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A Toeplitz Displacement Method for Blind Multipath
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Abstract—The problem of blind channel identification for
direct-sequence/code-division multiple-access (DS/CDMA) mul-
tiuser systems is explored. For wideband DS/CDMA signals,
multipath distortion is well modeled by a finite-impulse response
filter. In this work, a blind channel identification technique based
on second-order statistics is investigated. The method exploits
knowledge of the spreading code of the user of interest via matched
filtering, as well as properties of spreading codes. The current
scheme focuses on a method appropriate for randomized long
sequence DS/CDMA. This access scheme poses special challenges
as the spreading codes are time varying. An analytical approxi-
mation of the mean-squared error is derived using perturbation
techniques. The performance of the algorithm is studied via
simulation and through the mean-squared error approximation,
which is observed to be tight.

Index Terms—Blind channel identification, code-division mul-
tiple-access systems, perturbation analysis, randomized spreading
sequences.

I. INTRODUCTION

D IRECT-SEQUENCE/code-division multiple-access (DS/
CDMA) is a promising candidate for next-generation

wireless systems [1], [3]. In order to provide high-fidelity
detection, it is necessary to either implicitly or explicitly char-
acterize the wireless propagation channels. The propagation
effects experienced by wideband signals such as DS/CDMA
can be well modeled by a tapped delay line. With knowledge
of these multipath coefficients, multiuser equalizers can be
constructed (see, e.g., [5] and [21]). In this paper, we explore
blind channel identification schemes for multiuser systems
employing DS/CDMA based on second-order statistics. The
search for blind identification methods is motivated by the
desire to have training signal independent schemes to improve
the overall data rate of the system.
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Furthermore, we will consider DS/CDMA systems where the
signature waveforms have periods much longer than a symbol
duration. Suchrandomizedspreading is appropriate for systems
based on IS-95 as well as for military systems that require a
higher degree of security as afforded by long randomized codes.
The contributions of this paper are the development and anal-
ysis of a blind channel identification scheme for randomized
spreading codes. In particular, an approximation of the mean-
squared channel estimation error is derived based on perturba-
tion analysis techniques. Simulation studies verify the tightness
of the approximation. The mean-squared error development rep-
resents some of the first work on error derivation for channel es-
timation in systems with randomized codes (in addition to that
found in [19]). Due to the spreading operation, DS/CDMA sig-
nals lend themselves naturally to a category of blind channel
identification techniques that have become recently popular (see
e.g., [10]). Although it is possible to estimate the global channel
response (see, e.g., [7] and [17]), we will focus on schemes that
estimate the pure channel only (e.g., [15]).

We will adopt an approach based on second-order statistics.
Such methods typically exploit channel diversity as obtained
via oversampling or multiple sensors. However, in DS/CDMA
systems, such techniques to create a multichannel system are
unnecessary. This is due to the fact that DS/CDMA systems are
inherently multichannel as a result of the spreading operation.
Thus, while multiple sensor systems are considered in [7] and
[15], they are not necessary, as seen in [2]. In essence, each chip
of a user’s spreading code behaves like a channel.

The basis of our methods will be the direct exploitation of the
spreading sequence of the user of interest via matched filtering.
For delay spreads that are much smaller than the symbol period,
a moderate number of matched filter outputs form a set of statis-
tics that are suitable for performing blind channel identification.
This often allows for a significant reduction in computational
complexity (see, e.g., [2]) due to the reduction in dimension of
the observation vector.

Although there has been a significant amount of research
directed toward channel identification for short spreading code
systems [2], [15], [17], there has been limited effort with
regard to the randomized code scenario. A key challenge in the
estimation of channel responses in systems where randomized
codes are employed is the time-varying nature of the spreading
codes. The two approaches that have been adopted for the
long spreading code identification problem can be categorized
as deterministic or stochastic. In deterministic approaches,
the long spreading code is considered to be a deterministic
sequence. These methods are characterized by the requirement
of a significant amount of information about the interfering
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users. Recently, there have been several contributions to this
type of blind identification for long code systems. A key
property shared by [6], [16], [18], and [19] is that it is
presumed that the receiver has knowledge of all of the users’
spreading codes.1 For randomized code DS/CDMA systems,
such a requirement translates to knowing different length

spreading codes for active users and a transmission
block of bits.

In [16], an iterative approach that modifies the channel esti-
mation method of [14] to the multiuser, randomized code case
is considered. Essentially, a series of least-squares problems,
where, alternatively, the data symbols or the channel is assumed
to be known and the other quantity is estimated, are solved.
Correlation matching techniques are employed in [18]. In [6],
an iterative scheme is derived based on alternating projections.
Whereas [6], [16], and [18] consider the uplink estimation
problem, [19] focuses on the downlink. In the downlink,
one can exploit the fact that all users’ signals, including the
interferers, are received through the same channel.

The second approach to the problem at hand is to take a
stochastic view. Thus, the long spreading sequences are modeled
as random sequences, and properties of the resulting statistics
are exploited to perform identification. In this category are
present the proposed work and the work of [8]. The stochastic
approach obviates the need for the complete knowledge of all
user signature waveforms. The algorithm presented herein can
thus has applicability for both the uplink and the downlink.
It will be seen that the matched filtering algorithm developed
herein offers a comparable channel estimation error to that of
[8]. The new algorithm does, however, offer several tunable
design parameters to regulate performance and thus provides
additional flexibility. It should be noted that the complexity of
the algorithm in [8] is less than the proposed algorithm. The
main contributions of the current work are the observation
that the matched filtered multiple access interference can be
well-modeled as interference that is stationary at the chip rate,
a tight approximation of the mean-squared channel estimation
error forarandomizedspreadingcodeenvironment,andthorough
simulation studies of the proposed algorithm. The simulation
studies reveal that neither the proposed algorithm nor the
algorithm of [8] are near–far resistant, which is a facet not
previously studied. It is noted that the requirement of full
knowledge of the spreading codes of all active users for the
works in [16], [18], and [19] precludes fair comparison to
the technique presented herein.

This paper is organized as follows. Section II presents the
signal model and the assumptions employed. Section III de-
scribes the technique for blind channel identification for sys-
tems with randomized codes. Section IV provides the analysis
of the mean-squared error for the new identification scheme. Is-
sues relating to the practical implementation of the proposed
algorithm are noted in Section V. Numerical results are pre-
sented in Section VI, and concluding remarks are provided in
Section VII. The Appendix contains key derivations necessary
for the mean-squared error analysis.

1A decentralized correlation matching scheme is alluded to in [18] that does
not require all users’ codes.

II. SIGNAL MODEL

We will presume a coherent system where the active users
transmit DS/CDMA signals. The signal is transmitted over a
multipath channel. Coarse synchronization (accuracy to within
half a chip) is assumed for the user of interest. Synchronization
for DS/CDMA systems is a challenging issue; possible synchro-
nization schemes include [13], [15], and [17]. A synchronization
scheme specifically for randomized code DS/CDMA systems
was proposed in [20].

The baseband representation of the received signal after co-
herent reception is given by

(1)

In randomized code DS/CDMA, the spreading waveform for
each user , changes from bit to bit and is thus a function
of , which is the symbol index. In the equation above, de-
notes the effective spreading waveform for userand for QAM
symbol . The effective spreading waveform is constructed
through convolution of the original spreading waveform with
the channel , where the channel response
for user is . The spreading waveform is formed via

where is the pulse shape of the chip and has duration
. For simplicity, we will consider rectangular pulse shapes.

The sequence is the spreading sequence for userthat
changes from symbol to symbol and takes on values equal to

with equal probability, where is the spreading
gain (i.e., number of chips/bit). Note that symbol duration is,
and thus, . The delay for user is denoted by , and
the transmitted amplitude for useris . These amplitudes are
modeled as fixed, but unknown quantities. We will assume that
the delay values are integer multiples of a chip. The fractional
parts of the delays are incorporated into the effective channel
impulse response . The additive, circularly symmetric
Gaussian noise process is with variance .

We will assume that the data signals and the noise process
are mutually independent. We also assume that the channel is
of finite length and that the multipath delay spread is less than a
symbol interval. For facility of description, we assume that the
channel length for each user is chips ( ). In fact, the
techniques explored herein only require knowledge of the de-
sired user’s channel length. The received signal is chip-matched
filtered and sampled at the chip-rate; then, samples
are concatenated to form the observation vector . The quan-
tity represents the number of “whole” data symbols contained
in the observation vector. This concept is elucidated further in
the sequel. Fig. 1 depicts the scenario where , ,
and . The filtered and sampled complex channel impulse
response is denoted by

For notational clarity, we begin by providing an expression
for the observation vector under the assumption of a synchro-
nized system ( ). The extension to asynchronous in-
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Fig. 1. Abstract depiction of observation vector for a single user system with
length 5 (N ) spreading sequence; three paths (M ) anda = 1.

terferers is straightforward once the relevant matrices have been
defined. We consider an observation vector containingwhole
data symbols (and two partial bits; see the shaded area in Fig. 1).
The partially observed bits are due to intersymbol interference.
The observation vector of samples (at the chip rate)
is expressed as

(2)

where the and
are vectors of the

received samples and noise samples of size ,
and is a
vector of data bits. The operator is the floor operator and
returns the largest integer smaller than its argument. The channel
matrix for user of dimension is given by

(3)

where denotes the Kronecker product operator, and is
the identity matrix of dimension . We will
use the notation to denote the Sylvester matrix of
width for vector . This is equivalent to the convolution
matrix for the convolution of vector with another vector of

length . is a matrix since
, i.e., see (4) at the

bottom of the page. We define to be the first rows
of and to be the last rows of

. Then, the spreading code matrix for userof di-
mension is given by the second
equation at the bottom of the page, where the matrix

is composed of the first rows of
.

In order to consider asynchronous systems, we can modify
(2) as follows. First, we will presume that user 1 is the user
of interest. We define the global channel matrix as

. Let be the delay of interfering user
with respect to user 1. We assume that and that

. The global channel matrices for the
interfering users are constructed by forming the matrix
as above, but this matrix is of dimension

. The channel matrix is formed by removing
the first rows and the last rows from ; finally,
the last column is also removed. Note that this global channel
matrix can be written as the product of appropriately truncated

and matrices.
In order to more fully exploit properties of the DS/CDMA

signals, the identification scheme presented in this work pro-
cesses a set of matched filter outputs synchronized to the desired
user’s signal rather than processing the received signal
directly. We use matched filters per received symbol. The

observation vector is given by

(5)

...
...

...
. . .

...
...

...
...

. . .
...

(4)

...
...
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where the matched filtering matrix
is given by (6), shown at the bottom of the page, where

and are the first and last rows
of , respectively.

The matrices and are related in the following
manner:

...

...
(7)

That is, is formed by augmenting by the appro-
priate columns.

III. T OEPLITZ DISPLACEMENT-BASED CHANNEL ESTIMATION

The randomized spreading code model implies that the auto-
correlation sequence of the desired user’s spreading sequence
is a delta function. Similarly, the cross-correlation sequence be-
tween two distinct users is ideally identically zero. Let us con-
sider the matched filter output vector of (5). With
our assumptions on the data symbols and the noise, we take ex-
pectation with respect to the data symbols and the noise. Thus,
the output vector covariance matrix is

(8)

(9)

(10)

where , and is the
noise autocorrelation matrix. The contribution of the interfering
users at time is thus

We now consider the time-averaged version of . That
is

(11)

where

where is the number of samples employed for time av-
eraging, and is the asymptotic averaged covariance
matrix for user . We note that the asymptotic approximation
above follows from key assumptions made about the random-
ized spreading codes. That is, the components of the code
sequences are independently and identically distributed and,
furthermore, are stationary at the chip rate. Therefore, we have

, where is a time-varying
perturbation matrix, and .
The perturbation gets small as gets large, and hence,
terms of the form become negligible as

. The effects of the imperfect spreading auto-corre-
lation function are captured in . Asymptotically, as the
spreading gain increases ( ) and as the number of samples
used to average increases ( ), and converge to
Toeplitz matrices [ is the Toeplitz autovariance matrix
of the channel ].

Channel identification can be performed by noting that the
Toeplitz contribution of the channel noise and interference
can be removed. To that end, let us focus on the limiting case

. Consider now the following Toeplitz
displacement operation:

(12)

(13)

...

...
(14)

...
...

(6)
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where the matrix notation corresponds to
the submatrix of formed by the appropriately truncated
rows through and columns through , and

and .
Thus, and are formed from by removing the
last and the first row, respectively. The quantities , ,

, and are defined similarly to and . Finally,
. Note that is a matrix

of rank . The nonzero eigenvalues correspond to the
contribution of the desired user to . The eigendecomposition
of is given by

(15)

We order the eigenvalues such that .
With such an ordering, are positive,

are negative, and the remaining eigenvalues are
equal to zero so that in fact

(16)

where , and diag
. Thus, is comprised of the

eigenvectors corresponding to the nonzero eigenvalues inof
. Loosely speaking, contributes positive eigenvalues

and contributes negative eigenvalues, as seen in (14). For
to be identifiable from , it is clear that cannot take on

arbitrary values given a particular value of. The valid choices
for are explored in Section VI.

In practice, from the sample average correlation matrix
, we form the estimated and de-

termine and as the eigenvec-
tors corresponding to the most positive and most negative
eigenvalues of .

We introduce the following subspace fitting problem to esti-
mate the unknown channel:

(17)

where . We
use and not in an at-
tempt to somewhat compensate for the nonideal finite sample
correlations of the desired user’s spreading sequence [see (12)].
Taking into account that Trace is the Frobe-
nious norm, the criterion in (17) can be expressed as

Trace

Trace

(18)

(19)

To solve (19), we must find the matrix where the gradient of
with respect to vanishes,2 i.e.,

(20)

Substituting (20) into (19), we obtain

Trace

Trace (21)

This fitting problem can be expressed as follows:

Trace (22)

(23)

where is the projection matrix onto the orthog-
onal complement of the column space of. Thus, the desired
solution is the eigenvector of corresponding to its minimum
eigenvalue, where is defined as

(24)

The are permutation matrices defined as
follows:

for
otherwise.

(25)

Using these permutation matrices, can be
alternatively represented as .

The recognition of the Toeplitz structure of the interference
matrix was also made in [8]. However, instead of working with
the Toeplitz displacement of , the difference of the covari-
ance matrices before and after code-matched filtering was ma-
nipulated. Under ideal spreading code assumptions, it can be
shown that this difference is, in principle, . Thus, the prin-
cipal eigenvector of the difference between the matched filtered
covariance matrix and the nonmatched filtered covariance ma-
trix will yield the desired channel estimate. The work in [8]
focuses on equalization but alludes to a corresponding identi-
fication scheme as just noted. We will compare the proposed
channel identification scheme to that alluded to in [8] in Sec-
tion VI.

IV. A PPROXIMATION OFMEAN-SQUARED ESTIMATON ERROR

In this section, we provide an analytical approximation to the
mean-squared channel estimation error. We show, via simula-
tion studies in Section VI, that the approximation derived herein
matches quite closely to simulation data. A perturbation tech-
nique (see, e.g., [11]) is employed to determine the approxima-

2Note that(@ TracefAWg=@W) = A and(@ TracefW Ag=@W) =
0, whereA is an arbitrary matrix independent ofW [22].



ESCUDEROet al.: TOEPLITZ DISPLACEMENT METHOD FOR BLIND MULTIPATH ESTIMATION 659

tion of the mean-squared error. Such a technique exploits the
following identities:

(26)

where

The minimum eigenvalue of is denoted , and
the corresponding eigenvector is denoted . We
note that in the set of expressions above, .
This approximation is justified as follows. Technically,

. As , , we can
thus assume that [12].
For a reasonable number of samples,, will closely
approximate the zero vector. This is borne out via empirical
evidence collected through simulation studies.

Note that in the sequel, we are going to remove the subindex
of the desired user vector channel. Since and

second-order effects are presumed negligible, ,
and we can modify the expression in (26) to yield the following
approximation:

(27)

and therefore

(28)

where denotes the Moore–Penrose pseudo-inverse of. The
th component of is given by

Trace (29)

where is the estimated noise subspace projection matrix, and
is the th column of . The matrix is formed via
and the definition of the following matrices:

for

(30)

Then, . The channel super
matrix is also constructed using the matrices :

. This is an alternative, but equivalent,
definition to that provided in (17).

Based on the results of [12, eq. (4.11)], we obtain the fol-
lowing identity:

(31)

From [12, eq. (A.2)] and the fact that the eigenvalues associated
with the noise subspace are ideally zero, we obtain

(32)

Note that the Toeplitz displacement shown in (12) ideally re-
moves any contribution due to the noise and the interferers. Sub-
stituting (31) and (32) into (29), we obtain the following expres-
sion:

Trace (33)

We seek to compute . Deriving this expecta-
tion relies on exploiting the fourth-order statistics of binary and
Gaussian random variables. As these derivations are somewhat
lengthy, they are relegated to the Appendix.

V. PRACTIAL CONSIDERATIONS

There are three practical considerations in the implementa-
tion and evaluation of the proposed algorithm that require dis-
cussion. These three considerations are

1) the need for normalization due to the scalar ambiguity
present in the channel estimate;

2) a cleaning operation for the estimated difference covari-
ance matrix to improve performance;

3) overestimation of the channel order.

A. Channel Estimate Normalization

It is well known that a scalar ambiguity exists in the resulting
channel estimate for identification employing second-order sta-
tistics since the channel can only be estimated up to a scale
factor. To remove the effect of the unknown scalar, we consider
a normalization of the vector channel estimate. The chosen nor-
malization is

(34)

where is a complex scalar selected such that .
The Cramér–Rao bound (CRB) for this type of normalization
corresponds to the Moore–Penrose pseudo-inverse of the Fisher
information matrix (FIM), which is singular due to the scalar
ambiguity [4]. This particular normalization leads to the lowest
possible CRB and corresponds to the smallest introduction of
additional information since information is introduced only in
the nullspace of the FIM.

The desired normalization is . However,
note that this normalization is a function of the channel es-
timate. In order to facilitate the analysis of the approximate
mean-squared error in Section IV, we seek to approximate the
normalization such that the resulting channel estimation error is
adjusted by the appropriate linear transformation.

We observe that the estimated channel can be written in terms
of the true channel and a perturbation: . We will
assume that the scaling factor inhas already been adjusted
so that is small. In that case, we can approximate the nor-
malization scalar up to first order in as

. Then, continuing to
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TABLE I
CHANNEL IMPULSERESPONSES FORDIFFERENTUSERS USED FOR THESIMULATIONS IN THE NUMERICAL RESULTSSECTION

approximate up to first order in , we get, for the normalized
channel estimation error

(35)

where is the projection onto the
nullspace of . Thus, we have neglected second-order terms
of .

To incorporate the normalization of (34), (28) is modified as

(36)

and therefore, the vector in (29) can be considered to be
the th column of . Note that (28) is an expression
for to which (35) can be applied appropriately because the
derivation of (28) assumed that was small. Note, however,
also that since has a one-dimensional (1-D)
null space in the direction of.

B. Cleaning Operation

To further improve the channel estimate, we apply a
“cleaning” operation to the sample covariance matrix. Under
the assumption that the Toeplitz displacement results in a
matrix free of the contribution of any interference, would
have the form exhibited in (14). In practice, will not be
block diagonal. Thus, to impose a block diagonal structure
and remove the effects of nonideal correlation functions, we
propose to modify the construction of via

(37)

where

if
and
for
else.

Componentwise matrix multiplication (the Schur product) is in-
dicated by . Essentially, the cleaning operation replacesby

before applying the Toeplitz displacement to obtain.

C. Channel Order Overestimation

In practice, the exact channel order may not be knowna
priori . If the maximum value is known, the algorithm can be
designed to employ this maximum number of matched filters.
Thus, the channel to be estimated would be a vector with sev-
eral of its final components as zero. Empirically, we have ob-
served that the algorithm performance appears to be insensitive
to overestimating the channel order by one or two.

VI. NUMERICAL RESULTS

The proposed algorithm’s performance is studied through
the calculated and simulated mean-squared channel estimation
error (MSE). The MSE found via simulation for the user of
interest (user 1) is determined as follows:

MSE (38)

where is the number of Monte Carlo runs in the simula-
tion; this quantity is distinct from , which is the number
of symbols employed to determine the channel estimate. For
each simulation, . The true channel is denoted by,
and the channel estimate for Monte Carlo runis given by .
Thus, the channel estimate is normalized, as discussed previ-
ously. For the asynchronous scenario considered, each of the rel-
ative delays are generated randomly from a uniform distribution.
The channel coefficients are drawn from independent complex
Gaussian random variables; the channel impulse responses used
for the simulations are shown in Table I. The delays are fixed
throughout a simulation, as are the amplitudes. The spreading
codes for each user and for each symbol are selected from in-
dependent equiprobable binary random variables, and they are
changed in every Monte Carlo run.

Fig. 2 investigates the accuracy of the MSE analysis for the
new algorithm. The MSE is plotted as a function of the number
of symbols used to estimate the channel. An environment with

asynchronous DS/CDMA users (i.e., only the first six
channel impulse responses of Table I were used) employing
spreading gains of length is considered. The common
channel length is , whereas the SNR was 15 dB. Three
curves are exhibited.

1) simulation data [for which the MSE is evaluated as in
(38)];
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Fig. 2. MSE evolution versusN . Empirical MSE, theoretical MSE given by
(58), and a “first approximation” of the MSE obtained via (33), as explained in
Section VI.

2) the “first approximation” expression [for which the MSE
is computed as with

as obtained in (33)];
3) the theoretical MSE expression of (58) for the value

.

The “first approximation” expression is considered as a very
tight approximation to the theoretical MSE with lower com-
putational complexity than that of (58). For the simulations,

runs were conducted. It is clear that (58) yields an
expression for the MSE that is very close to the one obtained by
means of simulation.

We next consider performance as a function of the spreading
gain. Fig. 3 shows the theoretical MSE versus the spreading gain
for two environments with 10 and 12 users. Different random
channels with length 5 were considered in Monte
Carlo runs, , and SNR dB for all the users. The
MSE value was computed for 300 transmitted symbols. As was
predicted, performance improves as the code length increases
since the spreading codes become increasingly more orthogonal
to each other. In addition, we see that there is a constant differ-
ence in performance between the and user
cases.

We next explore performance as a function of the number
of whole symbols in the observation vector. Fig. 4 depicts
the theoretical MSE versusfor three different channel lengths
(different random channel impulse responses for the
Monte Carlo run). The environment is for users, SNR

dB, length spreading codes, and . Note
that for , a value of leads to exceptionally poor per-
formance. This can be explained on the basis of identifiability
considerations. The matrix is of dimension . As
eigenvectors are the major contributors to the signal subspace,
the dimension of the noise subspace is thus . The
existence of a noise subspace leads to the requirement .
The set of equations that allows us to compute the channel corre-
sponds to the inner products of the noise subspace vectors with
the columns of and (these inner products being zero

Fig. 3. MSE versus spreading gain.

Fig. 4. MSE versus numbera.

theoretically). These matrices havecolumns each. Therefore,
we have unknowns (for the channel of length minus
the unidentifiable scale factor) and equations.
In order to obtain a solution, we need for the number of equa-
tions to be at least equal to the number of unknowns, i.e.,

(39)

Given this expression, it is clear that there is no valid value
of for . For the Toeplitz displacement method, it is
clear that channels must have length in order for to
have a noise subspace. For , the minimum value for

is 2. For , we find satisfies (39). Therefore, in
particular for , , the channel is unidentifiable as
confirmed by the simulation.

Next, we compare the performance of the proposed algorithm
with the one described in [8]. We denote the algorithm of [8] as
LZ and the proposed algorithm as TOEP. Fig. 5 shows the results
of three different simulations for ; the first one uses the



662 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001

Fig. 5. MSE evolution for a power-controlled environment.

channel impulse responses shown in Table I, and the second and
third use different random channels for each Monte Carlo run.
Fig. 5(a) considers an environment with users, ,
SNR dB, , and . Fig. 5(b) examines an
environment with , , SNR dB, , and

. Finally, Fig. 5(c) considers , , SNR
dB, , and . It is clear that both algorithms

provide comparable performance.
For the limited number of channels we have simulated, we

see slightly different asymptotic MSE for the two methods.
Both approaches can provide the superior performance, de-
pending on the channel realization. The classes of channels
for which one method outperforms the other one are not yet
known. The theoretical MSE approximations in (33) and (58)
for the TOEP method facilitate investigating the performance
of this method without resorting to Monte Carlo simulations,
and a similar MSE analysis of the LZ method would facilitate
a more detailed performance comparison of the two methods.

We next consider a near–far scenario. The near–far ratio
(NFR) is defined to be , where is the
received amplitude of the desired user, andis the received
amplitude for all interfering users. In the previous simulations,
all users transmitted at the same power. Now, we consider
the situation where the desired user is at fixed power and the
interfering users all share the same power, which is varied. We
evaluate the system in an environment with , ,
SNR dB, , with the channel shown in
Table I, Monte Carlo runs, and transmitted
symbols. In Fig. 6, we see previously unreported results. That
is, both algorithms are not near–far resistant. In theory, both
algorithms should be near–far resistant. It is conjectured that
as the near–far ratio increases, increasingly more samples are
necessary to provide high-fidelity estimates of the relevant
covariance matrices, and hence, for fixed, performance
degrades as the near–far ratio increases.

It should be noted that it was anticipated that the TOEP al-
gorithm would provide superior performance to that of the LZ
algorithm. The reasoning was that the matched filtering prepro-
cessing would provide sufficient multiple-access interference

Fig. 6. MSE evolution for a near–far environment.

suppression and that the Toeplitz displacement would signifi-
cantly remove any remaining interference. However, it appears
that due to the method of computation of the covariance ma-
trix prior to matched filtering in [8], comparable performance
is achievable. The maximum amount of averaging is possible
for the covariance matrix prior to matched filtering, which is
able to truly take advantage of the statistics of the randomized
codes. Performance improvements for the TOEP algorithm are
possible if improved methods of calculating the matched fil-
tered data covariance matrix can be found. Any new averaging
method would also benefit the LZ algorithm.

Finally, we construct a RAKE receiver using the estimated
and true channels. Fig. 7 plots the bit error rate (BER) versus
the number of users for a scenario, where , SNR
dB, , , and the channel impulse responses em-
ployed are those noted in Table I. We can see that the curves for
the TOEP and LZ algorithms are almost coincident. Further-
more, they are very close to the curve for perfect knowledge of
the channel. It can be seen that for a large number of users, the
RAKE receivers exhibit poor performance. This is due to the
fact that the multiple access interference is not explicitly sup-
pressed.

VII. CONCLUSIONS

In this paper, we have proposed and analyzed a blind channel
identification scheme appropriate for use with randomized
DS/CDMA systems. In such systems, the spreading sequences
assigned to each user have periods that are much longer than
the symbol duration. As a result, cross-correlation functions are
time varying. To overcome this challenge, the proposed iden-
tification algorithm exploits the asymptotic statistics of such
spreading sequences. An approximation to the mean-squared
channel estimation error is derived for the new identification
scheme. The analytical approximation is observed to be quite
tight via simulation study. In addition, the proposed algorithm
is compared with an existing algorithm proposed in [8]. The
simulated performance of the two algorithms are comparable.
More complete comparison of the two algorithms will be
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Fig. 7. Bit error rate versus the number of users.

possible when an analytical expression for the mean-squared
error for the algorithm in [8] is derived. Future work will
focus on designing improved algorithms to estimate the data
covariance matrix.

APPENDIX

MEAN-SQUARED ERRORANALYSIS

In this Appendix, we complete the derivation of the
mean-squared error that was begun in Section IV. We calculate

, given the following expression for :

Trace (40)

Taking into account that3 , (33) can be ex-
pressed as follows:

Trace

(41)

where the super-index, with , denotes the type
of displacement in the matrix ; and

. The mean-squared error (MSE) for the
th element is

(42)

where equals when and equals when .
Expectation heretoforth is with respect to the random data and

3Recall that ^R = R̂ (2: aM; 2: aM) and R̂ = R̂ (1: aM �

1; 1: aM � 1).

the additive noise. The autocorrelation matrix givenis defined
as follows:

(43)

where , ,
and therefore

(44)

where

(45)

and

Matched filter matrix for the desired user.

Code matrix for th user ( desired user).

(i.e., noise)
(46)

where represents the displacement of the matrix .
Taking into account (45), the expectation in (44) can be ex-
pressed as

(47)

Due to the independence between users and noise, we consider
the following scenarios to compute the expectation in (47):

I i.e., same user (or noise)
II
III

(48)

Note that for the case , the expectation is
zero since we are using QAM modulation for the user symbols
and complex Gaussian noise. For the three cases, (47) is simpli-
fied as follows:

I

II

III

(49)
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In (49), the analysis of cases II and III is obvious, but
to develop case I, we consider the general expectation

, where and
represent deterministic vectors, and is a random process.
Equation (49-I) is considered for two different situations.

1) For (i.e., Gaussian noise), and are
vectors, and is a vector corresponding

to a zero mean Gaussian process. It can be shown4 that

(50)

where is the noise variance, and

matrix whose element

if and
otherwise.

(51)

2) For (i.e., users), and are
vectors, and is a vector whose elements

are the QAM transmitted symbols for a single user. It can
be shown that

(52)

where is the user power, are the
th elements of , respectively, and

diag (53)

where the operator diag results in a vector of the di-
agonal elements of the matrix.

Taking into account (49), (50), and (52), (47) can be ex-
pressed as follows:

(54)

4If z ; z ; z ; z are four zero mean Gaussian random variables, then
E[z z z z ] = E[z z ]E[z z ] + E[z z ]E[z z ].

where

diag (55)

Substituting (54) into (44), we obtain

Trace

Trace

Trace

Trace

(56)

where

diag

Trace

(57)

We have used the fact that and are zero
matrices for and (i.e.,



ESCUDEROet al.: TOEPLITZ DISPLACEMENT METHOD FOR BLIND MULTIPATH ESTIMATION 665

), respectively. Therefore, only the values
are considered.

Finally, to obtain the MSE of the channel estimation algo-
rithm, we have to consider the contribution of all of the compo-
nents, that is

(58)

In Section VI, the accuracy of this approximation is explored
via comparison to simulation results.
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