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A Toeplitz Displacement Method for Blind Multipath
Estimation for Long Code DS/CDMA Signals

Carlos J. Escuderdember, IEEEUrbashi Mitrg Member, IEEEand Dirk T. M. Slock Member, IEEE

~ Abstract—The problem of blind channel identification for Furthermore, we will consider DS/CDMA systems where the
direct-sequence/code-division multiple-access (DS/CDMA) mul- signature waveforms have periods much longer than a symbol
tiuser systems is explored. For wideband DS/CDMA signals, 4 ration. Suchandomizedspreading is appropriate for systems
multlpath .dISt0I’tI0n |s.WeII modelgd by.a}flnllte-lmpuls.e response based on 1S-95 as well as for military svstems that require a
filter. In this work, a blind channel identification technique based ¢ . y sy : aq
on second-order statistics is investigated. The method exploits higher degree of security as afforded by long randomized codes.
knowledge of the spreading code of the user of interest via matched The contributions of this paper are the development and anal-
filtering, as well as properties of spreading codes. The current ysjs of a blind channel identification scheme for randomized
scheme focuses on a method appropriate for randomized long spreading codes. In particular, an approximation of the mean-

e

sequence DS/CDMA. This access scheme poses special challeng d ch | estimati is derived based turb
as the spreading codes are time varying. An analytical approxi- sguared channel eStmation erroris defived Dased on pelturoas

mation of the mean-squared error is derived using perturbation tion analysis techniques. Simulation studies verify the tightness

techniques. The performance of the algorithm is studied via ofthe approximation. The mean-squared error developmentrep-
simulation and through the mean-squared error approximation, resents some of the first work on error derivation for channel es-
which is observed to be tight. timation in systems with randomized codes (in addition to that
Index Terms—Blind channel identification, code-division mul- found in [19]). Due to the spreading operation, DS/CDMA sig-
tiple-access systems, perturbation analysis, randomized spreadingnals lend themselves naturally to a category of blind channel

sequences. identification techniques that have become recently popular (see
e.g., [10]). Although itis possible to estimate the global channel

l. INTRODUCTION response (see, e.g., [7] and [17]), we will focus on schemes that

- . stimate the pure channel only (e.g., [15]).
D IRECT-SEQUENCE/code-division multiple-access (DS? We will adopt an approach based on second-order statistics.

CDMA) is a promising candidate for next-generatio%uch methods typically exploit channel diversity as obtained

wireless systems [1], [3]. In order to provide high-fidelity; oversampling or multiple sensors. However, in DS/CDMA

detection, it is necessary to either implicitly or explicitly char—S stems, such techniques to create a multichannel system are

acterize the yvireless propagation ghannels. The propaga ecessary. This is due to the fact that DS/CDMA systems are
effects experienced by wideband signals such as DS/CD ihherently multichannel as a result of the spreading operation.

can be well modeled by a tapped delay line. With knowled us, while multiple sensor systems are considered in [7] and

of these multipath coefficients, multluser_ equalizers can f5],they are not necessary, as seenin [2]. In essence, each chip
constructed (see, e.g., [5] and [21]). In this paper, we explo Pa user's spreading code behaves like a channel.

blind channel identification schemes for multiuser SYStems 1 - pasis of our methods will be the direct exploitation of the

employing DS/CDMA based on second-order statistics. TI%?Jreading sequence of the user of interest via matched filtering.

sea_rch for blind ?d_entifif:atior! methods is motivated k_’y thEordelay spreads that are much smaller than the symbol period,
desire to have training signal independent schemes to imprqy,

h Il data rate of th ; fhoderate number of matched filter outputs form a set of statis-
€ overall data rate of the system. tics that are suitable for performing blind channel identification.
This often allows for a significant reduction in computational
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users. Recently, there have been several contributions to this II. SIGNAL MODEL

type of blind identification for long code systems. A key We will h t t h th ti
property shared by [6], [16], [18], and [19] is that it is e will presume a coherent system where the active users

d that th er has knowled ¢ all of th transmit DS/CDMA signals. The signal is transmitted over a
presumed that the receiver has knowledge ot all of the user[r‘ct’ultipath channel. Coarse synchronization (accuracy to within

Sprehadlng c_odels. F:)tr ranfltimlztedkcod%DSé%DMAt TySt(?[rr:WSha” a chip) is assumed for the user of interest. Synchronization
?\lfjc aredc!uwemedn r?nfs(ae? 0 Know. $d| erten engin for DS/CDMA systems is a challenging issue; possible synchro-
spreading Codes lors active users and a transmission,;; i schemes include [13],[15], and [17]. A synchronization

block of B bits. . )
. . . h fically fi d d code DS/CDMA syst
In [16], an iterative approach that modifies the channel esfb%segﬁpzpsz(g |i<r:]a[2y0]or randomized code systems

mation method of [14] to the multiuser, randomized code CaS€rne paseband representation of the received signal after co-

is considered. Essentially, a series of least-squares probleqig. ¢ reception is given by

where, alternatively, the data symbols or the channel is assumed

to be known and the other quantity is estimated, are solved. < P

Correlation matching techniques are employed in [18]. In[6], #(t) = Y > Apdp(t —nT — 7,)bp(n) +w(t). (1)

an iterative scheme is derived based on alternating projections. n=—o0 p=l

Whereas [6], [16], and [18] consider the uplink estimatiof, randomized code DS/CDMA, the spreading waveform for

problem, [19] focuses on the downlink. In the downlinkgacp ysep, & (#) changes from bit to bit and is thus a function

one can exploit the fact that all users’ signals, including t'ﬁn,which ispthe symbol index. In the equation aboy;e(x) de-

interferers, are received through the same channel.. notes the effective spreading waveform for ysand for QAM
The second approach to the problem at hand is to tak&gnnolp, (n). The effective spreading waveform is constructed

stochastic view. Thus, the long spreading sequences are modgled gh convolution of the original spreading waveform with

as random sequences, and properties of the resulting Stat'sﬁﬁ%schannefg(t) — ¢(t) * hy(t), where the channel response

are exploited to perform identification. In this category arg,, userp is h,(t). The spreading waveform is formed via
present the proposed work and the work of [8]. The stochastic

approach obviates the need for the complete knowledge of all N
user signature waveforms. The algorithm presented herein can () =Y ep(lyp(t —IT.)
thus has applicability for both the uplink and the downlink. =1

It will be seen that the matched filtering algorithm developqg,herez/}(t) is the pulse shape of the chip and has duration
herein offers a comparable channel estimation error to thatpcf_ For simplicity, we will consider rectangular pulse shapes.
[8]. The new algorithm does, however, offer several tunabig,e sequence’(l) is the spreading sequence for ugethat
design parameters to regulate performance and thus provigﬁgngeS from f;ymbm to symbol and takes on values equal to
additional flexibility. It should be noted that the complexity of<i1/\/ﬁ) with equal probability, whereV is the spreading
the algorithm in [8] is less than the proposed algorithm. Thesin (i.e., number of chips/bit). Note that symbol duratiof'js
main contributions of the current work are the observatiog),q thusI” = NT.. The delay for usep is denoted by, and
that the matched filtered multiple access interference can g transmitted amplitude for useis A,,. These amplitudes are
well-modeled as interference that is stationary at the chip raigpgeled as fixed, but unknown quantities. We will assume that
a tight approximation of the mean-squared channel estimatigiy gelay values are integer multiples of a chip. The fractional
errorforarandomizedspreading code environment, andthoroqg{hs of the delays are incorporated into the effective channel
simulation studies of the proposed algorithm. The simulatigppy|se responsé,,(t). The additive, circularly symmetric
studies reveal that neither the proposed algorithm nor thgyssian noise processigt) with variances?,.
algorithm of [8] are near—far resistant, which is a facet not \ye will assume that the data signals and the noise process
previously studied. It is noted that the requirement of fulire muytually independent. We also assume that the channel is
knowledge of the spreading codes of all active users for tefinjte length and that the multipath delay spread is less than a
works in [16], [18], and [19] precludes fair comparison t&ymbhol interval. For facility of description, we assume that the
the technique presented herein. _ channel length for each userig chips (4 < N). In fact, the

This paper is organized as follows. Section Il presents thechniques explored herein only require knowledge of the de-
signal model and the assumptions employed. Section Ill dgreqd yser's channel length. The received signal is chip-matched
scribes the technique for blind channel identification for Sy$itered and sampled at the chip-rate; thely, + M — 1 samples
tems with randomized codes. Section IV provides the analygig concatenated to form the observation vexted. The quan-
of the meqn-squared error_for t.he new ident_ification scheme. {§y 4 represents the number of “whole” data symbols contained
sues relating to the practical implementation of the proposggihe observation vector. This concept is elucidated further in
algorithm are noted in Section V. Numerical results are prese sequel. Fig. 1 depicts the scenario where 1, N = 5,
sented in Section VI, and concluding remarks are provided i#jdas = 3. The filtered and sampled complex channel impulse
Section VII. The Appendix contains key derivations necessafysponse is denoted fy, = [2,(0), -- -, h,(M — 1)]7.
for the mean-squared error analysis. For notational clarity, we begin by providing an expression

1A decentralized correlation matching scheme is alluded to in [18] that dottgr the observation vector under the assumption of a synchro-
not require all users’ codes. nized system+#, = 0V p). The extension to asynchronous in-
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b(1) b(2) b(3) lengthM. C(c,(n), M)isa(N + M — 1) x M matrix since
- ] cp(n) = [ep(n), -+, cp(n + N — 1)]7, i.e., see (4) at the
L bottom of the page. We defin@), ,,(n) to be the firstV rows
L] of C(c,(n), M) andC2 ,,(n) to be the lasth — 1 rows of
C(e,(n), M). Then, the spreading code matrix for upesf di-
Fig. 1. A?stract depiction of observation vector for a single user system WiFhension(aN + M — 1) x (a + 2)M is given by the second
length S (V) spreading sequence: three pathf)(anda = 1. equation at the bottom of the page, where the ma Xy (0 +

_ _ ) (a + 1)N) is composed of the first/ — 1 rows of C; ,,(n +
terferers is straightforward once the relevant matrices have be{gmr 1)N). ’

defined. We consider an observation vector containimgole In order to consider asynchronous systems, we can modify
data symbols (and two partial bits; see the shaded area in Fig.(é).as follows. First, we will presume that user 1 is the user
The partially observed bits are due to intersymbol interferenc&. interest. We define the global channel matrixGs(n) =
The observation vector efV + A — 1 samples (at the chip rate) C,(n)H,. Let 7, = d,T. be the delay of interfering user

is expressed as with respect to user 1. We assume thag 7, < 7 and that
P d, € {0, 1, ---, N — 1}. The global channel matrices for the
x(n) = Z A,Cp(n)H, b, (n) + w(n) (2) interfering users are constructed by forming the ma&ixn)
1 as above, but this matrix is of dimensi¢fu + 1)N + M —
1) x (a+3). The channel matri%,,(n) is formed by removing
where thex(n) = [z(n), -+, x(n + aN + M — 2)]" and the firstN — d,, rows and the last, rows fromG: (n); finally,
w(n) = [w(n), ---, w(n +aN + M — 2)]* are vectors of the the last column is also removed. Note that this global channel

received samples and noise samples of §i2é + M — 1) x 1, matrix can be written as the product of appropriately truncated
andb(n) = [b(|n/N]|-1), ---, b(|n/N|+a)]" isa(a+2)x1 C,(n) andH, matrices.
vector of data bits. The operat¢r| is the floor operator and In order to more fully exploit properties of the DS/CDMA
returns the largest integer smaller than its argument. The chargighals, the identification scheme presented in this work pro-
matrix for userp of dimension(a + 2)M x (a +2) is given by cesses a set of matched filter outputs synchronized to the desired
user’s signal rather than processing the received sigfia)
H, =I,42 ®h, () directly. We useM matched filters per received symbol. The

where® denotes the Kronecker product operator, &ngd, is aM x 1 observation vecta (») is given by

the identity matrix of dimensiolfe + 2) x (a + 2). We will y(n) =81 (n)x(n)
use the notatior€(v, M) to denote the Sylvester matrix of

width A for vectorv. This is equivalent to the convolution =S1(n) <
matrix for the convolution of vector with another vector of

r
Z ApCp(”)Hpbp(”)> + Si(n)w(n) (5)

ep(n) 0 0
p(n+1) cp(n)
: 0
ep(n+ M —1) cp(n)
Clep(n), M) = : : 4)
ep(n+ N —1) ep(n+ N — M)
0 ep(n+ N —1)
0 0 cp(n +'N -1)

CZQ% m(n—N) C;, m(n)
C y(n) CLyn+N
C,(n) = C? y(n+N) C. p(n+2N)

~—
=)

C;Q;, m(n+aN) C};, u(n+(a+1)N)
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where theaM x (aN + M — 1) matched filtering matrix
S (n) is given by (6), shown at the bottom of the page, where

Ci y(n) andC? ;,(n) are the firstV and lastd — 1 rows
of C(e1(n), M), respectively.

The matricesS?'(n) andC1(n) are related in the following

manner:

Ci(n)
CiM(n -N) 0
= 0 ST (n) 0
0 : Cl y(n+(a+1)N)

()

That is,Cy(n) is formed by augmentin§?(n) by the appro-
priate2M columns.

[ll. TOEPLITZ DISPLACEMENT-BASED CHANNEL ESTIMATION

657

r
N, N;—o0 N —
&~ ofSCHH{SC{ + > 62R(h,) + 021
p=2

(11)

where

SC; =

]és S S4(n)Ci(n)

where N, is the number of samples employed for time av-
eraging, andR(h,) is the asymptotic averaged covariance
matrix for userp. We note that the asymptotic approximation
above follows from key assumptions made about the random-
ized spreading codes. That is, the components of the code
sequences are independently and identically distributed and,
furthermore, are stationary at the chip rate. Therefore, we have
S1(n)Ci(n) = SCy + A(n), whereA(n) is a time-varying

The randomized spreading code model implies that the aup@rturbation matrix, an8C; = limy, .., SC; = [0 L,/ 0].
correlation sequence of the desired user’s spreading sequehue perturbatiomA(n) gets small asV gets large, and hence,
is a delta function. Similarly, the cross-correlation sequence tierms of the formA (n)H; H¥ A# (m) become negligible as
tween two distinct users is ideally identically zero. Let us conlV — oo. The effects of the imperfect spreading auto-corre-
sider thez M x 1 matched filter output vectagr(n) of (5). With  lation function are captured i8C;. Asymptotically, as the
our assumptions on the data symbols and the noise, we takeseading gain increase®&’(T) and as the number of samples
pectation with respect to the data symbols and the noise. Thused to average increases,( 1), R; and R,, converge to
the output vector covariance matrix is Toeplitz matricesR(h,,) is the Toeplitz autovariance matrix
of the channeh,].

Ry(n) IEb,w[Y(”)YH(”)] (8) Channel identification can be performed by noting that the
(9) Toeplitz contribution of the channel noise and interference
=028, (n)C1(n)HHZCH (n)ST (n) + Ry(n) can be removed. To that end, let us focus on the limiting case

+ Ru(n) (10) limy, ..o R, = R,. Consider now the following Toeplitz

displacement operation:
wheres? = AZE{b?(n)}, andR.,(n) = ¢3S, (n)ST(n)isthe

noise autocorrelation matrix. The contribution of the interfering Ry =Ry (2: al, 2: aM) = Ry (1: aM = 1, 1 aM — 1)

users at time is thus =R; -R,
P =0?SCTH,HSCI" — s2SCTH HISC? (12)
Ri(n) =Y 0781 (n)Cp(n)H,H} C} (n)ST (n). =t AT - i, AT (13)
p=2 htht#
11 "
We now consider the time-averaged versioRqf(n). That _ 2 hy by
is T
B ;X h h#
R,= + > Ry(n) h;h/
 p=1 h hH
1y
52 Qs — o} (14)
= & Y~ Sum)Ci(mHH Cl (n)ST (n)
s Ao hrh”
n=1 11
C%, m(n) 0
C%, wm(n) C%, m(n+N)
0 C? y(n+N) .- 0
ST(n) = o ©)
Ci m(n+a)
Ci m(n+aN)
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where the matrix notatiorB(:: j,4: j) corresponds to  To solve (19), we must find the matrix where the gradient of
the submatrix ofB formed by the appropriately truncated’ with respect td/V vanisheg, i.e.,

rows ¢ through j and columnsi through j, and SC =

SC1(2: aM, 1: aM)andSC] = SCy(1: aM — 1, 1: aM). a—j:0—VHH—O+W:0:>W:VHH. (20)
Thus,SC] andSC{ are formed fromSC; by removing the

last and the first row, respectively. The quantiti€s,, I-,,, Substituting (20) into (19), we obtain

b, andh] are defined similarly t&8C; and SCY . Finally,

I:Il = I, ®h;. Note thatR,, is a(CLM — 1) X (CLM — 1) matrix fll = arg min Tracq’}-[HH — HHVVHH — HHVVHH

of rank 2a. The 2a nonzero eigenvalues correspond to the hy

contribution of the desired userRy,. The eigendecomposition + HHVVHH}
of Ry, is given by = arg min Tracg H¥ (I - VVH)H}. (21)
aM—1 This fitting problem can be expressed as follows:
R, = Avivi, 15 .
’ ; (13) h; = arg ||t11n|i|n1 Trace HPH} (22)
U=
We order the eigenvalues such that > Ay, -+, > Agar_1. = arg ”}IlnﬁlithQh (23)
With such an orderingAy, ---, A, are positive, A\ups—a, s

-+, AaM—1 are negative, and the remaining eigenvalues AhereP = I— VVH

; is the projection matrix onto the orthog-
equal to zero so that in fact

onal complement of the column space¥f Thus, the desired
solution is the eigenvector & corresponding to its minimum

R, = VAVH (16) eigenvalue, wher€) is defined as
a+2 +
whereV = [vy - VoVan—a - Varr—1], and A = diag{ A, Q= Z Z Df@?”})@?ﬁi. (24)
oy Aas AaM—as 7 Aanr—1}. Thus,V is comprised of the =1 g

eigenvectors corresponding to the nonzero eigenvaluAsdh

Ry,. Loosely speakingR;j contributesa positive eigenvalues The D, are(a + 2)M x M permutation matrices defined as
andR, contributes: negative eigenvalues, as seen in (14). Fdollows:

h; to be identifiable fromR,,, it is clear thatz cannot take on

arbitrary values given a particular value/df. The valid choices :Di(l7 m) = { L, m=Il-(i—-1)Mfori=1, .-, a+2

for a are explored in Section VI. A 0, otherwise.

In practice, from the sample average correlation matrjx= (25)
(1/Ny) Zﬁ:‘;l y(n)y"(n), we form the estimate®;, and de- . . : _
{eIMINGY 1. -« -, ¥y ANAVops_as -+, Vors_1 @S the eigenvec- Using these permutation matricdd,, = L,+» ® h, can be

alternatively represented &, = [D1h,Dsh,, - -- D, oh,)].

The recognition of the Toeplitz structure of the interference
matrix was also made in [8]. However, instead of working with
lhe Toeplitz displacement @&, the difference of the covari-
ance matrices before and after code-matched filtering was ma-
nipulated. Under ideal spreading code assumptions, it can be
h; = arg min ||H — v W% (17) shown that this differenceis, in principle; h!’. Thus, the prin-

hi, W cipal eigenvector of the difference between the matched filtered
covariance matrix and the nonmatched filtered covariance ma-
trix will yield the desired channel estimate. The work in [8]

tors corresponding to the most positive and: most negative
eigenvalues of{h.

We introduce the following subspace fitting problem to est
mate the unknown channel:

where’H I_[(S—&Hl)—'—(%lHl)i] = [%TS_QI_]HZL We
useH = [SC}SC; |H, and notH = [I},,I_,,JH; in an at-

Taking into account thafA ||2. = Tracegl A A} is the Frobe- tion VI.
nious norm, the criterion in (17) can be expressed as

IV. APPROXIMATION OF MEAN-SQUARED ESTIMATON ERROR

h; = arg min TracH"H — H"VW - WHVTH In this section, we provide an analytical approximation to the
" o H mean-squared channel estimation error. We show, via simula-
+HW v FYW} <o tion studies in Section VI, that the approximation derived herein
= arg ﬁni{}vaace{H H-H"VIWV-WIVTH matches quite closely to simulation data. A perturbation tech-
1, . . . .
nigue (see, e.g., [11]) is employed to determine the approxima-
L WHWY g M ( g., [11]) ploy pp

= arg min J. (19) 2Note that(d Tracfl AW} /OW) = AT and(d Trac WHA}/OW) =

- LW 0, whereA is an arbitrary matrix independent &Y [22].
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tion of the mean-squared error. Such a technique exploits fh@m [12, eq. (A.2)] and the fact that the eigenvalues associated

following identities: with the noise subspace are ideally zero, we obtain
QE = 8 PV = PR, VAL (32)
Qh~0 S (Q+AQ)L+ AR ~0 (26) o o
1 =h+ Note that the Toeplitz displacement shown in (12) ideally re-
Q =Q+AQ . . moves any contribution due to the noise and the interferers. Sub-
whereh = v,,,;, (Q). stituting (31) and (32) into (29), we obtain the following expres-
R R sion:
The minimum eigenvalue of) is denoted )\min(g), and
the corresponding eigenvector is denoted,,(Q). We Ah(k) = Trace QPR VA~ VK], (33)

note that in the set of expressions abo¥gh ~ 0.
This approximation is justified as follows. Technicallywe seek to computE[Ah(k)Ah*(k)]. Deriving this expecta-
Qh = Apin(Q)Vmin(Q). As Ny — o0, Q — Q, we can tjon relies on exploiting the fourth-order statistics of binary and
thus assume thatny, —co Amin(Q) = Amin(Q) = 0 [12].  Gaussian random variables. As these derivations are somewhat
For a reasonable number of sampléé,, Qh will closely |engthy, they are relegated to the Appendix.
approximate the zero vector. This is borne out via empirical
evidence co!lected through simulatiqn studies. . V. PRACTIAL CONSIDERATIONS

Note that in the sequel, we are going to remove the subindex _ _ _ _ )
. of the desired user vector chanrgl. SinceQh = 0 and There are three practical considerations in the implementa-
second-order effects are presumed negligiteQ )(Ah) ~ 0, tion and evaluation of the proposed algorithm that require dis-
and we can modify the expression in (26) to yield the followin§USSion. These three considerations are

approximation: 1) the need for normalization due to the scalar ambiguity
present in the channel estimate;
Q(Ah) ~ —(AQ)h (27) 2) a cleaning operation for the estimated difference covari-
ance matrix to improve performance;
and therefore 3) overestimation of the channel order.

~_Of
Ah = -Q'(AQ)h A. Channel Estimate Normalization

- _Q:(AQ - Qh It is well known that a scalar ambiguity exists in the resulting
=-Q'Qh (28) ' channel estimate for identification employing second-order sta-
tistics since the channel can only be estimated up to a scale
factor. To remove the effect of the unknown scalar, we consider
a normalization of the vector channel estimate. The chosen nor-

whereQ' denotes the Moore—Penrose pseudo-inverg dhe
kth component ofAh is given by

Ah(k) ~—q Qh malization is
a+2 A .
=—qf' > Y DFSC/"PSC/D;h h = ah (34)
=1 ,8:—7 + .
2(a+2) whereq is a complex scalar selected such th&th = hh.

_ _ Z HDHPD.h The Cramér—Rao bound (CRB) for this type of normalization
it qx 7 7 . .
— corresponds to the Moore—Penrose pseudo-inverse of the Fisher
N information matrix (FIM), which is singular due to the scalar
=-—Trac 'PH 29 . . ! o
4Qs ; (29) ambiguity [4]. This particular normalization leads to the lowest

whereP is the estimated noise subspace projection matrix, aR8SSible CRB and corresponds to the smallest introduction of
qu. is thekth column of(Q7)H. The matrixQ¥ is formed via additional information since information is introduced only in

qx and the definition of the following matrices: the nullspace of the FIM. X
The desired normalization is = (hh/hh). However,
D; =SC;D;, Dijo12=SC{D; fori=1,---,a+2. note that this normalization is a function of the channel es-

(30) timate. In order to facilitate the analysis of the approximate
mean-squared error in Section 1V, we seek to approximate the
Then, Qi = [Diqr - Dyiayqr]. The channel super normalization such that the resulting channel estimation error is

matrix H is also constructed using the matricdd,: adjusted by the appropriate linear transformation.
H = [D1h- - Dy, h]. Thisis an alternative, but equivalent, We observe that the estimated channel can be written in terms

definition to that provided in (17). of the true channel and a pertu[bati(fn:: h + Ah. We will
Based on the results of [12, eq. (4.11)], we obtain the fokssume that the scaling factorlinhas already been adjusted
lowing identity: so thatAh is small. In that case, we can approximate the nor-

X X malization scalakx up to first order inAh asa = (1/(1 +
PH =-PVV"H, (31) (h"Ah/h"h))) =~ 1 — (h” Ah/h"h). Then, continuing to
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TABLE |
CHANNEL IMPULSE RESPONSES FORIFFERENTUSERS USED FOR THESIMULATIONS IN THE NUMERICAL RESULTS SECTION

User

hy(0)

hp(1)

hp(2)

hy(3)

hs(4)

oy

—
o

0.5044 + 0.2940i

-0.2986 + 0.0897i

-0.5310 - 0.0072i
-0.0832 - 0.1942i

-0.0732 + 0.0346i
-0.0705 + 0.1222i

0.5055 + 0.4016i
0.1239 + 0.1393i
0.5588 + 0.0070i

0.1136 - 0.1623i

0.0695 + 0.0820i
0.4610 + 0.46351
-0.1070 - 0.4971i
-0.4008 - 0.3086i
0.0062 - 0.10271
0.2832 + 0.2327i
0.5151 - 0.22201
-0.5517 - 0.0410i
0.2968 - 0.16851
-0.0123 + 0.2168i

0.0630 - 0.2483i
-0.1588 - 0.5624i
0.5343 + 0.0988i
-0.3532 - 0.4961i
0.2873 + 0.4010i
0.0081 + 0.4078i

-0.0212 + 0.2852i
0.1532 + 0.2978i
-0.2135 + 0.1854i
0.6700 + 0.1196i

0.3847 + 0.34391
-0.3462 + 0.0203i
0.2285 - 0.0317i
0.0506 - 0.1902i
-0.5975 + 0.4138i
0.3544 + 0.2719i
0.0647 - 0.2764i
0.6352 - 0.3194i
0.0748 - 0.4746i
0.0089 + 0.3254i

0.0173 + 0.5617i
0.1081 4 0.0452i
0.1743 - 0.2838i
0.0412 - 0.5368i
0.2379 - 0.3932i
0.5233 + 0.4539i
-0.2194 - 0.2409i

-0.1999 + 0.0400i

0.4501 - 0.2403i
0.5111 - 0.2884i

Vst
T T
O 00~ O W

approximate up to first order inh, we get, for the normalized C. Channel Order Overestimation

channel estimation error In practice, the exact channel order may not be knawn

. . hfAh priori. If the maximum value is known, the algorithm can be
Abyopm =oh—ha~h—- ————(h+Ah) - h designed to employ this maximum number of matched filters.
h#7h ) .
H Thus, the channel to be estimated would be a vector with sev-
h*” Ah . .
~Ah— Wh eral of its final components as zero. Empirically, we have ob-
Whi served that the algorithm performance appears to be insensitive
=Ah - NG Ah = P;tAh (35) to overestimating the channel order by one or two.

wherePi+ = I — h(h#h)~*h# is the projection onto the

nullspace ofa’’. Thus, we have neglected second-order terms ] ) ]
of AL. The proposed algorithm’s performance is studied through

To incorporate the normalization of (34), (28) is modified athe calculated and simulated mean-squared channel estimation
error (MSE). The MSE found via simulation for the user of
interest (user 1) is determined as follows:

VI. NUMERICAL RESULTS

Ah,orm = —PQ'Qh (36)
and therefore, they; vector in (29) can be considered to be 1 Y wThy . 2
the kth column of (P;-Q)#. Note that (28) is an expression MSE; = A ;: h} — h, (38)
for Ah to which (35) can be applied appropriately because the r 52 || hl

derivation of (28) assumed thath was small. Note, however, ) ) )
also thatPrQf = Qf sinceQ has a one-dimensional (1_D)WhereN,, is the number of Monte Carlo runs in the simula-
null space}in the direction di. tion; this quantity is distinct fromV,, which is the number

of symbols employed to determine the channel estimate. For
each simulationV,, = 50. The true channel is denoted t}y,
] ] and the channel estimate for Monte Carlo iua given byh?.

To further improve the channel estimate, we apply fhys, the channel estimate is normalized, as discussed previ-
“cleaning” operation to the sample covariance matrix. Undegsly. For the asynchronous scenario considered, each of the rel-
the assumption that the Toeplitz displacement results ina@ve delays are generated randomly from a uniform distribution.
matrix free of the contribution of any interferend®;, would  The channel coefficients are drawn from independent complex
have the form exhibited in (14). In practicB,, will not be  Gayssian random variables; the channel impulse responses used
block diagonal. Thus, to impose a block diagonal structuggy the simulations are shown in Table I. The delays are fixed
and remove the effects of nonideal correlation functions, Wgroughout a simulation, as are the amplitudes. The spreading
propose to modify the construction B, via codes for each user and for each symbol are selected from in-
dependent equiprobable binary random variables, and they are
changed in every Monte Carlo run.

Fig. 2 investigates the accuracy of the MSE analysis for the

B. Cleaning Operation

Ry, = (R, oK)* — (R, ©K)~ (37)

where new algorithm. The MSE is plotted as a function of the number
. . of symbols used to estimate the channel. An environment with
1, if —IM4+1<i<mM . . .
’ an(me _)1)Aj[r+ Ii_; ZlmM K = 6 asynchronous DS/CDMA users (i.e., only the first six
K(i, j) = form e[l -, a -7 = channel impulse responses of Table | were used) employing
0. else T spreading gains of lengt' = 30 is considered. The common

channel length is\/ = 5, whereas the SNR was 15 dB. Three
Componentwise matrix multiplication (the Schur product) is ircurves are exhibited.

dicated by». Essentially, the cleaning operation replaﬁg,sby 1) simulation data [for which the MSE is evaluated as in
f{yQK before applying the Toeplitz displacement to obin (39)];
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1 T T T T T T T T T 1 T T T T T

——  Theoretical : : : i | =—— 10users
i : : : N IR Simulation ‘ : : O 12 users
| : : : : --- First Approximation : : : :

MSE
MSE

0.001 L L L L i L L L L L L ! I )
0 20 40 60 80 100 120 140 160 180 200 0.001, — 25 30 a5 20 45 50
No. Symbols Chips / Bit

Fig. 2. MSE evolution versud’,. Empirical MSE, theoretical MSE given by Fig. 3. MSE versus spreading gain.
(58), and a “first approximation” of the MSE obtained via (33), as explained in
Section VI.

M=4
M=5

2) the “first approximation” expression [for which the MSE Mt

is computed as(1/N,.) Y0 ST CVIARL (K2 with
AR% (k) as obtained in (33)]; § g : : :
3) the theoretical MSE expression Of (58) for the leje ............ .............. ................ .............. ................ ............... -
3. : : : : :

The “first approximation” expression is considered as a vel,
tight approximation to the theoretical MSE with lower com2
putational complexity than that of (58). For the simulations
N, = 50 runs were conducted. It is clear that (58) yields a
expression for the MSE that is very close to the one obtained
means of simulation.

We next consider performance as a function of the spreadi
gain. Fig. 3 shows the theoretical MSE versus the spreading gi : :
for two environments with 10 and 12 users. Different randor ; ! i Q -
channels with length 5 were consideredd = 100 Monte ! ’ a
Carlo runs,a = 2, and SNR= 15 dB for all the users. The
MSE value was computed for 300 transmitted symbols. As was
predicted, performance improves as the code length increases
since the spreading codes become increasingly more orthogdhabretically). These matrices haweolumns each. Therefore,
to each other. In addition, we see that there is a constant diffare haveM — 1 unknowns (for the channel of lengfif minus
ence in performance between the = 10 and K = 12 user the unidentifiable scale factor) aBd(a(AM —2)—1) equations.
cases. In order to obtain a solution, we need for the number of equa-

We next explore performance as a function of the numbgons to be at least equal to the number of unknowns, i.e.,
of whole symbols in the observation vector Fig. 4 depicts
the theoretical MSE versusfor three different channel lengths 2a2(M —2)—2a - M +1>0. (39)
(different random channel impulse responses forithe= 100
Monte Carlo run). The environment is f&f — 8 users, SNR= Given this expression, it is clear that there is no valid value
20 dB, length/N = 30 spreading codes, amd; = 200. Note of « for M = 1, 2. For the Toeplitz displacement method, it is
thatforM = 4, avalue ofz = 1leads to exceptionally poor per-clear that channels must have length> 3 in order forR;, to
formance. This can be explained on the basis of identifiabilityave a noise subspace. Har = 3, 4, the minimum value for
considerations. The matriR;, is of dimensiorud — 1. As2a ais 2. ForM > 5, we finda > 1 satisfies (39). Therefore, in
eigenvectors are the major contributors to the signal subspagarticular forAf = 4, a« = 1, the channel is unidentifiable as
the dimension of the noise subspace is th{/& — 2) — 1. The confirmed by the simulation.
existence of a noise subspace leads to the requireident 3. Next, we compare the performance of the proposed algorithm
The set of equations that allows us to compute the channel corséth the one described in [8]. We denote the algorithm of [8] as
sponds to the inner products of the noise subspace vectors vifhand the proposed algorithm as TOEP. Fig. 5 shows the results
the columns oiﬁf and ﬁf (these inner products being zerof three different simulations fa¥,. = 50; the first one uses the

Fig. 4. MSE versus number.
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MSE

: : iy
20 40 60 80 100 120 140 160 180 200

a.~ No. Symbols
T T

MSE
MSE

20 40 80 80 100 120 140 160 180 200
b.- No. Symbols
T T

MSE

20 40 60 80 100 120 140 160 180 200

0
c.— No. Symbols Near-Far (dB)
Fig. 5. MSE evolution for a power-controlled environment. Fig. 6. MSE evolution for a near—far environment.

channel impulse responses shown in Table I, and the second gfighression and that the Toeplitz displacement would signifi-
third use different random channels for each Monte Carlo rugantly remove any remaining interference. However, it appears
Fig. 5(a) considers an environment wih= 8 users N = 30,  {hat due to the method of computation of the covariance ma-
SNR = 20 dB, a = 3, andM = 5. Fig. 5(b) examines an iy prior to matched filtering in [8], comparable performance
environment withK” = 6, N = 30, SNR= 15dB,a = 3, and jg gchjevable. The maximum amount of averaging is possible
M = 5. Finally, Fig. 5(c) consider&” = 10, N = 50, SNR= " o/ the covariance matrix prior to matched filtering, which is
15dB,a = 2, andM = 7. Itis clear that both algorithms ape 1o truly take advantage of the statistics of the randomized
provide comparable performance. _ codes. Performance improvements for the TOEP algorithm are
For the limited number of channels we have simulated, Wgssiple if improved methods of calculating the matched fil-
see slightly different asymptotic MSE for the two methodsgreq data covariance matrix can be found. Any new averaging
Both approaches can provide the superior performance, dgsthod would also benefit the LZ algorithm.
pendin_g on the channel realization. The classes of channelqs:ina"y, we construct a RAKE receiver using the estimated
for which one method outperforms the other one are not ygtq trye channels. Fig. 7 plots the bit error rate (BER) versus
known. The theoretical MSE approximations in (33) and (58he number of users for a scenario, where= 5, SNR = 10
for the TOEP method facilitate investigating the performan%, N = 30, M = 5, and the channel impulse responses em-
of this method without resorting to Monte Carlo simulationgy|oyed are those noted in Table I. We can see that the curves for
and a similar MSE analysis of the LZ method would facilitatg,e TOEP and Lz algorithms are almost coincident. Further-
a more detailed performance comparison of the two methodsyore, they are very close to the curve for perfect knowledge of
We next consider a near—far scenario. The near—far rafigs channel. It can be seen that for a large number of users, the
(NFR) is defined to bel0 log(A1/Ax), where A, is the RAKE receivers exhibit poor performance. This is due to the

received amplitude of the desired user, afidis the received fact that the multiple access interference is not explicitly sup-
amplitude for all interfering users. In the previous S'mmat'or‘fyressed.

all users transmitted at the same power. Now, we consider
the situation where the desired user is at fixed power and the
interfering users all share the same power, which is varied. We
evaluate the system in an environment with= 8, N = 30, In this paper, we have proposed and analyzed a blind channel
SNR = 15 dB, a = 3, M = 5 with the channel shown in identification scheme appropriate for use with randomized
Table I, N,, = 50 Monte Carlo runs, an@V; = 200 transmitted DS/CDMA systems. In such systems, the spreading sequences
symbols. In Fig. 6, we see previously unreported results. Thadsigned to each user have periods that are much longer than
is, both algorithms are not near—far resistant. In theory, batie symbol duration. As a result, cross-correlation functions are
algorithms should be near—far resistant. It is conjectured thamhe varying. To overcome this challenge, the proposed iden-
as the near—far ratio increases, increasingly more samplestédigation algorithm exploits the asymptotic statistics of such
necessary to provide high-fidelity estimates of the relevaspreading sequences. An approximation to the mean-squared
covariance matrices, and hence, for fixdd, performance channel estimation error is derived for the new identification
degrades as the near—far ratio increases. scheme. The analytical approximation is observed to be quite
It should be noted that it was anticipated that the TOEP dight via simulation study. In addition, the proposed algorithm
gorithm would provide superior performance to that of the L& compared with an existing algorithm proposed in [8]. The
algorithm. The reasoning was that the matched filtering preprsimulated performance of the two algorithms are comparable.
cessing would provide sufficient multiple-access interferenddore complete comparison of the two algorithms will be

VII. CONCLUSIONS
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the additive noise. The autocorrelation matrix giyeis defined
as follows:

N

N 1 z H

RS = N Sy oy W) (43)
7 ol=1

wherey T () = y(i+2: [+aM),y= (1) = y(I+1: I4+aM —1),
and therefore
E[AR(E)AR*(K)]
2(a+2) 2(a+2) N, N,

S DD b ol 9 o

where
107° L i 1 : ;
¢ s ® Number7of Users 8 e 1 r41 P41
8
YO =8> x0=8 > x(0) (45
Fig. 7. Bit error rate versus the number of users. =1 =1
and

possible when an analytical expression for the mean-squared ) ) ,
error for the algorithm in [8] is derived. Future work will Si =S1(1) = Matched filter matrix for the desired user.
focus on designing improved algorithms to estimate the dat&’»(/) = Code matrix forpth user ¢ = 1 desired user).
covariance matrix. _[C,(OH,b,() p=1,---, P

xp (1) = {w(l) p =P +1(i.e, noise) (46)
APPENDIX

B i i
MEAN-SQUARED ERRORANALYSIS where [A]” represents thg displacement of the matriA.

Taking into account (45), the expectation in (44) can be ex-
In this Appendix, we complete the derivation of thepressed as

mean-squared error that was begun in Section IV. We calculate 3 g Hon o

E[AR(k)AR*(K)], given the following expression fakh(k): Elugy”(0y" (Dgig; y"(m)y™ (m)u]
P41 P+1 P+1 P41

~ g
Ah(k) = Tracg Q" PRhVA_lV”H}. @0y = > > > EmIS!xa(0xh(0S] gigl's],

pl=1 p2=1 gl=1 ¢g2=1

Taking into account thatR,, = R+ —, (33) can be ex- X qu(m)quQ(m)Sfukj].(M)

pressed as follows: ) ) )
Due to the independence between users and noise, we consider

Ah(k) = Trace{Q,{?[P(f{;j _ R;)VA—IVHH} the following scenarios to compute the expectation in (47):
2(a+2) | p1=p2=aq =q, I.e.,sameuser(ornoise)
= Z Z BaDFPRIVA~'VHDh { I pr=p#qa=q (48)
iml  fe— + N pr=q@#q =p2
2(a+2) Note that for the casg; = ¢1 # ¢2 = p2, the expectation is
= Z Z pu, f{ggi (41) zero since we are using QAM modulation for the user symbols
i=1 B=—, and complex Gaussian noise. For the three cases, (47) is simpli-
fied as follows:
where the super-indeg, with 8 = —, +, d%notss )tge type i1 .
of displacement in the matriR,,; ux; = (q;’D;"P)" and Hgb Hingb” o oHQv H
g = VA~'VHD;h. The mean-squared error (MSE) for the ! pz::l EluiiSix (U, (US) 818, S (m)x, (m)
kth element is "
X S, ug;]
2(a+2) 2(a+2) P+1 P+1 .
E[AR(E)AR* (k) Z Z > Z By [ Z Z [ s)x,(Hx (S] gigl'S],x,(m)
= A= g=Ly=- P;ﬁq
[uk7R8g7gJ Rwukj] (42) « XqH(m)S:’nH w;]

where~ equals+1 when3 = ~ and equals-1 wheng # ~. o o

H v e HSY
Expectation heretoforth is with respect to the random data and’ 221 2 E[“MS xp(1)x, (M)S5, ur;g; Sy, xe(m)
p=1 a=
Recall thatR; = R,(2: aM, 2: aM) andR; = R,(1: aM — it
1,1: aM — 1), xx, (1)S] gil. (49)
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In (49), the analysis of cases Il and Il is obvious, butvhere

to develop case |,
E[cHz(l)z" ()d;d2z(m)z" (m)c,,], where ¢, and d,
represent deterministic vectors, amngh) is a random process.
Equation (49-1) is considered for two different situations.
1) Forp = P+1(i.e., Gaussian noiss),, andd,, are(aN +
M — 1 x 1) vectors, ant(n) is a vector corresponding
to a zero mean Gaussian process. It can be shdvat

E[cflz(l)zH(l)dldflz(m)zH(m)cm]
= Elcj’z(D)z" (DAJE[d Fz(m)z" (m)e,)
+ Elc{ 2(1)z" (m)c,, |E[d] 2(m)z" (1)d,]

YdidZe,, +c J?\f\( ;;Ml) lcmd”J?\f\(ﬂ'% ) 1d,)
(50)

=0l (c]

whereo? is the noise variance, and

JM = M x M matrix whose elemert, ;)
_ {1, if ((—j)=Fkand|k|<M-1
=10

otherwise.

2) Forp = 1,---, P (i.e., users)c,, andd,, are ((a +
2)M x 1) vectors, ands(n) is a vector whose elements
are the QAM transmitted symbols for a single user. It can
be shown that

(51)

E[cle(l)zH(l)dldgz(m)zH(m)cm]
= E[cflz(l)zH(l)dl]E[dflz(m)zH(m)cm]
+ E[cj"2()z" (m)c,|E[d ] 2(m)z" (1)d)]
(a+2)M—1 (a+2)M -1
-y Z el ()i (@)dy, (5)em(F)
1=0
E[2(l + )7 (m+J)]
= o (c, didfc,, + cHItDIM e qHFlerDMyg,
”JEZ*Q")Mpm) (52)

whereo? is the user powe; (i), di(i), z(I + i) are the
ith elements o&;, d,, z(l), respectively, and

P = [cn(0)d5(0), ¢, (1) (1), - -
cn((a+2)M — D)d((a+2)M = 1)]"
=diagc,d) (53)

where the operator diéd.) results in a vector of the di-
agonal elements of the matri.
Taking into account (49), (50), and (52), (47) can be ex-
pressed as follows:

E[uiﬁy"(z)y“’<Z>gig§fw<m>y“’<m>um
P+1 P+1
= Z Z u,“ )Sm ungHS r,(m, Z)Sl g

p=1 ¢=1
+u,”s L, 0S] gigl'S), Ly (m, m)Sy wy)

_Z@Z

(1, DILEIV @I (m, m)

m—l1

(54)

we consider the general expectation

r,(,m=
(1,10

Substituting (54) into (44), we obtain
E[Ah(k)Ah* (F)]

r
Xim = <Z o2Cy(HH

73Co0H, JE,‘I*?WHHCH( )
p=1,
(aN +M
2JN(rn 0)
p=P+1

— diag(HY C// (1S} " w8 ${ C,(DH,). (55)

N2 2 Z Z B
S, — 4+ y=—,+ =1 m=1
rP+1
x Trace{U,{?’ s/ <Z r,(, m)> sY'ULGHES

r=1

r+1 u
x <Z r,(m, 1)> sy G}

r+1
+Trace{U,{f s/ <Z r,(, 1)> s/ G}

p=1

rP+1
x Trace{ Gisy <Z T, (m, m)> s Uk}

q=1
r
-3 &, NIEIME (. m)

m—l1
p=1

N, I+(a+1)

- X 2. TR )

5 B=—,+ v=—, =1 m=i—(at1)
1<m<Ng

x Tracg UZS/X,,,87 U, GHsY XH s¢" G}

- Z ®,(1,1 JEZ+I2)M ®,(m, m)

(56)

where

2(a+2)

> @i

—diag HY C# (s U, GH S/ C,()H,)
U =[ug,1, -
G=lg,

; U, 2(a+2)]
> 82(0,4-2)]

N,
= Trace{ ulls)

=1

r
> olC,(OHHICH () + 0—3,1> sfHG}
=1

m—I1

J(a+2)J\4HHCH( )>

2 Ja]\ +M-1

N(m-1l) -~ (57)

a+2)M aN+M-—1
z1, z9, 23, 24 are four zero mean Gaussian random variables, théNe have used the fact thdl(" andJ are zero

Elz1252325] = Blz125]E[232]] + E[z12§]E[2325].

matrices forjm

N(m—1)
=1 > a+1andN|m—l| >alN + M (e,
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|m — 1| > a), respectively. Therefore, only the values =  [19] A.Weiss and B. Friedlander, “Channel estimation for DS-CDMA down-
l—(a+1), -, 1+ (a+1)are considered. link with aperiodic spreading codes,” Rroc. 31st Asilomar ConfOct.

. . . . 1997.
F'na”y’ to obtain the MSE of the channel estimation a'lgo'[ZO] A. Mantravadi and V. Veeravalli, “Multiple-access interference resistant

rithm, we have to consider the contribution of all of the compo- acquisition for CDMA systems with long spreading codes, Piroc.

nents, that is iigdlﬁgnu. Conf. Inform. Sci. SysBrinceton, NJ, Mar. 1998, pp.
M [21] Z. Zvonar and D. Brady, “Linear multipath-decorrelating receivers for
E/IAhT Ah] = EIAREYAR* ()], 58 CDMA frequency-selective fading channel$EEE Trans. Commun.
[ ] Z [ ( ) ( )] (58) vol. 44, pp. 650-653, June 1996.
k=1 [22] L. L. Scharf,Statistical Signal Processing: Detection, Estimation, and

In Section VI, the accuracy of this approximation is explored  Time Series Analysis Reading, MA: Addison-Wesley, 1991.

via comparison to simulation results.
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