
Fast and accurate edge resource scaling for 5G/6G
networks with distributed deep neural networks

Theodoros Giannakas1, Thrasyvoulos Spyropoulos2, and Ondrej Smid2

1 Paris Research Center, Huawei Technologies, France, theodoros.giannakas@huawei.com
2 EURECOM, Sophia-Antipolis France, first.last@eurecom.fr

Abstract—Network slicing has been proposed as a paradigm
for 5G+ networks. The operators slice physical resources from
the edge, all the way to datacenter, and are responsible to micro-
manage the allocation of these resources among tenants bound
by predefined Service Level Agreements (SLAs). A key task,
for which recent works have advocated the use of Deep Neural
Networks (DNNs), is tracking the tenant demand and scaling
its resources. Nevertheless, for edge resources (e.g. RAN), a
question arises whether operators can: (a) scale edge resources
fast enough (often in the order of ms) and (b) afford to transmit
huge amounts of data towards a cloud where such a DNN-
based algorithm might operate. We propose a Distributed-DNN
architecture for a class of such problems: a small subset of
the DNN layers at the edge attempt to act as fast, standalone
resource allocator; this is coupled with a Bayesian mechanism to
intelligently offload a subset of (harder) decisions to additional
DNN layers running at a remote cloud. Using the publicly
available Milano dataset, we investigate how such a DDNN
should be jointly trained, as well as operated, to efficiently
address (a) and (b), resolving up to 60% of allocation decisions
locally with little or no penalty on the allocation cost.

I. INTRODUCTION

The advent of 5G networks has been characterized by

a number of radical architectural transformations. Virtu-

alization and slicing of communication, computation, and

infrastructure resources allows operators to co-host multiple

services and tenants, with a large variety of performance

requirements and SLAs (service level agreements). What is

more, 5G networks and beyond will be characterized by

increased programmability through the use of composable

virtual network functions, executable at various network

locations (edge/core/fog). This creates a great opportunity for

an algorithmic optimization approach towards (re-)designing

modern cellular networks to cope with the daunting com-

plexity of multi-service, multi-domain, multi-SLA emerging

environments.

Traditionally, the various network components that affect

the overall performance of a service (e.g., MAC scheduling,

transport, core computation resources, etc.) have been opti-

mized using proprietary algorithms, heuristics, and simplified

models to facilitate tractability. The literature abounds with

such multi-objective, multi-variable optimization problems

that are based on numerous modeling assumptions, like

The research leading to these results has been supported by the H2020
MonB5G Project (grant agreement no. 871780). This research was conducted
while Theodoros Giannakas was with EURECOM, Sophia-Antopolis.

knowledge of key inputs, stationarity, etc. (not often satisfied

in practice). As a result, flexible model-free methods based on

modern machine learning (ML) methods have gained signifi-

cant attention as an alternative way to tackle wireless network

optimization problems arising in beyond 5G networks [1].

Such methods can learn and optimize at the same time

various networks tasks, operating directly on offline or online

training data, without the need for a priori limiting modeling

assumptions.

An important 5G task that has been recently addressed

with data-driven methods is that of traffic prediction and

slice resource allocation with Deep Neural Networks (DNN).

In [1], [2], [3], [4], the authors use a DNN architecture to

predict the base station traffic, based on past samples. More

recently, the authors of DeepCog [3] have used an interesting

DNN-based approach to directly predict the amount of slice

resources needed at a data center/cloud serving assigned

BSs to avoid both underprovision (which could result in a

costly SLA violation) and overprovision (which would waste

valuable resources that another slice/tenant could put to use).

As a result, this control/decision problem can be tackled with

popular DNN architectures, by training an objective with

appropriately tuned under- and over-provision components. A

number of additional novelties are introduced in this work to

improve performance. Perhaps the two most important ones,

that will also serve as the starting point of our work1, are:

1) Time-series, corresponding to different BS demands can

be correlated (e.g., traffic in BSs near tram, metro,

and other “commute” spots); this can be exploited by

learning how to jointly predict good resource allocations

of multiple BSs in parallel, using the same architecture;

2) A 3D Convolutional Neural Network (CNN) architecture

could infer such correlations using an appropriately pre-

processed image-like representation of past demands.

While this approach is promising, the standard assumption

of a centralized implementation of the DNN architecture

faces challenges, when used to control key 5G+ network

functions. First, unlike the use of DNNs for some application

layer tasks (e.g., image classification on a phone) that can be

“lazily” offloaded to a central computational cloud, the use

of DNNs for controlling 5G edge resources (e.g., allocation

1A recent extension of this work includes also reconfiguration costs, to
avoid too frequent re-scaling [4], but these features we do not take into
account in this work.

of RAN resource blocks among tenants, CPU allocation

for CRAN processing) requires significantly lower latency;

sending all required data to a central DNN, making the

decision there, then sending back the actuation message to the

desired edge components, might violate these requirements.

Second, constantly sending raw monitored data over possibly

already congested links towards a DNN architecture lying

deep in the core network (or even outside) has a prohibitive

network footprint. Hence, in this work we are interested in

how such DNN-based architectures could be appropriately

implemented in a distributed fashion towards resolving both

of the above concerns, yet without compromising the ob-

served performance advantages of the DNN.

An interesting recent work has introduced the concept of

Distributed Deep Neural Networks (DDNN) for an image

classification application [5]. The key idea behind DDNNs is

allowing to distribute the layers of a DNN between different

locations, where prediction or control decisions can be taken

at each location: e.g., locally (near the edge) if the latency

requirement for a decision is stringent or the network links

to the core are congested, or remotely/centrally if additional

accuracy is needed. To achieve both tasks well, one needs to

jointly train both the local and remote layers.

To this end, the main goal of this paper is to propose,

train, and study a distributed architecture for a data-driven

edge resource allocation problem that generalizes the one

considered in recent state-of-the-art work [3], [4]. Our main

contributions can be summarized as follows:

(C.1) We propose an appropriate distribution of the layers

of a 3D-CNN architecture, between an edge cloud and a

core/remote cloud, and investigate how to jointly train this to

provide both accurate local decisions and remote decisions

for various objectives.

(C.2) At runtime, the local layers will communicate with

the remote layers and delegate the decision there, only if

there is limited confidence in the local decision. We propose

a novel way to evaluate this local confidence, based on

Bayesian methods using dropout during the forward pass.

This is in contrast with the standard dropout methods for

regularization [6], or the entropy-based uncertainty of the

original DDNN paper [5].

(C.3) Using real data we demonstrate that, in many differ-

ent scenarios, the distributed architecture is able to resolve up

to 80% of decisions locally, while the uncertainty measure is

able to pick out the correct remaining decisions that would

benefit from a forward pass through the additional remote

layers; the layer distribution and offload mechanisms, in con-

junction, can always achieve this large overhead/latency re-

duction with a minimal objective degradation, and sometimes

even improve the objective, compared to a fully centralized

architecture with all layers involved in all decisions.

(C.4) We investigate the impact on these achieved dis-

tribution tradeoffs of (i) various allocation objectives, (ii)

correlation patterns between the parallel traffic demands the

architecture resolves, (iii) problem size and architecture size.

To our best knowledge, this is the first work to propose a

distributed DNN architecture for slice resource allocation in

the context of 5G wireless networks. The paper is structured

as follows. Section II setups the problem and presents the

problem objectives, while Section III presents our proposed

DDNN architecture that solves the problem. In Section IV, we

explain how to jointly train all exits of the DDNN, and how

to operate it during runtime. Section V presents results and

key insights on the DDNN performance. Section VI, and VII

discusses related and future work; and Section VIII concludes

the paper.

II. RESOURCE SCALING USING DNNS

In this section, we revisit how DNNs can be used for

accurate and “safe” slice resource allocation (e.g., as initially

proposed in [3]).

A. Data-Driven Resource Scaling

We consider a set of M network elements/functions, each

of which requires some resources allocated, adapted to its

traffic demand. These functions could belong to the same

slice (e.g., different VNFs) or to different slices. We have past

traffic samples dit (scalar value) for a given network element

i ∈M at time interval t.2 More concretely, we have:

• Input: The vector of N past samples for BS i, indicated

as di
t,N = {dit−N , . . . , dit−1}. Notice that although we

use N in the subscript, N does not vary; it simply

expresses the fact that our input is of size N (with N
integer).

• Output: A function approximator DNN (di
t,N ;θ),

which is parameterized by θ. The goal is to train this

function to “predict” an allocation of resources ŷt that

“matches” the real demand dit that will arrive, where

the goodness of this match depends on the chosen

optimization objective.

B. Resource Scaling Objectives

Traffic Forecasting. Let us first assume the standard regres-

sion goal, namely, given past traffic samples dt,N = {dt−N ,

. . . , dt−1} for some network element or slice (we drop here

the superscript i for simplicity), to predict the next traffic

sample dt as accurately as possible. A DNN can be trained

for this goal [2], [7], using a standard least squares objective:

f(ŷt, dt) = (ŷt − dt)
2

(1)

Resource Scaling. We assume here that the inputs dt,N of

the DNN are the same as above. A key difference, is that we

do not just want to predict the true traffic level dit, but rather

to provide an amount of resources ŷt that can “satisfy” this

demand (maybe by safely exceeding it with some margin). As

a result, the objective might be asymmetric, with the cost of

underprovisioning depending on the Service Level Agreement

(SLA) with the slice tenant, and the cost of overprovisioning

2In this work we focus on Base Station (BS) traffic intensity, as we
use such real datasets in our validation, but the methodology is generally
applicable to any type of traffic demands over time (e.g., CPU, memory,
queue sizes).

TABLE I: Main Notation

M Set of Base Stations, of cardinality M
H,W Image height and width, M = H ×W
dti Demand of BS i at time t, ∈ R

di
t,N Demand of BS i from t−N to t− 1,∈ R

N

dt Demand of M BSs at time t, ∈ R
M

dt,N Demand of M BSs at t− 1 to t−N , ∈ R
M×N

Dt dt placed as an image, ∈ R
W×H

Dt,N dt,N placed as an image, ∈ R
W×H×N

θi DNN layer parameters of layer i
ŷ DNN output for Dt, given θ
f loss function

dependent on the opportunity cost of not allocating these extra

resources to another slice. While this problem is a resource

allocation problem (a control problem, in essence) it can be

treated with the same DNN architecture, by simply picking

the objective differently. We denote the following events:

• with “u”: ŷt < dt, (underprovisioning),

• with “o”: ŷt ≥ dt (overprovisioning).

Then, our allocation of resources ŷt incurs some cost of

the following form:

f(ŷt, dt) = Iu · gu(ŷt − dt) + Io · go(ŷt − dt), (2)

where Iu/o is the indicator function for event u or o.

For example, the authors in [3] minimize the following

objective:

f(ŷt, dt) = Iucu + Ioco(ŷt − dt). (3)

That is, a constant cu penalty is assumed for any SLA

violation, while the overprovisioning cost increases linearly

(co could denote, e.g., the constant revenue loss per unused

resource). Other objectives could capture different SLAs, e.g.,

f(ŷt, dt) = Iu
(
cu + c

′
u(ŷt − dt)

2
)
+ Ioco(ŷt − dt), (4)

suggests an SLA that quadratically penalizes underprovision

(e.g., because it leads to non-linear congestion and related

performance degradation), and c
′
u its importance. In the

validation section, we will consider both these two objectives.

III. DISTRIBUTING THE DNN

In this section, we apply this generic resource scaling task

to a beyond 5G network setup. Using a recent centralized

DNN architecture for this task [3], as our starting point,

we propose a distributed architecture that runs a (thinner)

subset of this DNN at an edge cloud (e.g., MEC), to improve

decision latency, and communicates with additional layers

in a remote cloud (that can potentially provide increased

performance) [8].

A. 5G Network Setup

Without loss of generality, in the remainder of the paper we

will assume the problem setup depicted in Fig. 1. Specifically,

we assume a set of BSs M; each one of these M BSs

serves a subset of users generating a demand (per BS), that

is captured by some monitored quantity dit, which is random

and possibly non-stationary. A data-driven approach is used to

allocate some matching resources for each BS, as described

in Section II (e.g., CPU resources for baseband processing

RAN

RAN

MEC

MEC

Wireless channel

Filters

Maps

W
N

Sample

H

BS 1

BS 2

BS 3

BS 4

BS 1

BS 2

BS 3

BS 4

0 2 4 6 8 10
-1

-0.5

0

0.5

1
BS1-demand

0 2 4 6 8 10
-1

-0.5

0

0.5

1
BS2-demand

0 2 4 6 8 10
-1

-0.5

0

0.5

1
BS3-demand

0 2 4 6 8 10
-1

-0.5

0

0.5

1
BS4-demand

2 FC

Confident
predictions?

BS 1 BS 2 BS 3 BS 4

Filters Maps

3 FC

FP with dropout

FP
no dropout

Store Maps
Predictions

Yes/No

Yes
exit predictions

No
send Maps

̂yL

̂yRS(t)

S(t)
Dt,N

Fig. 1: Above: RAN (local cloud) collects the BS signals, and also wants
to perform resource scaling with a local DNN; it might need to send some
data to MEC (remote cloud), where there are additional NN layers. Below:
a 3D sample arrives, is then forward-passed (FP) from the local NN without
a dropout, and the maps along with the predictions for the 4 BSs are stored;
then the same sample is forward-passed B times with dropout at the local
NN; a confidence mechanism decides if the sample will be inferred locally
or sent to the MEC

in a CRAN BBU cloud [9], or MEC CPU resources for

computation offloading for associated users).

B. Edge Layer and Local Exit

We base our edge architecture on 3D-CNNs, as they have

been found convenient to exploit correlations between BSs

(this will require additional and appropriate preprocessing;

we describe this in Section IV-A).

More specifically, at the edge (local DNN) we have a 3D-

CNN (θCNNL
) with FL = 32 filters (stands for “filters at

local”, each with kernel size (3× 3× 3), and two additional

Fully Connected (FC) layers:

• FC1 (with ReLU nonlinearity): N ·M · FL → 2 ·M ,

• FC2 (linear): 2 ·M →M

(Thus, having M outputs, as many as the number of BSs

for which we wish to perform resource scaling for.) FC1

increases the expressiveness of the local layers, and FC2 layer

serves as the local exit point of the architecture - see Fig. 1.

Definition 1 (Local Exit Prediction). Given model parame-
ters θCNNL

for the 3D-CNN, and θ1,2 for the FC1 and FC2,
there is a function DNNL(·), which receives as an input
Dt,N and returns a signal ∈ R

M

ŷLt = DNNL(Dt,N) (5)

we call the left handside of (5) local exit prediction.

This local exit point attempts to make a decision imme-

diately, and will be trained jointly with the regular decision
point at the core cloud [5], [10].

Definition 2 (Local NN Maps). Given model parameters
θCNNL

for the 3D-CNN at the local NN, there is a function
G(·), which receives as an input Dt,N and returns a signal

St = H(Dt,N) (6)

where St ∈ R
N×M×FL ; we call this tensor “local maps”.

For a visual exposition of the above definitions, we refer

the reader to Fig. 1.

Confidence Mechanism and Local Exit. Since our goal is

to strike balance between high accuracy and high number

of locally resolved samples, we design a simple decision

mechanism that quantifies the “quality” of the resource

forecast at the edge. The role of this mechanism is twofold:

(a) detect the “hard cases”, i.e., samples for which further

processing and extra layers (at the remote cloud) would be of

additional value, and (b) given a {Yes, No} confidence signal

to either exit the predictions of the local layers, or transmit the

exported maps St of the local 3D-CNN to the remote layers

over the network. The technical details of this mechanism are

presented in the next section, where we will be particularly

interested in the runtime operation of the DDNN.

C. Cloud Layers and Remote Exit

The maps St first pass through another 3D-CNN layer

(denoted as θCNNR) that consists of FR = 16 filters with

kernel sizes (5× 5× 5), and then three FC ones; these are:

• FC3 (with ReLU nonlinearity): N ·M · FR → 8 ·M ,

• FC4 (with ReLU nonlinearity): 8 ·M → 4 ·M ,

• FC5 (linear): 4 ·M →M ,

The FC layers bring additional learning capabilities to the

remote NN; it is important to stress, that once the sample

arrives at the remote layers, the remote exit has no further

actions to decide and must always return a set of predictions.

Definition 3 (Remote Exit Prediction). Given model param-
eters for the 3D-CNN at the remote NN θCNNR

, and θ3,4,5
for FC3, FC4, FC5; there is a function DNNR(·), which
receives as input the local maps St and returns a signal
∈ R

M

ŷRt = DNNR(St) (7)

we call the left handside of (7) remote exit prediction.

Note that the edge and remote cloud architectures are a

function of the traffic image size (number of BSs M) we

will construct later.

IV. DDNN: TRAINING AND RUNTIME

While training and operating a centralized DNN is rela-

tively straightforward, doing the same for a distributed DNN

has some key differences.

Training: the local and the remote layers must be jointly
trained to achieve an intricate tradeoff: (i) the local subnet/exit

must become powerful enough to be able to correctly resolve

some decisions locally; (ii) the local layers must still act as

high level feature extractors, so that remote additional layers

can offer true added value for decisions not resolved locally;

(iii) the overall performance (that also hinges on the local

confidence mechanism) should be close to the centralized

DNN one.

Runtime (or Inference time): Unlike a centralized DNN that

inputs a past sample Dt,N , does a forward pass through all

layers, and outputs a proposed allocation for each of the M
elements, a forward pass for a DDNN is more complicated.

The local subnet produces both a local decision (through the

FC layers branch) and a set of features (directly through

the CNN branch) to potentially be further processed (by the

remote layers). A confidence mechanism will decide which

of the two branches to keep per sample.
In this section, we describe all these required steps to

operate the proposed DDNN of Fig. 1 in training and runtime.

A. Data preparation
The resource demand for the resources, at the M BSs,

is a multi-variate time-series. It has been observed that

subsets of these time series may exhibit correlations, e.g.,

common diurnal patterns or weekday-weekend differences.

More elaborate correlations might also exist between base

stations that cover areas of similar “type”. E.g., base stations

covering train station or metro station users will typical

exhibit strong peaks around commute times, while residential

areas will have stronger peaks during early morning and in the

evening, for example [3]. Nevertheless, these correlations are

not known a priori; neither which time series (BS demand)

i is correlated with another time series (BS demand) j, nor

how strong this corellation is. While the 3D-CNN architecture

is designed to exploit such correlation, an important data

preparation step is needed to facilitate this. We note here that

this step is generic to both a centralized and a distributed

setup.

Milano Dataset. We will use a popular, publicly available

dataset [11] that has been used in many related works [12],

[13]. It consists of measurements for 10000 BS, and has

the following entries per BS: “Internet Traffic”, “Calls” and

“SMS” for 21 days, which translates to 3024 values per entry;

we will be interested only in the “Internet Traffic”. For every

BS m, we thus have a time series {dm} with 3024 demand

values each: we remove the few BSs that have fewer samples

than this. We also normalize each time series according to

their min-max value, as is common to facilitate training.

Multi-variate Time Series to Image Conversion. The

multivariate time series should now be organized in a 3D

“box” of size H × W × 3024, so that there is correlation

to be exploited later by 3D-CNN. The key idea is to ensure

that nearby “pixels” correspond to traffic intensities of BSs

that are correlated. For this task, we will use all our t data

samples dt, each one of size M × 1 (number of BSs). We

use Shape Based Distance (SBD) to derive correlation values

qij between BS i and j, Q ∈ R
M×M . Each BS must be

placed in one of the H×W locations/pixels of the Dt image.

Let xi denote the location of BS i in the 2D grid; we solve

the problem and place the whole time series of BS i on the

coordinate xi.
Each BS m must be assigned a coordinate in the image

xm = (a, b), with a ∈ {1, . . . , H}, b ∈ {1, . . . ,W} and

m ∈ M. Using a similar approach to [3], we first find

the placement onto the continuous 2D grid by solving the

following problem over the variable p:

minimize
p1,...,pM

∑
i<j

(||pi − pj || − qij)
2 (8)

therefore, if coordinates of BSs i, j are far with respect to

their qij , then ||pi−pj || should also be large, thus minimizing

the objective function. Having the 2D continuous coordinates

p, we can formulate and solve the linear sum assignment

problem -which decides which BS goes to which of our

M available coordinates- using the Hungarian algorithm in

polynomial time [14], [15], [16], [17].

B. Joint Training of Local and Remote Exits

Since our DNN has two exit points, we will formulate our

objective function to be the weighted sum of two losses.

Definition 4 (Local and Remote Exit Losses). Given an input
sample Dt,N , a fixed set of parameters θ (describing the
whole NN), the local and remote exit predictions (see Defs. 1,
3)) ŷL, and ŷR, and a true demand signal Dt, the losses
incurred at both exits will be denoted as:

Local Exit Loss: f(ŷLt ,Dt) (9)

Remote Exit Loss: f(ŷRt ,Dt) (10)

where f(·) expresses a notion of distance between the true
demand image and the predicted one, as in (3) and (4).

The proposed DNN architecture then attempts to minimize

the following objective over the model parameters θ of all

layers as we described in Sections III-B and III-C:
K∑

k=1

wL · f(ŷLk ,Dk)︸ ︷︷
local exit loss

+wR · f(ŷRk ,Dk)︸ ︷︷
remote exit loss

(11)

where k iterates through the samples of the training dataset.

In other words, we are interested in minimizing both a local

under/over-provisioning cost as in (2), related to the output at

the local exit point ŷLt (which trains only θL, the parameters

of the local DNN) at the edge, and a similar cost at the final

exit point of the DDNN ŷRt , i.e., the “normal” output of a

DNN (which trains both θL and θR).

Importantly, the weights wL ∈ [0, 1] and wR = 1 − wL

decide the impact of the local and remote exits on the overall

(joint) performance loss of the DDNN. For example, choosing

wL = 0 on (11), would train the DDNN as a regular DNN

with two 3D-CNN layers three FC layers, and a single output,

as the centralized architecture in [3]. On the other hand, a

wL closer to 1 would try to optimize the performance at the

local exit point (e.g., to maximize the amount of decisions

that can be confidently taken at the edge), while putting less

importance in the additional performance benefits offered by

the extra layers at the remote cloud. As we will see later

in Section V, the choice of (wL, wR) is crucial to strike a

good tradeoff between the three (potentially conflicting) goals

set in the beginning of this section: local performance, local

feature extraction, remote/global performance. In the majority

of cases we tested, minimum wL ≥ 0.5, (or wL ≥ wR)

seems necessary to achieve any such tradeoff, which might

be reasonable since the local subnet is more shallow.

Remark: It is important to stress here that this joint training

is necessary, due to the coupling of the local and remote

layers via the top branch of Fig. 1: the local layers provide

some feature extraction for the remote ones, in addition to

producing a local exit (bottom branch). Hence, the distributed

architecture is not “simply” a local DNN and a remote DNN

that could be separately trained3. What is more, as this

training is performed offline, the actual training could be

performed centrally (in fact, this is what we do in this work,

for simplicity), while the architecture at runtime operates in

distributed mode. Distributed training is an interesting topic

that is orthogonal to this work (see e.g. [19], [20]).

C. Local Confidence for DDNN Runtime

A crucial component of the distributed architecture, is the

confidence mechanism, briefly discussed in Section III-B, to

decide whether the local decision would be “good enough” or

the forward pass should continue at the remote layers. Ideally,

this mechanism should:

1) resolve locally samples whose remote exit would be

similar to the local exit (no added value offered by the

extra layers);

2) continue forward pass to remote layers, if the remote

exit cost would be reasonably lower than the local (could

improve the overall performance).

A key obstacle though is that the remote exit/decision cannot
be known beforehand, at the edge, unless the entire forward
pass is finished. Hence, we essentially require an “unsuper-

vised” mechanism to establish how confident we are in the

local exit decision.

In [5], the entropy of the local decision is used as a

confidence metric. This is a natural metric for a classification

problem (as the one in [5]), since high entropy implies that

the DNN is not “sure” about which class is the correct, and

additional layers could help refine its label decision. Unfortu-

nately, an entropy metric is not applicable to a problem like

ours, which is, in essence, a regression problem. To this end,

we propose a different, Bayesian confidence metric, based

on random dropouts applied to the local forward pass [21],

[22] (we stress that this is a different dropout mechanism

than the one we use during training which serves as a

regularization [6]).

Definition 5 (Uncertainty). We force the local exit to infer
a single input sample, say B times. The output we receive
is M arrays (one for each BS) ∈ R

B each. For every BSs
m ∈ M, we compute the standard deviation of BS m, and
then take the its maximum value among the M BSs.

U = maxm{stdm} (12)

This metric serves as a worst case estimate of how much

perturbations have affected the local decisions. In practice,

about 10 iterations with dropout suffice to provide reasonable

uncertainty estimates; in our experiments we iterated B = 10
and used a drop-out probability p = 0.4 on the last linear

layer of the local NN, i.e., FC2.

Definition 6 (Confidence Mechanism). Given (a) the mea-
sured uncertainty U , (b) a confidence threshold Tconf which is

3This would require, at runtime, to send raw input data across the network,
rather than potentially compressed features (additional/adaptive compression
could further be applied using techniques like [18]).

a design parameter of the DDNN, the confidence mechanism
compares the two, and if U < Tconf all M predictions are
carried out locally; otherwise, the exported maps St are sent
to the remote layers, so that the M predictions take place
there.

Given we have the full DNN model θ parameters, during

inference time the actions that need to be taken are:

• do inference at the local exit using the full model once,

and store the prediction ŷL,S;

• forward-pass the input sample B times using dropout p,

and compute U ;

• compare U with Tconf, and act according to Def. 6.

Discussion. The algorithm considers the metric of uncer-

tainty, in order to characterize the “quality” of the local

prediction ŷL. However, when we say “quality”, we refer to

something specific: the objective function value of local NN

f(Dt, ŷ
L
t) with respect to f(Dt, ŷ

R
t). Ideally, we would want

to have access on an oracle that tells us whether it is worth

it to offload on the remote NN or not; specifically, whether

EL
t = f(Dt, ŷ

L
t)− f(Dt, ŷ

R
t) > 0 (13)

is positive or negative. Essentially, given the DNN parameters

θ, one could even consider the case of having a hard con-

straint on the percentage or samples that are served locally,

say > 70%. In that case, the optimal solution would be

to pick the 30% samples with the highest {EL
t }, and for

those samples perform inference at the remote cloud. An

interesting avenue of research would be the framework of

Constrained Online Convex Optimization [13], [23] where in

some sense, a data-driven algorithm would try to track the

characteristics of the samples for which {EL
t } is high. In a

sense, here, instead of considering such approaches, we argue

that the uncertainty is indeed a good proxy metric that detects

high {EL
t } samples as will see in Section V. Interestingly,

uncertainty behaves the best in the cases of models whose

joint training objective had wR < wL.

V. PERFORMANCE

Having presented the proposed DDNN architecture, as

well as its training and runtime operation, in this section

we will go ahead and investigate the achieved trade-offs

and discussed benefits of such an architecture, considering a

number of problem dimensions such as: (i) problem objective,

(ii) traffic demand correlation, (iii) problem size (number

of BSs handled jointly). We will also offer a number of

accompanying plots that attempt to shed some light as to

when/why these better trade-offs (compared to a centralized

architecture) are achieved.

A. Validation Setup

First of all, for training, we are using for every case that

we will present a variety of weight pairs (wL, wR); during

training, we use the Adam Optimizer with a learning rate

of 5 · 10−4. Regarding our scenarios we pick a number of

M BSs time series out of the 10K available ones. Unless

otherwise stated, M = 16. We will elaborate in Section V-E

two different ways of picking these, and their impact on

various performance tradeoffs. (For more details on the data

preprocessing, we refer the reader to Section IV-A.)

As mentioned earlier, the main goal of the proposed

distributed DNN is to perform almost as well (in terms

of the incurred allocation cost) as a fully centralized one

(of similar size) that runs all layers at the remote cloud.

As explained in Section IV, such an architecture can be

emulated by choosing training weights (wL, wR) = (0, 1)
and the confidence threshold to Tconf = 0. Essentially, it is

an architecture that uses two 3D-CNNs, and FC3, FC4, FC5

-bypassing always FC1, FC2. The resulting trained DNN,

which we will refer to as “Centralized DNN”, then resembles

the architecture of DeepCog [3]. This will serve as our

baseline for comparison.4.

B. Performance Metrics

Local and Remote Exit Cost. Following the Def. 4, and

more specifically: (9) and (10), during service, for every
test sample, regardless of whether prediction was carried out

locally or remotely, we will keep track of both exit costs,

as if all samples were exited from both. The exit costs will

help us draw conclusions on the confidence mechanism and

the overall DDNN performance. We will use two objective

functions, namely: (3) and (4). The first one, is essentially

the objective of [3], which penalizes underprovisioning with

a constant: we will explore two cases, namely cu = 0.5, and

cu = 1.0; the second objective has stricter SLA penalties

for underprovision, namely an additional quadratic term; for

the latter, the constant penalty term will be cu = 0.5, and

the quadratic weight c′u = 30. In both case, the weight for

overprovision is co = 1.0. We refer the reader to Section II-B

for more details.

Error at Local Exit. Following the previous performance

metric, we will be particularly interested in the quantity

EL(t), (13), defined as the cost difference between the local

and the remote exit.

Distributed DNN Total Cost. During inference (runtime),

given a specific Tconf the mechanism decides whether infer-

ence takes place, and accordingly, in the total cost we add

terms:

CDDNN =
K∑

k=1

IL(k) · f(Dk, ŷ
L
k) + (1− IL(k)) · f(Dk, ŷ

R
t)

(14)

where IL(k) is the event where the confidence mechanism

decided to do the forecast locally.

Centralized DNN Total Cost. During runtime, all decisions

of the centralized DNN are carried out remotely, thus its total

4We remind the reader that, while the architecture of the “Centralized
DNN” baseline and the one in [3] are very similar, the actual objective here
is to “predict” an allocation for each individual BS, rather than an aggregate
demand of multiple BSs - potentially smoothing out some uncertainty due
to the LLN law - as is the case in [3].

0 50 100
Samples Predicted Locally (%)

700

750

800

850

900

950

1000

T
ot
al

C
os
t

Tradeoff Curves

(wL,wR) = (0.2, 0.8)
(wL,wR) = (0.5, 0.5)
(wL,wR) = (0.7, 0.3)
Centralized DNN

(a) Constant cu = 0.5 penalty

0 50 100
Samples Predicted Locally (%)

750

800

850

900

950

T
ot
al

C
os
t

Tradeoff Curves

(wL,wR) = (0.92, 0.08)
(wL,wR) = (0.93, 0.07)
(wL,wR) = (0.89, 0.11)
Centralized DNN

(b) Constant cu = 1.0 penalty

Fig. 2: Operating points: (total cost, percentage of samples predicted at local
exit) for increasing Tconf. Constant underprovision penalty

cost is:

Ccentralized =
K∑

k=1

f(Dk, ŷ
R
k) (15)

Percentage of Local Decisions. Given a specific Tconf, it is

computed as:
K∑

k=1

IL(k)/K. (16)

C. Resource Scaling Cost vs Communication Tradeoff

Constant cu = 0.5 underprovision penalty. We use as cost

function the constant underprovisioning (3) with cu = 0.5 and

linear overprovisioning with co = 1. We choose a range of

confidence thresholds Tconf ∈ [0, 0.5], and for every Tconf we

iterate the test set; we measure the following tuple (total cost,

locally resolved), as in (14) and (16). The set of operating

points returns the “tradeoff curve” of some model (wL, wR).
In Fig. 2(a), we plot the tradeoff curves for three models:

(0.7, 0.3), (0.5, 0.5) and (0.2, 0.8). Finally, with magenta

we plot a single operating point “X”, which corresponds to

the cost achieved by the centralized DNN, whose hardware is

placed at the cloud; by construction, this resolves all samples

remotely.

Observation 1: The two models with wL > wR have

found a “sweet spot”; as Tconf increases, the cost increases

only by a 10% (compared to the Centralized case -magenta

“X”), while resolving about 75% of samples locally. Thus,

when the joint training is done properly, the uncertainty

and confidence mechanism is clearly able to correlate the

Bayesian uncertainty metric with true added value of the

additional remote layers. The (0.2, 0.8) model does not work

as harmonically with the confidence mechanism, as its cost

performance exhibits a sudden jump, suggesting bad training

of the exit as we will see shortly.

Moreover, in Fig. 3, we present the EL(t) as a function of

time for two values of Tconf, namely 0.02, and 0.04 for the

(0.7, 0.3); we do the same in Fig. 4 for (0.2, 0.8). The locally

resolved (confident) samples are indicated with green, and the

remote with red (uncertain). In Fig. 3, the more we increase

Tconf the more samples will be designated as “confident” and

exited locally. An interesting take-away from Fig. 3(b) is that

the confidence mechanism sends to the remote layers the

0 200 400 600
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.02 (wL,wR) =(0.7, 0.3)

Uncertain
Confident

(a) Tconf = 0.02

0 200 400 600
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.04 (wL,wR) =(0.7, 0.3)

Uncertain
Confident

(b) Tconf = 0.04

Fig. 3: Error at local exit vs Time: Samples resolved: (a) green-local, (b) red-
remote. Constant underprovision penalty cu = 0.5; (wL, wR) = (0.7, 0.3)

0 200 400 600
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.02 (wL,wR) =(0.2, 0.8)

Uncertain
Confident

(a) Tconf = 0.02

0 200 400 600
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.04 (wL,wR) =(0.2, 0.8)

Uncertain
Confident

(b) Tconf = 0.04

Fig. 4: Error at local exit vs Time: Samples resolved: (a) green-local, (b) red-
remote. Constant underprovision penalty cu = 0.5; (wL, wR) = (0.2, 0.8)

correct samples, i.e., the ones with really high EL, which

when we forecast remotely will improve the overall cost

performance. In contrast however, Fig. 4, says a different

story: in both Tconf, there are many values which are very

confident but of very high EL which are not detected by

the confidence mechanism, a phenomenon which again hints

poor choice of (wL, wR).

Observation 2: In Fig. 5, we see the true effect of the good

and bad training; in both cases the remote predictions ŷR are

reasonable, however the local ones ŷL differ significantly.

In the (0.7, 0.3) case, ŷL overprovisions more than the ŷR,

however in the (0.1, 0.9), we see that the ŷL has not really

learned properly, as it stays constant for great periods of

time. Essentially, this strikes the significance of (wL, wR);
in good training cases, there is correlation between EL and

uncertainty U .

Constant cu = 1.0 underprovision penalty. We increase

cu = 1 by keeping the same objective function, i.e., (3); we

will discuss results of similar nature as the previous ones, but

0 50 100 150 200
Time

0

0.2

0.4

0.6

S
ig
n
al

V
al
u
e

Time Series: (wL,wR) = (0.7, 0.3)

Local forecast
Remote forecast
True demand

(a) (wL, wR) = (0.7, 0.3)

0 50 100 150 200
Time

0

0.2

0.4

0.6

0.8

S
ig
n
al

V
al
u
e

Time Series: (wL,wR) = (0.1, 0.9)

Local forecast
Remote forecast
True demand

(b) (wL, wR) = (0.1, 0.9)

Fig. 5: Offline forward pass of all samples; green: local exit forecast, red:
remote exit forecast, black: true demand. Constant underprovision penalty
cu = 0.5

0 200 400 600
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.07 (wL,wR) =(0.89, 0.11)

Uncertain
Confident

(a) EL vs Time: Tconf = 0.07

0 200 400 600
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.1 (wL,wR) =(0.89, 0.11)

Uncertain
Confident

(b) EL vs Time: Tconf = 0.1

0 50 100 150 200
Time

0

0.2

0.4

0.6

0.8

S
ig
n
al

V
al
u
e

Time Series: (wL,wR) = (0.89, 0.11)

Local forecast
Remote forecast
True demand

(c) Resource Scaling for local (green) and
remote (red) exits, along with true demand
(black)

Fig. 6: (wL, wR) = (0.89, 0.11) Constant underprovision penalty cu = 1

we will stress qualitative differences between the two cases.

First of all, in Fig. 2(b), we see an interesting difference

compared to cu = 0.5: our distributed DNNs, that were

trained with wL > wR have achieved a cost that is lower than

the centralized DNN (for which we have: wL, wR = 0, 1).

Although this might seem surprising, there is rich literature

surrounding this phenomenon [5], [10], [24]; it has been

claimed that early exits serve as additional strong source
of regularization for a DNN, and by using them. We can

see that in Fig. 2(b), and more specifically for the case

where Tconf = 0, i.e., when our distributed DNN resolves all
samples remotely; there, the model (wL, wR) = (0.89, 0.11)
can achieve a cost which is 7% than the one of the centralized

DNN which is trained using (wL, wR) = (0.0, 1.0) We

can increase confidence threshold up to a point where our

distributed DNN has more or less the same cost as the

centralized architecture. We observe that we are able to

resolve 60% locally, and have the same cost as the centralized

architecture: a clear benefit!

Observation 3: There are scenarios where not only can we

resolve a significant percentage of decision locally, but we

can even improve the overall cost as well, compared to an

equally powerful but centralized DNN.

Moreover, the harmonic coexistence of the confidence

mechanism alongside the DNN is evident from Figs 6(a) and

6(b). We can see that the mechanism captures samples that

are of very high EL, thus using the remote layers in order

to improve in most cases, and resolves locally many samples

which are of EL ≈ 0, or even lower (these samples are better

forecast locally!)

Key take-away: To achieve such trade-offs, we have to

carefully choose the local/remote weights at joint training—

the performance of the DDNN is sensitive in those crucial

0 50 100
Samples Predicted Locally (%)

680

700

720

740

760

780

800

T
ot
al

C
os
t

Tradeoff Curves

(wL,wR) = (0.93, 0.07)
(wL,wR) = (0.83, 0.17)
Centralized DNN

Fig. 7: Operating points: (total cost, percentage of samples predicted at local
exit) for increasing Tconf. Underprovision penalty: quadratic c′u = 30 plus
constant cu = 0.5

0 200 400 600 800
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.05 (wL,wR) =(0.83, 0.17)

Uncertain
Confident

(a) Tconf=0.05

0 200 400 600 800
Time

-1

-0.5

0

0.5

1

L
o
ca
l
E
rr
or

Tconf = 0.11 (wL,wR) =(0.83, 0.17)

Uncertain
Confident

(b) Tconf = 0.11

Fig. 8: (0.83, 0.17). Error at local exit vs Uncertainty: green (below threshold)
- forecast local, red (above threshold) - forecast remotely. Underprovision
penalty: quadratic c′u = 30 plus constant cu = 0.5

parameters, and a more systematic study of the importance

of these parameters is deferred for future work.

D. Quadratic plus Constant Underprovisioning

We study the same problem, but use a stricter (in the un-

derprovision penalty sense) objective (4). Looking at Fig. 7,

with cu = 0.5 and c′u = 30, we plot the tradeoff curves

for two models (wL, wR) where the “avoid overthinking”

phenomenon is again present. Both presented models, i.e.,

(0.93, 0.07) and (0.83, 0.17), heavily outperform the cen-

tralized DNN. The (0.83, 0.17) model has the same cost
with the centralized, when it is able to resolve 75% of its

samples locally. In Fig. 8, we see the following: regardless

of Tconf, the remote layers take responsibility for the “hard”

cases (many red samples with high EL), and to make things

better, the locally resolved samples are of relatively low EL,

showing that the confidence mechanism serves its purpose

of classifying correctly hard and easy samples. Finally, from

Fig. 9, we can see that the local exit, although will less layers,

it is able to perform more or the less the same resource

allocation -and sometime overprovision less than the remote.

Key take-away: The DDNN architecture paired with the

confidence mechanism is robust to other objectives as well.

Finally, we present Table II which has the following

information: it quantifies for the models we presented up to

this point, the mean (over all BSs and over all timestamps)

percentage of underprovisioning. In the table we only show

wL, (which also defines wR = 1 − wL), and with dash we

refer to the centralized DNN (which resolves all samples

400 450 500 550 600
Time

0

0.2

0.4

0.6

0.8

S
ig
n
al

V
al
u
e

Time Series: (wL,wR) = (0.93, 0.07)

Local forecast
Remote forecast
True demand

(a) (0.93, 0.07)

400 450 500 550 600
Time

0

0.2

0.4

0.6

0.8

S
ig
n
al

V
al
u
e

Time Series: (wL,wR) = (0.83, 0.17)

Local forecast
Remote forecast
True demand

(b) (0.83, 017)

Fig. 9: Resource Scaling for local (green) and remote (red) exits, along
with true demand (black). Underprovision penalty: quadratic c′u = 30 plus
constant cu = 0.5

TABLE II: Under-provisioning: all objectives

Objective wL Local [%] Remote [%]

cu = 1

0 – 0.61
0.89 0.83 0.61
0.92 0.82 0.62
0.93 0.67 0.68

c′u = 30 and cu = 0.5
0 – 1.51

0.83 2.47 1.65
0.93 2.04 1.88

cu = 0.5
0 – 1.89

0.7 2.21 2.62
0.5 2.03 2.03

remotely). Let us focus on the first and third row (the constant

underprovisioning penalty cases); both the remote and local

exit underprovision less as we go from cu = 0.5→ cu = 1;

which is reasonable as the objective is stricter. Then a second

comparison is to observe second and third rows, we clearly

see that the quadratic plus constant cu = 0.5 underprovisions

much less in the remote exits, however the local ones, perform

similarly, a fact which hints that the remote exit was better

trained.

E. Larger Instances and Correlation

As explained earlier, the BS time series might exhibit

some degree of correlation, that the architecture that jointly

handles them tries to leverage. To this end, in this section

we explicitly focus on the impact of such correlation both

in the centralized and in the distributed operation. However,

this step is performed given the set M of the BSs. Along this

line of thought, we compare two scenarios: (a) M BSs chosen

randomly out of the set of the 10K available ones; (b) M BSs

that exhibit a higher correlation than random ones (according

the the SBD metric -see Section IV-A). In Fig. 10, we plot

the tradeoff curves for M = 16, 25, 36, thus 6 curves in total.

Observation 5: For M fixed, and comparing correlated to

randomly picked BSs: the huge performance gap, indicates

that there is a lot of benefit in using BSs that are correlated

-before even placing them in the 2D grid- for the distributed

DNN architecture that we propose.

Regarding the cost performance between the same method

of choosing BSs: we can clearly see that the three curves

up top, are the ones where the BSs were chosen randomly

(worst performance). In addition, the performance differences

among them are not that significant. The trend is slightly

different for the correlated ones: we see the performance

differences larger; this hints that although the correlation

0 50 100
Samples Predicted Locally (%)

40

60

80

100

120

T
ot
al

C
os
t/
B
S

Tradeoff Curves: 16, 25, 36 BSs

36 random - (0.87, 0.13)
25 random - (0.95, 0.05)
16 random - (0.82, 0.18)
36 correlated - (0.99, 0.01)
25 correlated - (0.7, 0.3)
16 correlated - (0.8, 0.2)

Fig. 10: Comparison of tradeoff curves for 16 and 25 BSs.

helped improve the cost (compared to having random BSs),

maybe even larger architectures are needed. Since we try to

predict per BSs, the task becomes increasingly challenging.

VI. RELATED WORK

Data-driven methods and DNNs have been used recently

for both traffic prediction as well as for slice resource allo-

cation. The problem has been viewed by a variety of angles;

it has been faced through pure DNN based approaches [3],

[4], by stochastic control methods (Lyapunov) methods [25].

Additionally, slicing has been a fruitful field of application

for online convex optimization [12], [26], [13]. Moreover,

reinforcement learning [27], [28] for resource orchestration

has been recently applied on the problem On the other hand,

DNNs [10], [5], [24], [8], [18] with early exit(s), is a recent

and promising research avenue with many under-exploited

applications. Moreover, a key quantity is the amount of

information transmitted to the remote layers. Recent works

that have proposed systematic ways of compressing the

information of the transmitted (towards the cloud) maps,

e.g., by dynamically adjusting the sent features depending

on network conditions [18], [29], [30].

Here, we also stress the points we differentiate with

closely related works. Compared to [3], the novelties are:

(i) distributed inference, (ii) different objectives investigated,

as well as a per BS (rather than aggregate) prediction,

(iii) significant performance benefits, both in terms of over-

head/latency and often in terms of allocation cost, and (iv) a

confidence mechanism that estimates the quality of the local

exits. With respect to [5], we differentiate at the following:

(i) a different DNN architecture, (ii) different ML task task,

namely multivariate time series prediction rather than image

classification, (iii) an in depth-investigation of the interplay

between joint training weights, uncertainty mechanism, and

time-series correlation and its impact on objective cost, actual

time-series prediction and percentage of samples resolved

locally.

VII. FUTURE WORK

Local or Remote Decision. The uncertainty is just a way

of distinguishing what samples should be forecast locally;

however, other data-driven optimization methods whose goal

is to learn the characteristics of the EL signal by receiving
feedback from the environment are interesting alternatives.

Such an algorithm could for example dynamically tune the

Tconf instead of using it as a tuning parameter, as we did.

Objective weights. A crucial step of the algorithm that we

presented is the selection of (wL, wR); note that however, one

may wish to split an NN in more than two locations, a setup

which is even more challenging than ours. This motivates as

an interesting avenue of research: the design of a scheduler

which can automatically tune these weights during training.

VIII. CONCLUSIONS

We have developed a very promising Distributed DNN

framework for the task of resource scaling for 5G and beyond

networks. The proposed architecture consists of two exits:

a local and a remote, which have to be trained jointly by

assigning a weight to each. The joint training forces the local

exit to improve its performance, but also acts as a regularizer

for the remote one. More importantly, we pair the DNN with

a Bayesian based confidence mechanism which aims to detect

the samples of high uncertainty and send them to the remote

cloud for further processing. Comparing our algorithm with

its equivalent centralized one, we observed that it is possible

to resolve ≈ 60% of the incoming samples locally, with

almost zero cost performance loss.

REFERENCES

[1] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications surveys &
tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[2] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,
“Spatiotemporal modeling and prediction in cellular networks: A big
data enabled deep learning approach,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, pp. 1–9, IEEE, 2017.

[3] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Deepcog: Cognitive network management in sliced 5g networks
with deep learning,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pp. 280–288, IEEE, 2019.

[4] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Aztec: Anticipatory capacity allocation for zero-touch network slic-
ing,” in IEEE INFOCOM 2020-IEEE Conference on Computer Com-
munications, pp. 794–803, IEEE, 2020.

[5] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pp. 328–339, IEEE, 2017.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[7] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using
deep spatio-temporal neural networks,” in Proceedings of the Eigh-
teenth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, pp. 231–240, 2018.

[8] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why
should we add early exits to neural networks?,” Cognitive Computation,
vol. 12, no. 5, pp. 954–966, 2020.

[9] R. Schmidt and N. Nikaein, “Ran engine: Service-oriented ran through
containerized micro-services,” IEEE Transactions on Network and
Service Management, vol. 18, no. 1, pp. 469–481, 2021.

[10] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), pp. 2464–
2469, IEEE, 2016.

[11] Telecom Italia, “Milano Grid.” https://doi.org/10.7910/DVN/QJWLFU,
2015.

[12] N. Liakopoulos, G. Paschos, and T. Spyropoulos, “Robust user as-
sociation for ultra dense networks,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pp. 2690–2698, IEEE,
2018.

[13] N. Liakopoulos, A. Destounis, G. Paschos, T. Spyropoulos, and P. Mer-
tikopoulos, “Cautious regret minimization: Online optimization with
long-term budget constraints,” in International Conference on Machine
Learning, pp. 3944–3952, PMLR, 2019.

[14] P. John and L. Gravano, “K-shape: Efficient and accurate clustering of
time series,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, (New York, NY,
USA), p. 1855–1870, Association for Computing Machinery, 2015.

[15] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen,
B. Viswanath, L. Jiao, and C. Fetzer, “Sieve: Actionable insights from
monitored metrics in distributed systems,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, pp. 14–27, 2017.

[16] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[17] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[18] S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti, “Neural
networks meet physical networks: Distributed inference between edge
devices and the cloud,” in Proceedings of the 17th ACM Workshop on
Hot Topics in Networks, pp. 50–56, 2018.

[19] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” Journal of Network and Computer Applications,
vol. 116, pp. 1–8, 2018.

[20] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[21] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, pp. 1050–1059, PMLR, 2016.

[22] L. Zhu and N. Laptev, “Deep and confident prediction for time series
at uber,” in 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 103–110, IEEE, 2017.

[23] H. Yu, M. J. Neely, and X. Wei, “Online convex optimization with
stochastic constraints,” arXiv preprint arXiv:1708.03741, 2017.

[24] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Un-
derstanding and mitigating network overthinking,” in International
Conference on Machine Learning, pp. 3301–3310, PMLR, 2019.

[25] A. T. Z. Kasgari and W. Saad, “Stochastic optimization and control
framework for 5g network slicing with effective isolation,” in 2018
52nd Annual Conference on Information Sciences and Systems (CISS),
pp. 1–6, IEEE, 2018.

[26] N. Liakopoulos, G. Paschos, and T. Spyropoulos, “No regret in cloud
resources reservation with violation guarantees,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pp. 1747–1755,
IEEE, 2019.

[27] Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge
computing network with decentralized deep reinforcement learning,” in
2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS), pp. 234–244, IEEE, 2020.

[28] A. Okic, L. Zanzi, V. Sciancalepore, A. Redondi, and X. Costa-Pérez,
“π-road: a learn-as-you-go framework for on-demand emergency slices
in v2x scenarios,” arXiv preprint arXiv:2012.06208, 2020.

[29] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “Spinn: synergistic progressive inference of neural networks over
device and cloud,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, pp. 1–15, 2020.

[30] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pp. 1423–1431, IEEE,
2019.

