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. Problem Definition

Scenario: Interaction of the agents at an
unmarked crosswalk (chicken game)

= Heterogenous agents:

« Autonomous vehicle (AV): Level-5;
assumed with high quality sensors

« Pedestrian: Attempts to cross the road,;
limited reliability of state estimations

= Goal: Prevent collisions while ensuring
smooth traffic flow — develop a
pedestrian collision avoidance mitigation
(PCAM) system for the AV using deep
reinforcement learning (DRL)

ll. Related Work

= Chae et al. [1] are the first to develop a
PCAM system using deep reinforcement
learning (DRL)

* |n[2], a PCAM system for multiple
pedestrians is proposed using DRL

= Limitations: Pedestrian not in focus and
no analysis of the influence of uncertainty

l1l. Contributions

= A deep multi-agent reinforcement learning
(DMARL) approach is used as a new
perspective on modeling pedestrians

* The influence of observation noise on the
agents’ performance is evaluated

= Qur approach generalizes well over
different scenarios and the driving
capability is beyond similar works
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Figure 1. Exemplary driving scenario at an unmarked crosswalk.
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V. Methodology

Idea: Modelling different levels of
intelligent behavior

Acting rationally by

Level-1 perceiving the environment

Learning and exploring

Level-2 new strategies

Pedestrian models

= Level-1: Action uP*“is taken at each time

step

ped {walk, if TTC, = 3s

U, = - .
wait, otherwise

= Level-2: DDQN [3] model with state
observations sP°¢, actions u?*¢, and
reward function RPed
UPed = {wait, walk}

~ped _ _ _ped _ gPed  if collision = True
t+1 0, otherwise

AV models

= |evel-1: Action us®" is taken from a best
response analysis

= Level-2: DDQN [3] model with state

observations sV, actions u2V, and
reward function RAV:

m
ured = {—98,-5.8,-3.8,0,1, 2,3} =

AV = AV _ B2V, if collision = True
0, otherwise

AV ¢ AV AV
_ WY, ifveY > v
0, otherwise

Environment models

» Partially-observable Markov decision
process (POMDP) with tuple:

( SAV ZAV AV T (9 RAV. )/)
= Markov game (MG) with agents W =
{wAV, wredl and tuple:
W,S,2,U,T,0,R,y)
= Multiplicative noise model to account
for uncertainty
0:z,=1+n.) s, with n.~N(0,a?)
= Varying environment parameters

km km
viel\i/t ~U <30T, 50 T)

TTCinit ~ U(1.0s, 5.0s)
m
v € (116,138,147, 153,155}
pstreet — £6.0 7.5}m

V. Results
* Training: 8,000 episodes; DOQN has a
replay buffer of 50,000 experiences

= Evaluation: 80% confidence with median
of 8 independent runs

= Noise evaluation: a®Y = 0.05 and gPed =
{0.0,0.1,0.2,0.4,0.5)

* |ndependent learning scheme for DMARL
(semi-cooperative)

Setting-1: Pedestrian with fixed policy
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Figure 2: Performance in setting-1 over different noise levels.
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Figure 3: Agent behavior in setting-1 with aP®d = 0.3.

Setting-2: Pedestrian with fixed policy
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Figure 4: Performance in setting-2 over different noise levels.
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Figure 5: Agent behavior in setting-2 with aP¢9 = 0.1.
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