

Modeling Interactions of Autonomous Vehicles and Pedestrians with Deep Multi-Agent Reinforcement Learning for Collision Avoidance

<u>Raphael Trumpp¹</u>, Harald Bayerlein¹, and David Gesbert²

I. Problem Definition

Scenario: Interaction of the agents at an unmarked crosswalk (chicken game)

- Heterogenous agents:
- Autonomous vehicle (AV): Level-5; assumed with high quality sensors
- **Pedestrian:** Attempts to cross the road; limited reliability of state estimations
- Goal: Prevent collisions while ensuring smooth traffic flow \rightarrow develop a pedestrian collision avoidance mitigation

IV. Methodology

Idea: Modelling different levels of intelligent behavior

Acting rationally by perceiving the environment

Learning and exploring new strategies

Pedestrian models

• Level-1: Action u_t^{ped} is taken at each time step

$$_{,\text{ped}}$$
 (walk, if $\text{TTC}_t \ge 3$ s

DRL P Collision	OMDP	Leve pedes	el-1 strian	Le ^v	vel-2 AV
Collision 8 0.2 8 0.1 8 0.1 0.1	on rate (CR)				
0.2 Kate in %			Episode duration		
0.0 0.1 0 Noise		Duration in s	0.0 0.1 Nois	0.2 0.3 se level of	0.4 0.5

etting d. Dedectrice with fived policy

(PCAM) system for the AV using deep reinforcement learning (DRL)

II. Related Work

- Chae et al. [1] are the first to develop a PCAM system using deep reinforcement learning (DRL)
- In [2], a PCAM system for multiple pedestrians is proposed using DRL
- Limitations: Pedestrian not in focus and no analysis of the influence of uncertainty

III. Contributions

- A deep multi-agent reinforcement learning (DMARL) approach is used as a new perspective on modeling pedestrians
- The influence of observation noise on the agents' performance is evaluated
- Our approach generalizes well over different scenarios and the driving capability is beyond similar works

Level-2: DDQN [3] model with state observations s_t^{ped} , actions u_t^{ped} , and reward function \mathcal{R}^{ped}

$$\begin{split} \mathcal{U}^{\text{ped}} &= \{\text{wait, walk}\}\\ r_{t+1}^{\text{ped}} &= -\tau^{\text{ped}} - \begin{cases} \beta^{\text{ped}}, & \text{if collision} = \text{True}\\ 0, & \text{otherwise} \end{cases} \end{split}$$

AV models

- Level-1: Action u_t^{car} is taken from a best response analysis
- Level-2: DDQN [3] model with state observations s_t^{AV} , actions u_t^{AV} , and reward function \mathcal{R}^{AV} :

$$\mathcal{U}^{\text{ped}} = \{-9.8, -5.8, -3.8, 0, 1, 2, 3\} \frac{\text{m}}{\text{s}^2}$$

$$r_t^{\text{AV}} = -\tau^{\text{AV}} - \begin{cases} \beta^{\text{AV}}, & \text{if collision} = \text{True} \\ 0, & \text{otherwise} \end{cases}$$

$$- \begin{cases} \psi^{\text{AV}}, & \text{if } v_t^{\text{AV}} > v_{\text{limit}}^{\text{AV}} \\ 0, & \text{otherwise} \end{cases}$$

Environment models

- Partially-observable <u>Markov decision</u> process (POMDP) with tuple: $(\mathcal{S}^{\mathrm{AV}}, \mathcal{Z}^{\mathrm{AV}}, \mathcal{U}^{\mathrm{AV}}, \mathcal{T}, \mathcal{O}, \mathcal{R}^{\mathrm{AV}}, \gamma)$
- Markov game (MG) with agents $\mathcal{W} =$ $\{w^{AV}, w^{ped}\}$ and tuple:

 $(\mathcal{W}, \mathcal{S}, \mathcal{Z}, \mathcal{U}, \mathcal{T}, \mathcal{O}, \mathcal{R}, \gamma)$

 Multiplicative noise model to account for uncertainty

 $\mathcal{O}: z_t = (1 + n_t) \cdot s_t$ with $n_t \sim \mathcal{N}(0, \alpha^2)$

Varying environment parameters

CR median	—— AV median	– – – Ped. median
CR 80%-conf.	AV 80%-conf	Ped. 80%-conf.

Figure 2: Performance in setting-1 over different noise levels.

Setting-2: Pedestrian with fixed policy

DMARL	MG	Level-2 pedestri	2 an	Level-2 AV
Collie 0.2 \otimes 0.1 \otimes 0.1 0.0 0.1	sion rate (CF 0.2 0.3 0.4	Pedestin S) S) S S S S S S S S S S S S S	Epis .0 0.1	Sode duration 0.2 0.3 0.4 0.5
No	ise level α^{ped}		Noi	se level α^{ped}
CR CR	median –	AV mediar AV 80%-c	n – – onf.	Ped. medianPed. 80%-conf.

Figure 4: Performance in setting-2 over different noise levels.

Figure 1: Exemplary driving scenario at an unmarked crosswalk.

¹ R. Trumpp and H. Bayerlein are with the TUM School of Engineering and Design, Technical University of Munich, Germany, e-mail: {raphael.trumpp, h.bayerlein}@tum.de.

² D. Gesbert is with the Communication Systems Department, EURECOM, Sophia Antipolis, France, e-mail: david.gesbert@eurecom.fr.

R. Trumpp and H. Bayerlein were supported by the Chair of Cyber-Physical Systems in Production Engineering at TUM. H. Bayerlein and D. Gesbert were partially supported by the French government, through the 3IA Côte d'Azur project number ANR-19-P3IA-0002, as well as by the TSN CARNOT Institute under project Robots4IoT.

References

1] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi, "Autonomous braking system via deep reinforcement learning," IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017. [2] N. Deshpande, D. Vaufreydaz, and A. Spalanzani, "Behavioral decisionmaking for urban autonomous driving in the presence of pedestrians using deep recurrent Q-network," in 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2020.

[3] H. Van Hasselt, A. Guez, and D. Silver, "Deep reinforcement learning with double Q-learning," in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

$$\begin{split} v_{\text{init}}^{\text{AV}} &\sim \mathcal{U}\left(30\frac{\text{km}}{\text{h}}, 50\frac{\text{km}}{\text{h}}\right) \\ &\text{TTC}_{\text{init}} \sim \mathcal{U}(1.0\text{s}, 5.0\text{s}) \\ v_{\text{walk}}^{\text{ped}} \in \{1.16, 1.38, 1.47, 1.53, 1.55\}\frac{\text{m}}{\text{s}} \\ & b^{\text{street}} = \{6.0, 7.5\}\text{m} \end{split}$$

V. Results

- Training: 8,000 episodes; DQN has a replay buffer of 50,000 experiences
- Evaluation: 80% confidence with median of 8 independent runs
- Noise evaluation: $\alpha^{AV} = 0.05$ and $\alpha^{ped} =$ $\{0.0, 0.1, 0.2, 0.4, 0.5\}$
- Independent learning scheme for DMARL (semi-cooperative)

Figure 5: Agent behavior in setting-2 with $\alpha^{\text{ped}} = 0.1$.