help to shed light on current
advancements in fuzzing and provide a solid base for comparative
and extensible research in the future.

1 INTRODUCTION

Fuzzers are tools designed to execute a target application with a
large number of automatically-generated inputs. Their goal is to
discover problematic states, often associated with the presence of
security vulnerabilities. Because of their effectiveness, fuzzers have
become an essential asset in the arsenal of both developers and
security researchers.

Many off-the-shelf fuzzers are available to the public, some of
which are now considered de-facto standards for general-purpose
applications: AFL [76], AFL++ [27],HonggFuzz [69], and LibFuzzer
[47]. These fuzzers are very popular among security testers and,
for example, routinely discover thousands of bugs on OSS-Fuzz [2],
an extensive fuzzing effort for open-source software.

Unfortunately, while off-the-shelf fuzzers are great tools that
are easy to set up and use for non-experts, they often show their
limitations for experienced users. In fact, to test complex applica-
tions or to adapt to different types of targets, such as operating
systems kernels, device drivers, or embedded devices, experts often

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Copyright is held by the authors.

resort to creating new fuzzers, or modifying existing ones to fit
their needs. For instance, academic researchers often implement
algorithmic improvements and new ideas in small prototypes, often
built on top of AFL or AFL++. While this satisfies the need of the
reviewers in terms of reproducibility of the results, it also resulted
in an incredible number of mostly-incompatible forks.

This is due to the fact that all existing fuzzing frameworks are not
designed to be extensible. Thus, researchers are forced to reinvent
the wheel over and over when implementing their prototypes, often
missing out on features that are present in other forks and that
are too complex to port or re-implement. Some projects, notably
AFL++ [27], proposed highly configurable architectures for fuzzing.
However, they are not sufficiently generic (e.g., all inputs are rep-
resented as byte arrays, thus requiring hacks and workarounds to
integrate structured and grammar fuzzing techniques) nor properly
compartmentalized (thus requiring forking the project to adapt it
to new techniques).

This problem is not only an engineering issue, but it also high-
lights the lack of a standard definition of the entities that define a
modern fuzzer. Manes et al. [52] published an academic survey that
covers all fuzz testing efforts until 2019. The authors highlight the
enormous number of public fuzzers and categorize some common
high-level concepts in a generic fuzzing algorithm. While this high-
level categorization is sufficient for a systematization, the entities,
and their relationships are too coarse-grained to develop a fuzzer
framework according to this definition.

The fragmentation of the fuzzing landscape has three critical
consequences on the research in the field.

(1) Orthogonal contributions are difficult to combine.
Several hundred, if not thousands, of different improvements
have been proposed in the last decade to increase the effective-
ness of fuzz testing. However, a new corpus scheduler imple-
mented on top of AFL cannot be easily combined with a new
mutator implemented in a custom fuzzer. As we mentioned
before, this hinders the progress of fuzzing as a whole. Each
individual tool focuses on a few advanced techniques but can-
not take advantage of other orthogonal approaches proposed
by other researchers.

(2) Individual contributions are difficult to assess.
A common drawback of many papers on fuzzing is that the
authors compare their technique (for instance, a scheduler)
which they implemented on a certain fuzzer, with previously-
proposed solutions implemented in different tools. Thus, it is
often difficult to understand whether better results are only due
to the novel algorithm and not the result of other components
of the fuzzer.

mailto:fioraldi@eurecom.fr
mailto:dmnk@google.com
mailto:toka@aflplus.plus
mailto:balzarot@eurecom.fr
https://creativecommons.org/licenses/by/4.0/

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

(3) Different solutions are difficult to compare.
While dozens of different techniques exist for every aspect of
fuzzing, a third-party comparison would require a considerable
re-implementation effort, typically reserved for surveys and
systematization of knowledge papers. As a result, only a selected
amount of solutions have been properly tested and compared
on the same datasets.

We believe that these three issues are essential roadblocks that
significantly slow down the progress of fuzzing, the transition of
new techniques from academia to industry, and the development
of new solutions, due to an extensive duplication of work.

Therefore, we propose LibAFL, a novel fuzzing framework writ-
ten from scratch in Rust. LibAFL consists of a collection of libraries
that can be used to build custom fuzzers by combining components
based on extensible entities. It achieves this goal thanks to several
factors: (a) it is easily extensible; (b) it is based on a categorization
of components of modern fuzzers; (c) it is designed to exploit the
features of Rust, such as easy and fast serialization of objects and
component slotting at compile-time; (d) it already implements a
wide range of fuzzing algorithms, features, and instrumentation
options proposed by recent works in the field.

LibAFL’s building blocks can be used to recreate several mod-
ern fuzzing solutions. Thanks to the extensible design, researchers
can combine blocks and experiment with compositions of benefi-
cial techniques. In this paper, we use a range of building blocks
implemented in LibAFL to combine and test compelling fuzzing
approaches that were never before evaluated, and others that were
never evaluated on top of the same baseline. To the best of our
knowledge, we are the first work to conduct such an extensive re-
implementation (we integrated techniques from 20 previous works)
and evaluation (15 different techniques) by using the same baseline.
Additionally, we evaluate combinations of these techniques and
provide insights into the effectiveness of these combinations.

We also show how LibAFL is a robust base to develop standard
and more exotic fuzzers. In the first category, we build a generic
bit-level fuzzer that uses an optimal combination of known tech-
niques and show how the result outperforms all state-of-the art
generic fuzzers like AFL++, LibFuzzer, and HonggFuzz. We then
re-implemented a differential fuzzer for the Ethereum virtual ma-
chines [50] by using a custom feedback based on the VM state. We
compare this fuzzer with its original implementation, and show
how our version outperforms it in terms of uncovered differences
in the two tested VMs.

1.1 Contributions

In short, in this paper, we propose the following contributions:

• We identify and model common building blocks used by
modern fuzzers;

• We present LibAFL, a novel open-source fuzzing framework
written from scratch in Rust;

• We implement state-of-the-art building blocks and tech-
niques;

• Based on these building blocks, we evaluate 15 techniques
proposed in prior work, as well as a range of novel combina-
tions;

• We present a case study that re-implements a differential
fuzzer using custom feedbacks;

• Our generic fuzzer outperforms all off-the-shelf fuzzers;

2 BACKGROUND

Fuzz Testing, or fuzzing, has a long history in the area of security
testing. Its most naive embodiment, which consisted in looking for
crashes by repeatedly feeding random input data to programs, is
over 30 years old [55]. From this initial idea, fuzzing has evolved in
multiple directions during the past three decades.

These include new techniques to efficiently and effectively ex-
plore the target programs, but also the ability to fuzz new systems
(such as entire operating systems [41, 51, 65] or hypervisors [64]) or
the application of fuzzing beyond its original use in software testing
(e.g, for exploit generation [35] or root cause analysis [11, 66]). In
their survey, Manes et al. [52] define an algorithm that generalize
fuzz testing to accommodate many fuzzers, but their definition
was still tied to the notion of bugs, while recent fuzzers evolved
to cover applications in other domains. Therefore, we believe it is
more appropriate today to think of fuzzing as a family of testing
techniques, which repeatedly provide machine-generated inputs to
a target system with the aim of finding inputs that satisfy certain
objectives.

In the samework, the authors consolidate the commonly-adopted
taxonomy [29] based on the amount of introspection of the tar-
get system required by a fuzzer for each run. The categorization
proposes the following three families:

• Black-box fuzzers do not need any feedback from the target.
In this case, fuzzing is closely related, and maybe even equal,
to traditional Random Testing [34]. Note that the lack of
information from the actual implementation does not imply
the lack of information about parts of the specification. For
instance, black-box fuzzers like Peach [22] require a model
of the input format to generate testcases;

• White-box fuzzers use target-specific, internal information
to inspect the state space of the target systematically. An
example is SAGE [30] that tries to maximize code coverage
by using constraints gathered during the execution;

• Grey-box fuzzers stand in the middle of the two previous
approaches. They collect minimal information to explore the
input space better while keeping the performance overhead
low. Traditionally, the information is collected during the
target execution with lightweight instrumentation like in
AFL [76];

Another common categorization used to describe fuzzer, orthog-
onal to the previous one, is based on how the fuzzer generates the
inputs for each run of the target: (1) Model-based generation uses a
model of the input format to generate testcases from scratch. This
can be a grammar specified by a human (e.g. [38]), a model built
by using learning techniques (e.g. [31]), or a set of generation rules
hardcoded in the fuzzer algorithm (e.g. [74]); (2) Mutation-based
generation uses instead previous testcases stored in a corpus to
derive new inputs. It is often used in gray-box approaches where
the corpus evolves thanks to the information collected from the
target;

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

The two approaches are not mutually exclusive. For instance,
mutation techniques can use a model of the input format like model-
based generation [4, 59]. The difference, in this case, is that the new
testcase is not generated from scratch.

A widely popular embodiment of the gray or white box ap-
proaches is evolutionary fuzzing. It traces the execution of the tar-
get by observing some runtime features and then it evolves the
internal state by using a feedback based on such observations. For
instance, it is common to use the feedback to assess the novelty of
an execution and decide whether the new input should be added to
the corpus for future mutations.

The most common form of feedback is based on code cover-
age [17, 27, 47, 65, 69, 76]. Additionally, different types of feedbacks
are employed to extend beyond simple coverage-guidance, such
as the minimization of the hamming-distance between two values
of a comparison instruction [45, 58] or the novelty search in the
program state’s data [24, 53].

2.1 AFL++

Among the existing solutions, the closest to our work is AFL++,
the community-driven fork of the American Fuzzy Lop fuzzer. It
aggregates a variety of techniques and provides a certain level of ex-
tensibility. Fioraldi et al. [27] re-implemented in AFL++ several tech-
niques that the authors considered interesting, such as MOpt [48]
and AFLFast [14], and performed some comparative experiments.
Moreover, they defined a plugin interface called custom mutators
that can be used to extend AFL++ with custom mutations and test-
case minimization. It also provides various hooks triggered during
the fuzzer lifecycle, for instance, when a testcase gets pulled from
the corpus.

While this provided an initial step in the same direction of
LibAFL, it suffered from intrinsic limitations derived from the de-
sign of AFL. In fact, AFL++ remains a monolithic C codebase for the
majority of the tasks that are not related to writing a mutator and
different components are not separated by any software engineering
criteria. In recent years, in fact, several forks ofAFL++ [24, 49, 68, 72]
have been developed, continuing the AFL’s tradition of incompati-
ble forks implementing orthogonal techniques. Moreover, since the
publication of its academic paper, the AFL++ codebase incorporated
more and more techniques and increased in size and scope, making
it increasing difficulty to maintain the software. To avoid to inherit
these problems, we decided to implement LibAFL from scratch
starting from a complete new design instead of extending AFL++,
even if it would have been a solid base to build upon.

3 ENTITIES IN MODERN FUZZING

To support the design of our framework, we first identified a set of 9
basic entities that are commonly present in most modern fuzzers. In
this section, we present these entities and provide some examples
by using state-of-the-art fuzzers.

Input – Formally, the input of a program, or a system in general,
is the data taken from external sources that affect its behavior. In
our model of an abstract fuzzer, we define Input as the internal
representation of the program input (or a part of it). In the simplest
case, the input of the program is a single-byte array. Fuzzers such

as AFL store and manipulate this byte array directly, delivering the
result to the target upon execution.

However, there are cases in which a byte array is not an ideal
representation of an Input, e.g., when the target expects a sequence
of system calls [70]. In this case, a fuzzer does not internally rep-
resent the Input in the same way that the program consumes it.
Another example is the inputs for grammar fuzzers like NAUTILUS
by Aschermann et. al. [4]. Here, the fuzzer internally stores Inputs
as Abstract Syntax Trees, a data structure that can be easily manip-
ulated while maintaining validity according to the grammar. Since
the target expects a byte array as input, the tree is serialized to
a sequence of bytes just before the execution. Other fuzzers may
also use other input representations, such as sequences of tokens
encoded as integers [63], or the intermediate representation of a
programming language [33].

Corpus – The Corpus is a storage for inputs and their associated
metadata. Different kind of storage affects the capabilities of a
fuzzer, for instance, a corpus that lives entirely in memory makes
the fuzzer faster but can quickly exhaust the available memory
when fuzzing large targets, while a corpus stored on disk allows
the user to inspect the state of the fuzzer but introduce a bottleneck
on disk operations.

Most mainstream fuzzers [14, 47, 76] store the corpus on disk,
but this choice affects the scalability of parallel fuzzing and requires
a standard library to perform the file IO operations.

In our model, a fuzzer requires at least two separate corpora:
one that is used to store interesting testcases (3) that are used as
component of the evolutionary algorithm of the fuzzer, and another
one used to store the solutions, i.e., the testcases that fulfill the
objective of the fuzzer (e.g., program crashes).

Scheduler – The Scheduler is a component tied with the corpus.
It is the way the fuzzer asks for the next testcase to fuzz, typically
by selecting one entry from the corpus. Naive schedulers imple-
ment, for instance, a simple FIFO policy or a random selection. More
complex schedulers may use probabilistic algorithms based on intro-
spection statistics about the fuzzer [12] or apply other schedulers to
a subset of the corpus, as AFL does when calculating the "favored"
minset.

Other examples include schedulers that try to mitigate the ex-
plosion of the corpus caused by too sensitive feedback [72] or to
prioritize testcases with interesting properties [73].

Stage – The Stage is a component defining an action to perform
on a single testcase from the corpus. Usually, the scheduler selects
a testcase and then the fuzzer executes every stage on that given
input. The Stage is a very broad entity and in existing fuzzers, it is
usually the component that invokes one or more times a mutator on
the input (e.g., the random havoc stage in AFL) or an analysis stage
that, for instance, perform taint tracking to gather information in a
white-box fuzzer [17].

Another widely known stage adopted by many fuzzers is the
minimization phase, introduced inAFL, reduces the size of a testcase
obtained from the corpus while maintaining the triggered coverage
points.

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

Observer – The Observer is an entity that provides information
from a single execution of the target. To reason on an execution of
an input, the fuzzer executes it and then looks at the observers. A
snapshot of the observers state after an execution is equivalent to
the execution itself in terms of effects on the fuzzer state. Defining
the observers in this way is particularly useful when a distributed
fuzzer can send the observers state across multiple nodes. This
avoids the need for re-execution with the same input when fuzzing
a very slow target.

An example observer is the coverage map, used by common
coverage-guided fuzzers such as AFL or HonggFuzz. The map is
filled during execution to report the executed edges. This infor-
mation is not preserved across runs and it is an observation of a
dynamic property of the program.

Other fuzzers, such as Ijon [5] or FuzzFactory [58], use differ-
ent forms of observers but always rely on a map to keep track of
additional metrics beyond code coverage.

Executor – The Executor is the component responsible to execute
the target system given an input from the fuzzer. In different fuzzers,
the embodiment of this entity may change a lot. For instance, for
in-memory fuzzers like LibFuzzer an execution is a call to a har-
ness function, while for hypervisor-based fuzzers like Nyx [64] it
requires an entire operating system to re-start from a snapshot at
each run.

In our model, the Executor is the entity that defines not only
how to execute the target, but all the volatile operations that are
related to a single run of the target. So the Executor is, for instance,
responsible for informing the program about the input that the
fuzzer wants to use in the run, e.g., by writing to a memory location
or by passing it as a parameter to the harness function. The Executor
also maintains a set of Observers linked with each execution.

Feedback – The Feedback is an entity that classifies the outcome
of an execution of the program under test as interesting or not. Typ-
ically, this information is used to decide whether the corresponding
input is added to a corpus.

Most of the time, the notion of Feedback is deeply linked to
the Observer, but the two are different concepts. In fact, the Feed-
back usually processes the information reported by one or more
observers to decide if the execution is interesting. While the con-
cept of “interesting” is abstract, it is typically related to a novelty
search (i.e., interesting inputs are those that reach a previously
unseen edge in the control flow graph). In another example [58], an
Observer can be used to report all the sizes of memory allocations
and a maximization Feedback can be used to maximize these values
to spot pathological inputs in terms of memory consumption.

The process that identifies interesting inputs also has a second
important goal in fuzzing: finding the solutions that satisfy specific
objectives, for example, an observable crash in the target program.
This type of feedback, the Objectives, act as an oracle that describes
the expected outcome of the fuzzing campaign, for instance, a set of
crashing testcases with a unique stacktrace like inHonggFuzz or an
input that triggers a crash along a specified path like in AFLGo [13].

Mutator – The Mutator is an entity that takes one or more Inputs
and generates a new derived one. Mutators can be composed of
other mutators and they are generally linked to a specific Input

type. In a traditional fuzzer, mutators are composed of many bit-
level mutations like bit flip or blocks swapping. A mutator can
also be informed about the input format and mutate the internal
representation of the Input, for instance, by swapping nodes in an
Abstract Syntax Tree in case of a grammar fuzzer. Mutators are
usually the part of a fuzzer that changes more often when creating
a custom fuzzer.

Generator – A Generator is a component designed to generate a
new Input from scratch. For instance, a random generator can be
used to generate random inputs. While less popular in feedback-
driven fuzzing, there are notable exceptions that adopt Generators.
For instance, Nautilus [4] uses a grammar-based generator to
create the initial corpus and a sub-tree generator as a mutation of
its grammar mutator.

4 FRAMEWORK ARCHITECTURE

The goal of LibAFL is to provide the basic blocks required to build
a new generation of fuzzers through a modular design based on
reusable components and reliable, fast, and scalable implementa-
tions of state-of-the-art techniques. To achieve this objective, we
decided to bound the framework’s design to the actual program-
ming language that we use, Rust, by exploiting its features from
the design stage. In this section, we present and discuss the design
of LibAFL as a system and its individual components.

4.1 Principles and High-level Design

The LibAFL framework is designed around three key principles:
• Extensibility, to allow the user to swap different implemen-
tations of the entities explained in Sec. 3 in or out, without
touching other parts. This allows the seamless combinations
of orthogonal techniques but also ease the design and devel-
opment of new components;

• Portability, most of the existing fuzzers are OS-specific,
running either under *nix or Microsoft Windows. To avoid
this pitfall, we opted instead to design our core library in a
system-independent way. Moreover, for maximum portabil-
ity, we implemented a subset of LibAFL, including all core
components, without any dependency on any standard li-
brary, thus allowing the users to write fuzzers for bare-metal
targets like embedded systems and kernels;

• Scalability, no design choices must conflict with the ability
to scale fuzzers overmultiple cores and/ormachines. Because
of this, we design an event-based interface that enables and
facilitates the communication between fuzzers;

Aswe already discussed, none of the existing fuzzing frameworks
are completely extensible. Some are portable on different operating
systems, like LibFuzzer [46] but none can compile on systems
without a standard library. Last but not least, scalability is a known
weakness of existing fuzzers. The design ofAFL, and therefore of its
many derivates, is based on disk IO communication and expensive
syscalls such as fork(2) [75]. This causes a terrible performance
when the fuzzer is scaled across multiple cores [23]. Other more
scalable solutions, like HonggFuzz, are still based on syscalls to
control the target and maintain a shared state between all the
parallel threads, leading to lock contentions. On the other hand,

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

…

 State

Corpus

 Fuzzer

 Event Manager

Stages

LibAFL
Core

 Executor

Solutions

FeedbacksFeedbacksFeedback States

Metadata

Fire Events

Message Passing

Process Pending

Stages

 Stages

Scheduler

TCP

TestcasesTestcasesTestcases

FeedbacksFeedbacksFeedbacks

FeedbacksFeedbacksObjectives

ObserversObserversObservers

Mutators Tracers …

Harness

Target

Input

ShMem

Fuzz One

Input Evaluation

Figure 1: LibAFL Core architecture. Links are a representation of a non-comprehensive picture of the interactions.

1 use libafl_sugar :: InMemoryBytesCoverageSugar;

2 use libafl_targets :: libfuzzer_test_one_input;

3
4 InMemoryBytesCoverageSugar :: builder ()

5 .input_dirs(input_dirs)

6 .output_dir(output_dir)

7 .cores(cores)

8 // For multi -node synchronization

9 .broker_port(broker_port)

10 .harness (|buf| {

11 libfuzzer_test_one_input(buf);

12 })

13 .build()

14 .run();

Listing 1: An example frontend with LibAFL Sugar.

LibFuzzer achieves greater scalability as different nodes cannot
communicate while fuzzing, the corpus is merged after a defined
time span, and the fuzzers are restarted.

To create a fuzzing framework following the three aforemen-
tioned objectives, we designed our system around three core li-
braries:

• LibAFL Core is the main library and contains the fuzzing
components and their implementations. A large part of this
library depends only on Rust core+alloc and, thus, can run
without any standard library;

• LibAFL Targets contains the code that lives within the tar-
get program, like the runtime library for coverage tracking;

• LibAFL CC provides the functionalities to write compiler
wrappers for LibAFL, by providing to the user a set of com-
piler extensions useful for instrumentation;

In addition to these three core libraries, LibAFL contains several
Instrumentation Backends that offer APIs to bridge LibAFL to
different execution engines, such as QEMU usermode and Frida.

In our naming convention, all these libraries are part of a toolkit
that is used to create fuzzers called Fuzzer Frontends. Some ready-
to-use frontends are already available in an additional library in
the framework, LibAFL Sugar, that provides a high-level glue API
to quickly set up a frontend in just a few lines of code. We also
provide Python bindings to the Sugar crate for quick prototyping
without recompilation.

For instance, Listing 1 shows a simple fuzzer that bridges a
LibFuzzer-style harness to a fuzzer that uses generic bit-level muta-
tions and executes the target in-process written using the high-level
APIs of LibAFL Sugar.

At the time of writing, the entire LibAFL framework, tests in-
cluded, consists of 53k lines of Rust and 15.4k lines of C/C++.

4.2 The Core Library

Figure 1 shows the architecture of the core library in terms of links
between components. Most components are a one-to-one mapping
with the entities we discussed in Section 3, with the addition of
three additional macro-components:
State, Fuzzer and Events Manager.

Each component is mapped to a Rust generic trait, allowing it to
work in combination with any other orthogonal component. This
configuration of the architecture is the standard architecture for
a frontend proposed in LibAFL, but custom architectures can be
defined too in which. An alternative architecture, already imple-
mented in LibAFL, consists of a pipeline without any executor, in
which there is no traditional fuzzer loop, but the fuzzer is a ser-
vice from which inputs can be requested. This way, LibAFL can be,
for example, embedded in an emulation loop, to use in hooks of
emulators such as Panda [20].

4.2.1 Zero-cost Abstractions. Extensibility comes with the price of
introducing abstractions, which usually has a cost in terms of per-
formance. As speed is an important metric in fuzzing, we devised a
design that allows flexible abstractions without paying a noticeable
cost at runtime.

Since the beginning, driven by micro-benchmarks during the
early stage of development, we avoided traditional object-oriented
patterns in favor of generic traits. This way, we leverage the design
of the Rust programming language to allow the compiler to per-
form powerful optimizations. In LibAFL, each generic trait takes
other related components as generic parameters. Sub-components
are then defined via composition. In this way, we pay at compile
time the cost of combinations of linked-but-independent entities,
such an Executor and different kinds of Inputs. As a second design
pattern, inspired by Haskell, we employ compile-time lists similar
to hlist [56] to specify multiple objects, such as the set of observers
of the set of mutations in a composable mutator. These lists have

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

matching capabilities to retrieve single objects stored in the data
structure. For instance, a feedback can access the observers that are
useful to determine the interestingness of an execution by either
name or type. By exploiting the powerful compile-time facilities
offered by Rust our code is so compiler optimization friendly and,
as anticipated before, it can be aggressively inlined.

4.2.2 The State. The State is where all the non-volatile data resides.
Everything that is part of the evolutionary algorithm’s data must
be included in the State, as well as the number of executions, the
pseudo-random number generator state and the corpora (both the
main and the solutions corpus).

As some types of feedbacks also need to maintain a state, for
instance, the coverage observed so far in coverage-guided fuzzing,
we introduce the FeedbackState component that is linked to both
the state and the feedbacks. The instances of the feedback states
are contained in State and are initially generated at the start of the
fuzzing process.

The main purpose of having a place for the data of the fuzzer
is to exploit the serialization facilities of Rust. Serializing and de-
serializing a state allows any LibAFL-based fuzzer to stop and
later restart from the exact same internal state. For in-process
fuzzing, this novel approach allows LibAFL to recover instances
from crashes by re-loading a serialized state in the crash handler,
without the need to re-execute the entire corpus as previous solu-
tions do.

4.2.3 The Fuzzer. The Fuzzer is a recipient for the operations that
define what the fuzzer can do. It contains the Feedbacks, the Ob-
jectives, and the Scheduler, all independent operations that may
alter the fuzzer state. These stages are separated from the fuzzer
to respect the borrowing rules of Rust 1, as they may invoke some
operations that alter Fuzzer and State at the same time.

The Fuzzer, in addition, provides the definition of how a sin-
gle testcase should be processed and how to evaluate a new input.
By default, the standard implementation of it, which consists of
feedback-driven fuzzing, defines FuzzOne, the operation responsi-
ble to process a single testcase, as the invocation of the scheduler
to get the testcase to fuzz and the invocation of every stage on
the testcase. InputEvaluation, the operation that evaluates if an
input must be added to the corpus, is by default the execution of
the target program and the decision if it is interesting or a solution
using the feedbacks.

Custom architectures that implement their own Fuzzer and State
entities, can be used to recreate concepts likeVuzzer [62], which de-
couples input generation from the immediate evaluation, in LibAFL.

4.2.4 The Events Manager. The Events Manager is an interface for
generating and processing events, which can be used to implement
multi-node synchronization in a parallel fuzzer or simply for the
purpose of logging. The Events Manager is designed to maximize
scalability. In fact, if we assume a communication channel that
scales linearly (such as shared memory message passing [67]) the
Manager does not introduce any further bottleneck as each fuzzer
works on completely separated data and the process of pending
events is deferred to specific reconciliation points in the fuzzer loop,
triggered before the fuzzer requests a new testcase to the scheduler.
1https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

Our framework includes a rich set of events. For instance, a
component can be notified when one fuzzer adds a new testcase to
its corpus, receiving an event containing a serialized version of the
input and the set of observers that were considered interesting by
the feedback.

4.2.5 The Metadata System. Fuzzing algorithms often need to rea-
son about the information associated with a given testcase or the
overall state of the fuzzer. Therefore, LibAFL must provide a way
to extend the data in the testcases of the corpus and the data main-
tained in the state. A naive but effective solution would be to re-
define new types by composition, but in this case, the developer
would need to be aware of each piece of metadata required by all
the employed algorithms. Thus, in order to provide this capabil-
ity while maintaining simplicity and performance, we designed a
dedicated Metadata System for the State and Testcase components.
In particular, in LibAFL any struct that implements the SerdeAny
trait, a trait that we created to allow the serialization of trait objects
2 without the requirement of a standard library, can be used as
metadata. This trait requires serialization capabilities and static
lifetime 3, as the instances must be able to be converted to trait
objects.

LibAFL provides then serializable maps that can store any in-
stance that can be cast to a SerdeAny trait object. Both the Testcase
and State holds a map of this type as an extensible container for
metadata. In this way, different but related components can cooper-
ate by operating on the same metadata, while completely ignoring
what the other components do with their own metadata. How-
ever, this is the only pattern in LibAFL that introduces a small
runtime overhead, due to the map lookup (currently implemented
as a hashmap).

4.2.6 Composable Feedbacks. A fuzzer may require combining
multiple feedbacks to evaluate how “interesting” was a given input
or to support different objectives. In LibAFL, to avoid the need to
create new aggregated feedbacks from scratch, feedbacks can be
composed by using logical operators. For instance, a fuzzer may not
want to save every crashing input but instead perform some sort of
crash de-duplication. In LibAFL, this can be achieved for example by
using a feedback that considers crashing inputs as interesting and
one that considers an input interesting when it triggers a new stack
trace never observed before. In this case, a crash de-duplication
objective can be achieved by combining the two aforementioned
feedbacks with a logical AND.

4.2.7 The Monitor. The last component in a LibAFL-based fuzzer
is the Monitor. It is the component that maintains the statistics
collected from the triggered events and displays them to the user.
While this component is not required for a working fuzzer, the
lack of human introspection reduces the effectiveness of a fuzzing
campaign. Monitors allow the developers to report and display
custom stats and to implement various reporting interfaces, such
as printing a status screen in the terminal, or forwarding the data
to a Grafana web interface with statsd 4.

2https://doc.rust-lang.org/book/ch17-02-trait-objects.html
3https://doc.rust-lang.org/rust-by-example/scope/lifetime/static_lifetime.html
4https://github.com/statsd/statsd

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch17-02-trait-objects.html
https://doc.rust-lang.org/rust-by-example/scope/lifetime/static_lifetime.html
https://github.com/statsd/statsd

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

4.3 Instrumentation Backends

LibAFL can be easily plugged into any instrumentation backend,
like a binary translator or a simple compiler instrumentation pass.
By default, we provides additional libraries that tie LibAFL with
some popular instrumentation backends: LLVM [42], SanitizerCov-
erage [44], QEMU usermode [9] and Frida [1].

The runtime in LibAFL Targets can be linked to any Sanitizer-
Coverage target, adding coverage and comparisons tracking to the
fuzzer, using a compiler flag. The SanCov support allows users
to create frontends that are compatible with non-C/C++ SanCov-
enabled target, such as Atheris [40] for Python and cargo-fuzz [8]
for Rust.

LibAFL CC provides a set of LLVM passes to extend Clang
and other LLVM-based compilers to track edge coverage, context-
sensitive and K-context-sensitive [7] edge coverage, N-gram cover-
age [71], coverage accounting [73], comparisons with CmpLog [6,
27] and dictionary tokenswith autotokens, and an enhanced version
of AFL++’s dict2file pass that extracts the tokens from interesting
functions such as strcmp.

LibAFL QEMU bridges QEMU usermode, and full system in the
near future, to Rust with a novel emulator API with hooking capa-
bilities to have programmatic control over the target’s execution.
Around this interface to QEMU, the library exposes structures like
executors and helpers to install default hooks for common fuzzing
tasks, such as edge coverage tracking, guest snapshot-restore, and
binary-only ASan [26].

LibAFL Frida offers similar capabilities to the QEMU bridge, but
with the features of a DBI, without a clear host-guest separation.
It includes a binary-only ASan and, unlike QEMU usermode, it
can work on various operating systems other than Linux such as
Windows, macOS, and Android.

Instrumentation capabilities in LibAFL are also offered for con-
colic execution, through LibAFL Concolic and its Rust bridges to
SymCC [60] and SymQEMU [61]. Our API allows a user to write
custom constraint collection filtering in Rust. At target runtime,
the constraints are then reported back to a LibAFL-based fuzzer in
an easy-to-manipulate format. These constraints can then be used
in a mutator, for instance, to generate inputs invoking a solver, or
for fuzzing, similar to what Borzacchiello et al. proposed [15].

In addition to these stable backends, LibAFL already has partial
support for TinyInst [28] to instrument binaries on Windows and
macOS, and for Nyx [64] for hypervisor-level snapshot fuzzing.

5 APPLICATIONS AND EXPERIMENTS

In this section, we discuss some of the techniques implemented in
LibAFL and their relation with the entities presented in the previous
sections. While LibAFL already has many implemented techniques,
in the first part of this section, we focus on four popular problems in
fuzzing that are the focus of many published works in the literature:
roadblocks bypassing (e.g., [6, 17, 57, 62]), structure-aware fuzzing
(e.g., [4, 10, 25, 59]), corpus scheduling (e.g., [18, 21, 72, 73]) and
energy assignment (e.g., [12–14, 43]).

A non comprehensive list of the techniques integrated in LibAFL
at the time of writing is listed in Table 1, alongside the information
if the technique require additional implementations of components

Table 1: List of techniques integrated in LibAFL, the first
part only contains the techniques evaluated in Section 5.

Technique
New

components

Additional

instrumentation

RedQueen [6] ✓ ✓

Auto-tokens [27] ✓

Value-profile [47, 58] ✓

Block coverage accounting [73] ✓ ✓

Function coverage accounting [73] ✓ ✓

Loops coverage accounting [73] ✓ ✓

Corpus culling scheduler [76] ✓

Weigthed scheduler [27] ✓

FAST power schedule [14, 27] ✓

COE power schedule [14, 27] ✓

EXPLORE power schedule [14, 27] ✓

MOpt [48] ✓

Nautilus [4] ✓

Grimoire [10] ✓

Gramatron [68] ✓

Token-level [63] ✓

NeoDiff [50] ✓

LIN power schedule [14] ✓

QUAD power schedule [14] ✓

EXPLOIT power schedule [14] ✓

SymCC [60] ✓ ✓

SymQEMU [61] ✓ ✓

Hitcounts [76] ✓ ✓

Ngram coverage [71] ✓

Context-sensitive coverage [17] ✓

QASan [26] ✓

Atheris (compatibility) [40] ✓

cargo-fuzz (compatibility) [8] ✓

in the fuzzer side or additional instrumentation code in the target
side.

After discussing how these techniques are implemented, we
evaluate them in three different sets of experiments:

(1) We measure the performance in terms of code coverage and
bug detection of several approaches implemented and ready-
to-use in LibAFL;

(2) We show howwe can combine orthogonal approaches imple-
mented in our framework to build new and never evaluated
before fuzzers and measure their performance;

(3) Lastly, to show the efficiency of our framework in a tra-
ditional context, we compare and evaluate a new generic
bit-level fuzzer based on LibAFL using the previously pre-
sented techniques against other state-of-the-art fuzzers like
AFL++ and HonggFuzz on FuzzBench [54];

We ran the first two sets of experiments on a x86_64 machine
equipped with an Intel® Xeon® Platinum 8260 CPU with a clock of
2.40 GHz. The dataset is a subset of the FuzzBench suite, selected
to include programs with diverse features. We run each session for
24 hours and repeated each experiment five times to mitigate the
effect of randomness in fuzzing.

For the comparison with other fuzzers, we run the experiments
on the full FuzzBench suite on the service offered by Google. Each
run was 23 hours long and repeated 20 times. The benchmarks
suite provides the initial corpus for every benchmark and we used

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

Table 2: Uncovered code coverage over time (24h) of the

roadblock bypassing experiment.

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

6000

6500

7000

7500

8000

8500

ed
ge

 c
ov

er
ag

e

bloaty_fuzz_target

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

ed
ge

 c
ov

er
ag

e

lcms-2017-03-21

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

4000

ed
ge

 c
ov

er
ag

e

libpcap_fuzz_both

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
7500

8000

8500

9000

9500

10000

10500

ed
ge

 c
ov

er
ag

e

mbedtls_fuzz_dtlsclient

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

20000

22000

24000

26000

28000

30000

32000

ed
ge

 c
ov

er
ag

e

sqlite3_ossfuzz

Legend

cmplog

plain

value_profile

value_profile_cmplog

the default setting. The overall ranking that we discuss is based
on the average normalized score computed by FuzzBench, which
represents the percentage of the highest reached median code or
bugs coverage on a given benchmark.

Finally, in the last part of the section, we present a case study
about how easy, we can implement with LibAFL a fuzzer that is
different from the traditional setups like the ones shown in the
first part, a differential fuzzer that can spot logic bugs in Ethereum
VMs with a different kind of feedback based on the state of the VM
instead of code coverage.

In the end, we discuss other implemented approaches and their
relations without providing an evaluation for the sake of time and
brevity.

5.1 Bypassing Roadblocks

An important field of research in fuzz testing is the development
of new techniques to increase code coverage by bypassing hard-
to-solve constraints. For instance, multi-byte comparisons pose a
severe problem for fuzzers that employ a generic bit-level mutator,
since random generic mutations cannot bypass these comparisons
as the solution space is huge and blind guessing impractical. LibAFL
provides several ready-to-use techniques to implement fuzzers that
can overcome these roadblocks.

The first, in chronological order of appearance in the literature, is
the value-profile [45] proposed by LibFuzzer in 2016. This technique
tries to solve comparison instructions by maximizing the number
of matching bits between the two operands of the instruction. In

LibAFL, this is implemented with a map observer and a feedback
that maximizes the entries of a map and considers an input as
interesting when at least one new max is discovered. This type of
feedback, MaxMapFeedback, is builtin into our framework and can
be easily combined in OR with the basic edge coverage.

The second technique provided by LibAFL is cmplog from AFL++.
This solution is based on the approach adopted by RedQueen [6]
andWeizz [25], and can bypass comparisons by finding and replac-
ing input-to-state values. It works by instrumenting the comparison
instructions and any function with two pointers as arguments, and
logging the related values in a map at runtime. This logging opera-
tion is done only once for each testcase in the corpus and in our
framework this is implemented with a second executor with one
observer that handles the cmplog map. The executor is invoked
in a tracing stage at the beginning of the pipeline and the logged
values are stored as metadata. Later on, a custom mutator matches
the pattern in the input and replaces them with the other operand
of the comparison in a specific mutator.

The third technique, autotokens, was also inspired by AFL++, and
can only be used by instrumenting the target with an LTO pass. In
LibAFL CC, this instrumentation is available for regular compila-
tion, as well. This pass extracts the tokens from the comparison
instructions and the functions with immediate values, encoding
them in a section of the binary. A LibAFL-based fuzzer can then
retrieve the tokens, add them to the dictionary in the State’s meta-
data, and use the tokens in the mutator without any overhead. For
this experiment, we consider autotokens as the baseline. In fact,
since it does not introduce any overhead, there is no reason to not
use it in a fuzzer.

Cmplog and value-profile, on the other hand, require additional
instrumentation and value-profile can bloat the corpus with more
input as it increases the sensitivity [71] of the fuzzer. Thus, we
now evaluate four different options. These include plain (the base-
line with autotokens), value_profile, and cmplog, as well as a
new value_profile_cmplog which combines both of the afore-
mentioned techniques. This combination was never evaluated in
previous studies and shows how the composability of our solution
allows experimenting with different combinations of components
and simplifies the development of complex fuzzers.

Table 2 reports the coverage growth graphs over 5 benchmarks
from FuzzBench. Overall, cmplog is the best performer (95.94),
closely followed by value_profile_cmplog (95.03), and plain
(94.65). Instead, value_profile performed considerably worse
(90.13). This is interesting, as it suggests that autotokens alone
is able to solve many roadblocks without additional overhead, al-
lowing plain to shine on libpcap which is a benchmark with many
input-to-state comparisons.

This confirms that most roadblocks are input-to-state and the
solving capabilities of value_profile are not an adequate reward
for the additional sensitivity it introduces (due to the possible inter-
nal wastage of the corpus by too many similar testcases). We think
that the combination of the two techniques, however, can have
interesting target-specific applications that can be investigated in
the future.

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

Table 3: Uncovered bugs after 24h of the structure-aware

fuzzing experiment.

C A B D

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

mruby-2018-05-23

A D C B

0

1

2

3

4

5

6

php_php-fuzz-execute

C A D B

0

2

4

6

8

quickjs_eval-2020-01-05

Legend

A: gramatron
B: grimoire
C: nautilus
D: token_level

5.2 Structure-aware Fuzzing

While generic mutators can effectively stress parsers by generating
invalid inputs, it is also important to fuzz deeper paths beyond the
parsing routines to spot bugs in these code regions. A common
solution to this problem is to make the fuzzer aware of the input
format. While generating testcases from a specification is one of the
oldest embodiments of fuzz testing, recent works in the literature
have explored the combination of modern feedback-based fuzzing
with a mutator that is structure-aware [4, 32, 59]. Beyond this,
other approaches [10, 25, 63] proposed to approximate structure-
aware fuzzing with learning heuristics without requiring any user-
provided specification, thus working on targets without a known
input format and reducing the amount of human work.

LibAFL provides several techniques to deal with structured in-
puts, taking advantage of the flexibility of all the other components
that are agnostic to the input type. Nautilus [4] is a grammar-
based coverage-guided fuzzer that evolves a corpus of syntax trees
with mutations like subtree generation and replacement from an-
other input in the corpus. In our framework, we implemented an
input type for Nautilus, a generator that can create testcases from
scratch, and a set of mutators that make use of the generator to
create subtrees. All the other entities remain untouched and im-
mediately compatible with the grammar fuzzer. For instance, the
ScheduledMutator (the trait for mutators that can schedule other
mutators as mutations), is employed seamlessly with a maximum of
8 stacked mutations. Another technique available in our framework
is a re-implementation ofGramatron [68], a grammar-based fuzzer
that employs a grammar-to-automata conversion to implement fast
mutators. In LibAFL the grammar preprocessing utility is provided
as a tool and the associated structures are specular to the ones used
by Nautilus, with a different underlying implementation.

As an example of approaches that perform grammar learning,
LibAFL implements Grimoire [10], a fuzzer that uses the portion
of inputs that induced the novelty in coverage as tokens to build
generalized “tree-like” inputs and perform grammar-like mutations.

Table 4: Uncovered bugs after 24h of the Nautilus +MOpt
fuzzing experiment.

B A

6

8

10

12

14

mruby-2018-05-23

A B

1.0

1.5

2.0

2.5

3.0

3.5

4.0

php_php-fuzz-execute

A B

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

quickjs_eval-2020-01-05

It also employs token-level fuzzing [63], an approach based on token
extraction with a lexer. While the original solution was specific to
JavaScript, our implementation is generic and can be applied to any
programming language. Classic bit level mutations are then applied
to encoded inputs and that is decoded before the target execution.

To evaluate these three approaches we decided to use the number
of uncovered bugs instead of code coverage. In fact, the effectiveness
of this type of fuzzer is less dependent on code coverage, especially
when compared to variants that generate invalid inputs and inflate
the coverage by exploring error paths.

In this experiment, as both Grimoire and token-level require
some initial seeds, we used Nautilus to generate 4096 initial inputs
for these two fuzzers to avoid a bias due to the quality of the seed
corpora [36] provided by FuzzBench. Table 3 shows the number
of bugs found by each variant over 3 popular compilers. Grammar-
aware approaches are still superior, with a huge boost for Nautilus
on 2 benchmarks over 3, but the performance of the token-level
approach is surprisingly similar to Nautilus on PHP, given that
they start from similar seed inputs.

Given the promising results of this experiment, we decided to in-
vestigate whether we can further improve the best performer, Nau-
tilus, by combining it with other orthogonal techniques provided
by LibAFL. For instance, we combine it with theMOpt mutation
scheduler [48], to create a new and never evaluated variant. MOpt
has been used to date only to schedule bit-level mutations by assign-
ing probabilities to mutations based on the observed effectiveness
during a learning phase by using a Particle Swarm Optimization
algorithm. We repeated the experiments and compared this new
variant against the 3 grammar benchmarks, running the fuzzer 5
times for 24 hours. The results are reported in Table 4 that shows
how Nautilus () perform well when coupled withMOpt ()
on mruby, but worst on php. Overall, this confirm the highly target-
dependent nature of MOpt that was observed [27] for bit-level
fuzzing.

5.3 Corpus Scheduling

The choice of the next testcase to use from the corpus is the focus
of many different studies. The simplest solutions rely either on
random selection or on a FIFO queue. LibAFL provides both, along
with additional schedulers inspired by other state-of-the-art fuzzers.

The first is taken from AFL, which in every queue cycle selects
a subset of “favored” seeds from the corpus. The seeds are chosen
based on execution speed and input length while preserving the
maximum coverage. In LibAFL, we implemented a generic version
of this approach called MinimizerScheduler, which computes the
minset based on the entries of a given map feedback but with

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

Table 5: Uncovered code coverage over time (24h) of the

corpus scheduling experiment.

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

6000

6500

7000

7500

bloaty_fuzz_target

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
1000

1250

1500

1750

2000

2250

2500

2750

3000
lcms-2017-03-21

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

4000

libpcap_fuzz_both

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

7600

7800

8000

8200

mbedtls_fuzz_dtlsclient

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
20000

22000

24000

26000

28000

30000

32000

sqlite3_ossfuzz

Legend

accounting

minimizer

rand

weighted

customizable weights. For simplicity, in the following experiment,
we use the traditional weighting policy used by AFL.

The second scheduler uses a recent improvement proposed in
AFL++ based on probabilistic sampling. The idea is to map each test-
case in the corpus to a probability and a more “promising” neighbor-
ing testcase in terms of a computed score. The score is computed by
using various metrics, including execution time and coverage map
size, and it is used to calculate the probability too. For the selection
process, the scheduler chooses a random testcase from the corpus,
and a random number between 0 and 1. If this number is less than
the probability associated with the testcase, this testcase is selected,
otherwise, the more promising neighbor is picked.

The third scheduler is taken from TortoiseFuzz [73] and pri-
oritizes inputs by using three security impact metrics: memory
operations with both block and function granularity, and loop back
edges counting. The tracking of these metrics requires a custom
instrumentation, implemented in LibAFL CC with LLVM and a new
associated observer. The scheduler prioritizes inputs with higher
scores and, breaking ties based on input length and execution time.

Table 5 shows the results of four fuzzers based on the aforemen-
tioned schedulers: accouting is the fuzzer using the TortoiseFuzz
instrumentation and a scheduler with function-level granularity,
minimizer is using theAFL’s algorithm, rand the random selection
baseline, and weighted is using the probabilistic scheduler from
AFL++.

In terms of average normalized score of the uncovered coverage,
weighted achieves the best results (with a score of 98.91), closely

Table 6: Uncovered code coverage over time (24h) of the

energy assignment experiment.

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

6000

6500

7000

7500

8000

bloaty_fuzz_target

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m
1000

1250

1500

1750

2000

2250

2500

2750

lcms-2017-03-21

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

1500

2000

2500

3000

3500

4000

libpcap_fuzz_both

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

7500

8000

8500

9000

9500

10000

10500

mbedtls_fuzz_dtlsclient

15m 4h:15m 8h:15m 12h:15m 16h:15m 20h:15m

20000

22000

24000

26000

28000

30000

32000

34000

sqlite3_ossfuzz

Legend

coe

explore

fast

plain

followed by minimizer (98.71), accounting (98.03), and rand in
last position (97.50). The small difference among all solutions is
interesting and shows that, despite the huge attention given to this
problem in the literature, a simple random approach still achieves
decent results and it is perfectly suitable for real-world fuzzing cam-
paigns on fast targets. We also expected accouting to outperform
minimizer, which instead was not the case. However, unlike in
the original evaluation carried out in the TortoiseFuzz paper by
using AFL, LibAFL achieves much higher throughput by executing
the target in-process, thus reducing the difference and impact of
these scheduling techniques. While on fast targets the difference is
minimal, we believe that the scheduling problem is crucial on slow
targets, where deciding which testcase to fuzz beforehand can have
a large impact on the fuzzing campaign.

5.4 Energy Assignment

Energy assignment tries to answer the question of how many times
a single input in the corpus needs to be mutated to create new
testcases. The general problem, also known as power scheduling
problem, was introduced in the literature by Böhme et al. [14] in
2016.

The most naive solution is to use a constant value, while the
most commonly used simple approach [47, 69] assigns to each seed
a random value in a given interval. LibAFL also provides this simple
algorithm, named plain, with a range between 1 and 128 when
using the default mutational stage.

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

While many solutions tune this specific parameter, often for
domain-specific fuzzers [13, 59], the seminal work of AFLFast
remains the most complete coverage of this problem for generic
fuzzing. AFLFast proposed six different algorithms: exploit, explore,
coe,fast, lin and quad. In detail, exploit assigns energy proportional
to some metrics like execution time of the input, coverage density,
and creation time of the testcase. Explore assigns low energy, divid-
ing the energy of exploit by a constant.Coe is an exponential scheme
that assigns 0 as energy to inputs that trigger high-frequency edges
until they become low-frequency. Fast is an extension of coe, in
which instead of assigning 0 the scheme assigns energy inversely
proportional to the amount of visited high-frequency edges. Lin
assigns energy linearly w.r.t the times the testcase has been chosen
to be fuzzed, while quad is quadratic.

In LibAFL, we designed an interface for power scheduling based
on metadata, on top of this, we implemented the six aforemen-
tioned algorithms. Our implementation is, however, based on an
optimized version of the algorithms integrated into AFL++, which
was developed years after the AFLFast paper and that was never
evaluated in the literature. Among the six, the most effective5 are
explore, the default in AFL, and coe and fast, the default in AFL++.
Therefore, we will focus our tests on these three algorithms and
compare them with a baseline (never evaluated before) based on
the plain algorithm. Table 6 shows the results in terms of code
coverage.

Overall, considering the average normalized score across all
benchmarks, explore is the best performer (99.72), with fast fol-
lowing (99.43) and then plain (98.12) and coe (97.08). This results
confirm the trend observed in the AFL++ version of the power sched-
ules, with fast and explore as top performer, with fast as the now
default schedule in AFL++.

The LibAFL implementations emphasize once again the same
observations we did for the corpus scheduling problem. Fast fuzzers
(on fast targets) reduce the benefit that can be gained by using more
complex scheduling as less useful executions have a limited effect
on the throughput. The score of coe, which performs worse than
the random baseline, can be considered target-specific. In fact, while
the algorithm suffered on some targets (particularly on the bloaty
benchmark), it was the best performer on others (e.g., on a few runs
of mbedtls).

5.5 A Generic Bit-level Fuzzer

While the main goal of LibAFL is to be a Swiss-army knife to build
custom fuzzers, we also strive to provide good default implementa-
tions to use for out-of-the-box generic bit-level fuzzing.

In this section, we present a frontend for LibAFL to fuzz Lib-
Fuzzer harnesses with a generic mutator. We evaluate this fuzzer
against the state-of-the-art fuzzers used in Google OSS-Fuzz to fuzz
thousands of open source projects every day, AFL++, HonggFuzz,
and LibFuzzer, with the Entropic [12] option enabled for better
performance.

Our fuzzer, like LibFuzzer and any other fuzzer used in the
previous experiments, uses an in-process executor to run the tar-
get harness, while AFL++ and HonggFuzz control the target with

5https://github.com/google/fuzzbench/issues/249#issuecomment-700470906

forms of IPC (like pipes). Our fuzzer also employs some of the im-
provements we covered in the previous experiments: cmplog, the
weighted corpus scheduler, the explore energy assignment scheme,
and the MOpt mutator.

For this particular experiment, we submitted a request to the
FuzzBench service 6, to execute the four fuzzers on 22 different
benchmarks and evaluate the reached code coverage. Each fuzzer
was scheduled for 23h and every single experiment was repeated 20
times to mitigate the randomness. The results for each benchmark
are reported in Table 7. The overall result, based on the average
normalized score of the coverage uncovered across all the targets, is
that LibAFL clearly outperforms all the other fuzzers with a score of
98.61, followed by HonggFuzz (96.65), AFL++ (96.32) and Entropic
(94.22). This result is evenmore relevant since the other fuzzers were
gradually improved over time [54] based on the outcome of several
FuzzBench runs, while LibAFL has been developed independently
from this benchmarking suite.

By inspecting the results in isolation, we can see that LibAFL
shines on 3 benchmarks, harbfuzz, openthread and sqlite3. No-
tably, it is the only fuzzer that can reach the coverage breakthrough
by unlocking the fuzzer from saturation in a few runs on mbedtls
and consistently on openthread.

On the other hand, our fuzzer clearly underperforms AFL++ and
HonggFuzz on libpng, resulting in an almost equal performance
with Entropic. The missing coverage of these two fuzzers can be
explained with the executionmodel that they use, in-process, versus
the out-of-process executor that the other two uses. The latter is
slower but more reliable in handling timeouts. The strength of our
approach is that limitations like this one can be easily overcome by
changing a few lines of code in the frontend, in this particular case
to move from InProcessExecutor to ForkserverExecutor.

Overall, these results show that LibAFL is a mature framework
capable to be the backbone of a modern generic fuzzer that can com-
pete with state-of-the-art solutions. We foresee the development
of a new version of highly customizable but with good defaults
generic implementations, fuzzers (like AFL++) based on LibAFL.

5.6 Differential Fuzzing

In the previous sections, we presented variants based on coverage-
guided fuzzing. However, LibAFL is not limited to code coverage
and to its derivates (like context and ngrams [71]), but can also
work with other types of feedback. As an example, in this section,
we discuss the development of a frontend, inspired by NeoDiff [50],
for differential fuzzing of two Ethereum virtual machines.

In short, NeoDiff, originally written in Python, compares the
outcome of the executions of two VMs providedwith the same input.
To do so, it uses a state hash, a hash of the registers values, memory,
and a probabilistic sampling of the stack at each instruction site of
the executed trace. As feedback to evolve its corpus, it uses instead
a type hash, the hash of the opcodes and the types of the first two
items on the stack for each instruction. Any input that generates a
trace with a new type hash is added to the corpus.

In LibAFL, NeoDiff can be implemented by taking advantage
of the differential executor component, a structure that acts as a

6The complete details of the experiment are available at https://www.fuzzbench.com/
reports/experimental/2022-04-11-libafl/index.html

https://github.com/google/fuzzbench/issues/249#issuecomment-700470906
https://www.fuzzbench.com/reports/experimental/2022-04-11-libafl/index.html
https://www.fuzzbench.com/reports/experimental/2022-04-11-libafl/index.html

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

Table 7: Uncovered code coverage over time (23h) of the generic bit-level fuzzer experiment.

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

5000

5500

6000

6500

7000

7500

8000

bloaty_fuzz_target

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
14500

15000

15500

16000

16500

17000

17500

18000

curl_curl_fuzzer_http

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

16000

18000

20000

22000

24000

26000

28000

freetype2-2017

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

7750

8000

8250

8500

8750

9000

9250

harfbuzz-1.3.2

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

635

636

637

638

639

640

641

jsoncpp_jsoncpp_fuzzer

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

1500

2000

2500

3000

3500

lcms-2017-03-21

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

3100

3200

3300

3400

3500

3600

3700

3800

libjpeg-turbo-07-2017

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
2500

2750

3000

3250

3500

3750

4000

4250

4500

libpcap_fuzz_both

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

2000

2020

2040

2060

2080

2100

2120

2140

2160
libpng-1.2.56

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

9500

10000

10500

11000

11500

12000

12500

13000

libxml2-v2.9.2

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

15500

16000

16500

17000

17500

18000

18500

19000

libxslt_xpath

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

7600

7800

8000

8200

8400

8600

8800

9000

9200

mbedtls_fuzz_dtlsclient

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

13680

13700

13720

13740

13760

13780

openssl_x509

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
5000

6000

7000

8000

9000

10000

openthread-2019-12-23

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

41500

42000

42500

43000

43500

44000
php_php-fuzz-parser

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

6000

6500

7000

7500

8000
proj4-2017-08-14

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

3400

3425

3450

3475

3500

3525

3550

re2-2014-12-09

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

22000

24000

26000

28000

30000

32000

34000

36000
sqlite3_ossfuzz

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

590

600

610

620

630

640

systemd_fuzz-link-parser

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

1850

1900

1950

2000

2050

2100

2150

vorbis-2017-12-11

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m
1650

1700

1750

1800

1850

1900

1950
woff2-2016-05-06

15m 4h:5m 7h:55m 11h:45m 15h:35m 19h:25m

920

930

940

950

960

970

980

zlib_zlib_uncompress_fuzzer

Legend

AFL++

entropic

honggfuzz

libafl generic

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

00:00 02:00 04:00 06:00 08:00 10:00 12:00
0

20

40

60

80

100

Figure 2: Uncovered diffing inputs (unique type hashes) for

the original NeoDiff () and the LibAFL version () over

12h.

proxy to two underlying executors. The type of the inner executors
is CommandExecutor, a simple kind of executor that spawns a new
process given a command line, and its observers are linked to the
stdout of such commands, as the Ethereum VMs print their traces in
JSON after executing the input bytecode. These observers are pro-
cessed by a custom feedback, the TypeHashFeedback that decodes
the trace, computes the type hash, and compares it to the other
hashes observed so far in the linked feedback state. A differential
feedback, the feedback responsible to compare two observers, is
used as objective. The differential feedback uses the state hash to
compare the observers linked to the two executors and, if different,
considers the input as a solution only if having a novel typehash
for de-duplication.

Overall, re-implementing NeoDiff from scratch in LibAFL took
2 working days person and consists of 900 lines of Rust code. We
also decided to compare it against the original implementation
of NeoDiff, by using the same metric adopted in the original pa-
per, i.e., the number of diffing inputs with unique typehash. We
run both fuzzers for 12 hours testing the same go-ethereum and
openethereum versions tested in the original paper. In Figure 2
we report the findings over time of both fuzzers, showing that our
implementation clearly outperforms the original in this metric. We
believe that the bit-level mutators built-in in LibAFL play a major
contribution in this experiment.

In terms of unique diffing instructions, the original paper reports
that 6 instructions are the causes of the found differences. During
our experiment, we reproduced the NeoDiff results finding only 5
instructions over 12h with NeoDiff and 15 instructions with our
implementation.

The diffing opcodes in details are (in hex): 3, 31, 38, 3b, 3c, 3f,
44, 45, 46, 52, 5a, f1, f2, f4, fa. The opcodes found by both the
original and our NeoDiff implementation are in bold, the others
were discovered only by the LibAFL-based variant.

Our findings are so a superset of the 6 NeoDiff instructions,
showing that LibAFL is outperforming the python implementation
by a huge margin.

5.7 Third-Party Applications

During its development, LibAFL had already been adopted to imple-
ment several fuzzing frontends by a number of new users, who had
no previous experience with our framework. For instance, it has
been used to create a symbolic-model-guided fuzzer, tlspuffin [3]
that employs a concrete semantic to execute TLS symbolic traces,

thus proposing a new approach that mixes fuzzing and model test-
ing. Thanks to this combination, tlspuffin can reach critical pro-
tocol states that are impossible to find with classic coverage-guided
fuzzing.

A second third-party application of LibAFL is a snapshot fuzzer
based on KVM, Tartiflette [19], which provides a new execu-
tor to run a Linux ELF as a VM with system calls emulation and
instrumentation facilities for coverage tracking and snapshotting.

Finally, another LibAFL-based project worth mentioning is ba-
nanafzz [37], a fuzzer to detect race conditions with a novel design
based on loop-per-thread calls generations.

6 LIMITATIONS AND FUTUREWORK

While extensible by design, the current implementation of LibAFL
still lacks some components that are required to implement some
specific fuzzing applications.

For instance, at the time of writing LibAFL CC does not include
Link Time Optimization passes to reason about the whole program
Control Flow Graph. This type of instrumentation is required to
implement most of the directed fuzzing approaches [13, 16, 57]
and thus, LibAFL is not currently providing any directed fuzzing
application. This limitation, however, is not intrinsic to our design
and support for directed fuzzing will be integrated in the near
future.

A powerful feature integrated into LibAFL is the concolic trac-
ing API, which can be used to extend SymCC or SymQEMU with
custom constraints filtering and communicate the symbolic trace to
a LibAFL-based fuzzer. Currently, LibAFL provides a solver stage
based on Z3 that generates new testcases as traditional concolic
fuzzers do. However, there are two main limitations in traditional
concolic fuzzers that our architecture could help to overcome. First,
solvers are hard to scale and are both time- and resource-consuming
tasks. This could be mitigated by solving symbolic expressions [15]
using fuzzing techniques [6, 17, 25]. The other limitation is that
fuzzers and concolic engines poorly cooperate. Even when a solver
outputs a testcase that solves a complex expression, it is very hard
for a generic bit-level fuzzer to mutate and stress the program points
related to this testcase without breaking the validity of the solved
expressions. Approaches like Pangolin [39] go in this direction.

The possibility to build mutators using concolic expressions in
LibAFL allows developers to implement approaches to overcome
the mentioned limitations and reproduce previous experiments
(e.g., the Pangolin artifacts that have never been publicly released).
However, none of these have been implemented in LibAFL yet.

Finally, a core principle of LibAFL is scalability. Therefore, an
interesting future work would be to evaluate different fuzzing syn-
chronization approaches in terms of scalability. LibAFL already
implements an event manager capable of, if the target permits,
scale linearly over multiple cores and machines. It also provides an
alternative AFL-like disk-based method to synchronize testcases
over nodes. An interesting research question is to measure how
different approaches like TCP connections or shared memory-based
communication affect fuzzing and to pinpoint their trade-offs.

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

7 CONCLUSION

In this paper, we presented a novel and completely extensible
fuzzing framework, LibAFL. To show its versatility, and the compre-
hensiveness of its ready-to-use components to build state-of-the-art
fuzzers, we presented several frontends based on LibAFL and per-
formed experiments with them covering different problems in the
fuzzing literature. We highlighted the customization allowed by
the LibAFL design and the power of the combination of several
orthogonal techniques, leading to a fuzzer that outperforms the
best publicly available tools.

Availability. LibAFL has been open source under the Apache
2.0 and MIT licenses. It is available online at https://github.com/
AFLplusplus/LibAFL. To allow the reproduction of our results and
promote Open Science, every frontend for the experiments in this
paper and the related setup to run them in FuzzBench is available
online at https://github.com/AFLplusplus/libafl_paper_artifacts.

ACKNOWLEDGEMENTS

Firstly, we want to thank the community around the AFL++ organi-
zation, especially our contributors. A special thanks to s1341 and
Marc Heuse for the amount of work put into LibAFL, as well to
our GSoC students that worked on it in the past, Rishi Ranjan and
Julius Hohnerlein. We would like to thank also the anonymous
reviewers of ACM CCS for their constructive reviews and Slasti
Mormanti for the useful tips. This project has been partially funded
by the Defense Advanced Research Projects Agency (DARPA) under
agreement number FA875019C0003.

REFERENCES

[1] [n.d.]. Frida - A world-class dynamic instrumentation framework. https://www.
frida.re/. [Online; accessed 10 April. 2022].

[2] [n.d.]. Google OSS-Fuzz: continuous fuzzing of open source software. https:
//github.com/google/oss-fuzz. [Online; accessed 10 April. 2022].

[3] Maximilian Ammann. 2021. Symbolic-Model-Guided Fuzzing of Cryptographic
Protocols. Master’s thesis. University of Augsburg, Institute for Software &
Systems Engineering. See https://github.com/tlspuffin/ tlspuffin.

[4] Cornelius Aschermann, Tommaso Frassetto, T. Holz, Patrick Jauernig, A. Sadeghi,
and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep Bugs with Grammars.
In NDSS.

[5] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.
IJON: Exploring Deep State Spaces via Fuzzing. In IEEE Symposium on Security
and Privacy (Oakland).

[6] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspon-
dence. In 26th Annual Network and Distributed System Security Symposium,
NDSS. https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-
input-to-state-correspondence/

[7] Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella Firmani. 2012.
K-Calling Context Profiling. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications (Tucson,
Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New York,
NY, USA, 867–878. https://doi.org/10.1145/2384616.2384679

[8] Rust Fuzzing Authority. [n.d.]. cargo-fuzz. https://github.com/rust-fuzz/cargo-
fuzz. [Online; accessed 10 April. 2022].

[9] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference
(Anaheim, CA) (ATEC ’05). USENIX Association, Berkeley, CA, USA, 41–41.
http://dl.acm.org/citation.cfm?id=1247360.1247401

[10] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, SimonWörner, and ThorstenHolz. 2019. GRIMOIRE: Synthesizing Structure
while Fuzzing. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1985–2002. https://www.usenix.org/conference/
usenixsecurity19/presentation/blazytko

[11] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wörner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis

for Automated Root Cause Explanation. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 235–252. https://www.usenix.org/
conference/usenixsecurity20/presentation/blazytko

[12] Marcel Böhme, Valentin Manès, and Sang Kil Cha. 2020. Boosting Fuzzer Effi-
ciency: An Information Theoretic Perspective. In Proceedings of the 14th Joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). 1–11.

[13] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329–2344.
https://doi.org/10.1145/3133956.3134020

[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032–1043.
https://doi.org/10.1145/2976749.2978428

[15] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. 2021. Fuzzing Sym-
bolic Expressions. In Proceedings of the 43rd International Conference on Software
Engineering (ICSE ’21). https://doi.org/10.1109/ICSE43902.2021.00071

[16] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-Box Fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 2095–2108. https://doi.org/10.1145/3243734.3243849

[17] P. Chen and H. Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In
2018 IEEE Symposium on Security and Privacy (SP). 711–725. https://doi.org/10.
1109/SP.2018.00046

[18] Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. 2020. MEUZZ: Smart
Seed Scheduling for Hybrid Fuzzing. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020). 77–92.

[19] Tanguy Dubroca César Belley. 2021. Tartiflette: Snapshot fuzzing with KVM and
libAFL. https://www.lse.epita.fr/lse-winter-days-2021/slides/lse_winter_days_
tartiflette.pdf. [Online; accessed 10 April. 2022].

[20] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, andWenke Lee. 2013. Tappan Zee
(north) bridge: mining memory accesses for introspection. In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.).
ACM, 839–850. https://doi.org/10.1145/2508859.2516697

[21] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu,
and Yu Jiang. 2019. Leopard: Identifying Vulnerable Code for Vulnerability
Assessment through Program Metrics. In Proceedings of the 41st International
Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE
Press, 60–71. https://doi.org/10.1109/ICSE.2019.00024

[22] M. Eddington. [n.d.]. Peach fuzzing platform. https://web.archive.org/web/
20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html. [Online;
accessed 10 April. 2022].

[23] Brandon Falk. 2020. aflbench. https://github.com/gamozolabs/aflbench. [Online;
accessed 20 Dec. 2021].

[24] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. 2021. The Use of
Likely Invariants as Feedback for Fuzzers. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2829–2846. https://www.usenix.org/
conference/usenixsecurity21/presentation/fioraldi

[25] Andrea Fioraldi, Daniele ConoD’Elia, and Emilio Coppa. 2020. WEIZZ: Automatic
Grey-box Fuzzing for Structured Binary Formats. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2020).
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3395363.3397372

[26] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. 2020. Fuzzing
Binaries for Memory Safety Errors with QASan. In 2020 IEEE Secure Development
Conference (SecDev).

[27] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

[28] Ivan Fratric. [n.d.]. TinyInst. https://github.com/googleprojectzero/TinyInst.
[Online; accessed 10 April. 2022].

[29] Patrice Godefroid. 2007. Random testing for security: blackbox vs. whitebox
fuzzing. In Proceedings of the 2nd international workshop on Random testing: co-
located with the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007). 1–1.

[30] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proceedings of the Network and Distributed System
Security Symposium (NDSS’08).

[31] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
Learning for Input Fuzzing. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering (Urbana-Champaign, IL, USA)
(ASE 2017). IEEE Press, Piscataway, NJ, USA, 50–59. http://dl.acm.org/citation.
cfm?id=3155562.3155573

https://github.com/AFLplusplus/LibAFL
https://github.com/AFLplusplus/LibAFL
https://github.com/AFLplusplus/libafl_paper_artifacts
https://www.frida.re/
https://www.frida.re/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/tlspuffin/tlspuffin
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/2384616.2384679
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity20/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity20/presentation/blazytko
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/ICSE43902.2021.00071
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://www.lse.epita.fr/lse-winter-days-2021/slides/lse_winter_days_tartiflette.pdf
https://www.lse.epita.fr/lse-winter-days-2021/slides/lse_winter_days_tartiflette.pdf
https://doi.org/10.1145/2508859.2516697
https://doi.org/10.1109/ICSE.2019.00024
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://github.com/gamozolabs/aflbench
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://github.com/googleprojectzero/TinyInst
http://dl.acm.org/citation.cfm?id=3155562.3155573
http://dl.acm.org/citation.cfm?id=3155562.3155573

LibAFL: A Framework to Build Modular and Reusable Fuzzers To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A.

[32] Google Inc. [n.d.]. libprotobuf-mutator. https://github.com/google/libprotobuf-
mutator. [Online; accessed 10 April. 2022].

[33] Samuel Groß. 2018. FuzzIL: Coverage Guided Fuzzing for JavaScript Engines
pdfsubject=Not set.

[34] Richard Hamlet. 1994. Random Testing. In Encyclopedia of Software Engineering.
Wiley, 970–978.

[35] Sean Heelan, Tom Melham, and Daniel Kroening. 2019. Gollum: Modular and
Greybox Exploit Generation for Heap Overflows in Interpreters. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom) (CCS ’19). Association for Computing Machinery,
New York, NY, USA, 1689–1706. https://doi.org/10.1145/3319535.3354224

[36] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery,
New York, NY, USA, 230–243. https://doi.org/10.1145/3460319.3464795

[37] Peter Hlavaty. 2022. bananafzz. https://github.com/rezer0dai/bananafzz. [Online;
accessed 10 April. 2022].

[38] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In 21st USENIX Security Symposium (USENIX Security 12). USENIX
Association, Bellevue, WA, 445–458. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[39] H. Huang, P. Yao, R.Wu, Q. Shi, and C. Zhang. 2020. Pangolin: Incremental Hybrid
Fuzzing with Polyhedral Path Abstraction. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1613–1627.
https://doi.org/10.1109/SP40000.2020.00063

[40] Google Inc. [n.d.]. Atheris: A Coverage-Guided, Native Python Fuzzer. https:
//github.com/google/atheris. [Online; accessed 10 April. 2022].

[41] Tim Newsham Jesse Hertz. [n.d.]. TriforceLinuxSyscallFuzzer. https://github.
com/nccgroup/TriforceLinuxSyscallFuzzer. [Online; accessed 10 April. 2022].

[42] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California.

[43] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (Montpel-
lier, France) (ASE 2018). Association for Computing Machinery, New York, NY,
USA, 475–485. https://doi.org/10.1145/3238147.3238176

[44] LLVM. [n.d.]. SanitizerCoverage. https://clang.llvm.org/docs/SanitizerCoverage.
html. [Online; accessed 10 April. 2022].

[45] LLVM Project. [n.d.]. LibFuzzer - Value Profile. https://llvm.org/docs/LibFuzzer.
html#value-profile. [Online; accessed 10 April. 2022].

[46] LLVM Project. [n.d.]. [libFuzzer] Port to Windows. https://reviews.llvm.org/
D51022. [Online; accessed 10 April. 2022].

[47] LLVM Project. 2018. libFuzzer – a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html. [Online; accessed 10 April. 2022].

[48] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1949–1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

[49] Dominik Maier, Otto Bittner, Marc Munier, and Julian Beier. 2022. FitM: Binary-
Only Coverage-Guided Fuzzing for Stateful Network Protocols. InWorkshop on
Binary Analysis Research (BAR), 2022.

[50] Dominik Maier, Fabian Fäßler, and Jean-Pierre Seifert. 2021. Uncovering Smart
Contract VM Bugs Via Differential Fuzzing. In Reversing and Offensive-Oriented
Trends Symposium (Vienna, Austria) (ROOTS’21). Association for Computing
Machinery, New York, NY, USA, 11–22. https://doi.org/10.1145/3503921.3503923

[51] Dominik Maier, Benedikt Radtke, and Bastian Harren. 2019. Unicorefuzz: On
the Viability of Emulation for Kernelspace Fuzzing. In 13th USENIX Workshop
on Offensive Technologies (WOOT 19). USENIX Association, Santa Clara, CA.
https://www.usenix.org/conference/woot19/presentation/maier

[52] V. Manes, H. Han, C. Han, S.K. Cha, M. Egele, E. J. Schwartz, and M. Woo. 5555.
The Art, Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on
Software Engineering 01 (oct 5555). https://doi.org/10.1109/TSE.2019.2946563

[53] AlessandroMantovani, Andrea Fioraldi, andDavide Balzarotti. 2022. Fuzzingwith
data dependency information. In EuroS&P 2022, 7th IEEE European Symposium
on Security and Privacy, 6-10 June 2022, Genoa, Italy, IEEE (Ed.). Genoa.

[54] Jonathan Metzman, László Szekeres, Laurent Maurice Romain Simon, Read Trev-
elin Sprabery, and Abhishek Arya. 2021. FuzzBench: An Open Fuzzer Bench-
marking Platform and Service. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. New York, NY, USA.

[55] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (dec 1990), 32–44.
https://doi.org/10.1145/96267.96279

[56] Keean Schupke Oleg Kiselyov, Ralf Laemmel. 2004. HList: Heterogeneous lists.
https://hackage.haskell.org/package/HList. [Online; accessed 10 April. 2022].

[57] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2020. ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX Secu-
rity. Paper=https://download.vusec.net/papers/parmesan_sec20.pdfCode=https:
//github.com/vusec/parmesan

[58] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints.
Proc. ACM Program. Lang. 3, OOPSLA, Article 174 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360600

[59] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury.
2019. Smart Greybox Fuzzing. IEEE Transactions on Software Engineering (2019).
https://doi.org/10.1109/TSE.2019.2941681

[60] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, 181–198. https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[61] Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU: Compilation-based
symbolic execution for binaries. In Network and Distributed System Security
Symposium. Network & Distributed System Security Symposium.

[62] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary
Fuzzing. In 24th Annual Network and Distributed System Security Symposium,
NDSS. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
vuzzer-application-aware-evolutionary-fuzzing/

[63] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel, and Gio-
vanni Vigna. 2021. Token-Level Fuzzing. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2795–2809. https://www.usenix.org/
conference/usenixsecurity21/presentation/salls

[64] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine
Types. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Asso-
ciation, Vancouver, B.C. https://www.usenix.org/conference/usenixsecurity21/
presentation/schumilo

[65] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. KAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In Proceedings of the 26th USENIX Conference on Security Symposium (Vancouver,
BC, Canada) (SEC’17). USENIX Association, USA, 167–182.

[66] Shiqi Shen, Aashish Kolluri, Zhen Dong, Prateek Saxena, and Abhik Roychoud-
hury. 2021. Localizing Vulnerabilities Statistically From One Exploit. In Proceed-
ings of the 2021 ACM Asia Conference on Computer and Communications Security
(Virtual Event, Hong Kong) (ASIA CCS ’21). Association for Computing Machin-
ery, New York, NY, USA, 537–549. https://doi.org/10.1145/3433210.3437528

[67] Anand Sivasubramaniam, Aman Singla, Umakishore Ramachandran, and H.
Venkateswaran. 1994. An Approach to Scalability Study of Shared Memory
Parallel Systems. In Proceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (Nashville, Tennessee, USA)
(SIGMETRICS ’94). Association for Computing Machinery, New York, NY, USA,
171–180. https://doi.org/10.1145/183018.183038

[68] Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective Grammar-
Aware Fuzzing. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Association for
Computing Machinery, New York, NY, USA, 244–256. https://doi.org/10.1145/
3460319.3464814

[69] Robert Swiecki. [n.d.]. Honggfuzz. https://github.com/google/honggfuzz. [On-
line; accessed 10 April. 2022].

[70] Dmitry Vyukov. [n.d.]. syzkaller - kernel fuzzer. https://github.com/google/
syzkaller [Online; accessed 10 April. 2022].

[71] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. 2019. Be
Sensitive and Collaborative: Analyzing Impact of Coverage Metrics in Greybox
Fuzzing. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019). USENIX Association, Chaoyang District, Beijing, 1–15.
https://www.usenix.org/conference/raid2019/presentation/wang

[72] Jinghan Wang, Chengyu Song, and Heng Yin. 2021. Reinforcement
Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing.
In 28th Annual Network and Distributed System Security Sympo-
sium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society.
https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-
hierarchical-seed-scheduling-for-greybox-fuzzing/

[73] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization.. In NDSS.

[74] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose, Cali-
fornia, USA) (PLDI ’11). Association for Computing Machinery, New York, NY,
USA, 283–294. https://doi.org/10.1145/1993498.1993532

https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3460319.3464795
https://github.com/rezer0dai/bananafzz
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1109/SP40000.2020.00063
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://doi.org/10.1145/3238147.3238176
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://llvm.org/docs/LibFuzzer.html#value-profile
https://llvm.org/docs/LibFuzzer.html#value-profile
https://reviews.llvm.org/D51022
https://reviews.llvm.org/D51022
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1145/3503921.3503923
https://www.usenix.org/conference/woot19/presentation/maier
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/96267.96279
https://hackage.haskell.org/package/HList
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1109/TSE.2019.2941681
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.usenix.org/conference/usenixsecurity21/presentation/salls
https://www.usenix.org/conference/usenixsecurity21/presentation/salls
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://doi.org/10.1145/3433210.3437528
https://doi.org/10.1145/183018.183038
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/3460319.3464814
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.usenix.org/conference/raid2019/presentation/wang
https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-hierarchical-seed-scheduling-for-greybox-fuzzing/
https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-hierarchical-seed-scheduling-for-greybox-fuzzing/
https://doi.org/10.1145/1993498.1993532

To appear: CCS ’22, November 7-11, 2022, Los Angeles, U.S.A. Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti

[75] Michał Zalewski. 2014. Fuzzing random programs without execve(). https:
//lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html. [Online;
accessed 20 Dec. 2021].

[76] Michał Zalewski. 2016. American Fuzzy Lop - Whitepaper. https://lcamtuf.
coredump.cx/afl/technical_details.txt. [Online; accessed 10 April. 2022].

https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 AFL++

	3 Entities in Modern Fuzzing
	4 Framework Architecture
	4.1 Principles and High-level Design
	4.2 The Core Library
	4.3 Instrumentation Backends

	5 Applications and Experiments
	5.1 Bypassing Roadblocks
	5.2 Structure-aware Fuzzing
	5.3 Corpus Scheduling
	5.4 Energy Assignment
	5.5 A Generic Bit-level Fuzzer
	5.6 Differential Fuzzing
	5.7 Third-Party Applications

	6 Limitations and Future Work
	7 Conclusion
	References

