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Abstract—Coded distributed computing (CDC) is a new
technique proposed with the purpose of decreasing the intense data
exchange required for parallelizing distributed computing systems.
Under the famous MapReduce paradigm, this coded approach
has been shown to decrease this communication overhead by a
factor that is linearly proportional to the overall computation load
during the mapping phase. In this paper, we propose multi-access
distributed computing (MADC) as a generalization of the original
CDC model, where now mappers (nodes in charge of the map
functions) and reducers (nodes in charge of the reduce functions)
are distinct computing nodes that are connected through a multi-
access network topology. Focusing on the MADC setting with
combinatorial topology, which implies Λ mappers and K reducers
such that there is a unique reducer connected to any α mappers,
we propose a coded scheme and an information-theoretic converse,
which jointly identify the optimal inter-reducer communication
load, as a function of the computation load, to within a constant
gap of 1.5. Additionally, a modified coded scheme and converse
identify the optimal max-link communication load across all
existing links to within a gap of 4.

Index Terms—Coded distributed computing, coded multicasting,
communication load, information-theoretic converse, MapReduce,
communication complexity, multi-access distributed computing
(MADC).

I. INTRODUCTION

With the development of large-scale machine learning
algorithms and applications relying heavily on large volumes
of data, we are now experiencing an ever-growing need to
distribute large computations across multiple computing nodes.
Different computing frameworks, such as MapReduce [1] and
Spark [2], have been proposed to address these needs, based on
the aforementioned simple yet powerful concept of distributing
large-scale algorithms — to be executed over a set of input data
files — across multiple computing machines. Under the well-
known MapReduce framework, the overall process is typically
split in three distinct phases, starting with the map phase, the
shuffle phase and then the reduce phase. During the map phase,
each computing node is assigned a subset of the input data
files, and proceeds to apply to each locally available file certain
designated map functions. The outputs of such map functions,
referred to as intermediate values (IVs), are then exchanged
among the computing nodes during the shuffle phase, so that
each computing node can retrieve any missing, required IVs
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it did not compute locally. Finally, during the reduce phase,
each computing node computes one (or more) output functions
depending on its assigned reduce functions, each of which
takes as input the IVs computed for each input file.

A. Coded Distributed Computing

Several studies have shown that the aforementioned dis-
tributed map-shuffle-reduce approach comes with bottlenecks
that may severely hinder the parallelization of computationally-
intensive operations. While some works [3], [4] focused on
the impact of straggler nodes, other works have pointed
out that the total execution time of a distributed computing
application is often dominated by the shuffling process. For
instance, the work in [5], having explored the behavior of
several algorithms on the Amazon EC2 cluster, revealed that
the communication load in the shuffle phase was in fact
the dominant bottleneck in computing the above tasks in a
distributed manner. Similarly, the authors in [6] observed that,
for the execution of a conventional TeraSort application, more
than 95% of the overall execution time was spent for inter-node
communication.

Motivated by this communication bottleneck in the shuffle
phase, the authors in [6] introduced coded distributed com-
puting (CDC) as a novel framework that can yield lower
communication loads during data shuffling. This gain could be
attributed to a careful and joint design of the map and the shuffle
phases. Approaching the distributed computing problem from
an information-theoretic perspective, the authors brought to
light the interesting relationship between the computation load
during the mapping phase, and the communication load of the
shuffling step. In particular, the work in [6] revealed that if the
computation load of the mapping phase is carefully increased
by a factor r — which means that each input file is mapped
on average by r carefully chosen computing nodes — then the
communication load can be reduced by the same factor r by
employing coding techniques during the shuffle phase.Building
on the coding-based results in cache networks [7], [8], the work
in [6] characterized the exact information-theoretic tradeoff
between this computation and communication loads under any
map-shuffle-reduce scheme with uniform mapping capabilities
and uniform assignment of reduce functions.

Since its original information-theoretic inception in [6],
coded distributed computing has been explored with several
variations. Such variations include heterogeneity aspects where,
for example, each computing node may be assigned different
numbers of files to be mapped and functions to be reduced.
For such settings, novel schemes, based on hypercube and
hypercuboid geometric structures, were developed in [9], [10],
which managed not only to compensate for the heterogeneous

https://orcid.org/0000-0002-6980-3827
https://orcid.org/0000-0002-3531-120X


nature of the considered scenarios, but to also exploit these
asymmetries in order to require a smaller number of input
files, compared to the initial scheme in [6]. Regarding this
problem of requiring a large number of input files, it is worth
also mentioning the work in [11], where the authors proposed
a system model for distributed computing, where the required
number of input files was lowered dramatically under an
assumption of a multi-rank wireless network.

Some additional works explored the scenario where the
computing servers communicate with each other through switch
networks [12] or in the presence of a randomized connec-
tivity [13], whereas some other works further investigated
distributed computing over wireless channels [14], as well as
explored the interesting scenario where each computing node
might have limited storage and computational resources [15]–
[17]. A comprehensive survey on CDC is nicely presented
in [18].

B. Contributions

In this work, we propose the multi-access distributed comput-
ing (MADC) model, which can be considered as an extension
of the original setting introduced in [6], and which entails
mappers (map nodes) being connected to various reducers
(reduce nodes), and where these mappers and reducers are now
distinct entities1. As is common, mappers are in charge of
mapping subsets of the input files, whereas the reducers are in
charge of collecting the IVs in order to compute the reduce
functions. We will here focus on the so-called combinatorial
topology which will define how the mappers are connected
to the reducers. The choice of this topology stems from its
analytical tractability that makes it interesting from an academic
point of view, in addition to the fact that the same topology
has also been recently studied in other settings outside of
distributed computing [21]–[23]. Under such combinatorial
topology, we consider Λ map nodes and K ≥ Λ reduce nodes,
where each map node maps a subset of the input files, where
each reduce node is connected to α map nodes, and where
there is exactly one reducer for each subset of α map nodes.
Each reducer can retrieve intermediate values only from the
mappers it is connected to, whereas these same reducers can
exchange via an error-free shared-link broadcast channel the
remaining required intermediate values. A simple schematic of
the model is shown in Fig. 1 for the case Λ = 4, α = 2 and
K = 6.

As discussed before, the communication load in the shuffle
phase can represent a significant bottleneck of distributed
computing. As a consequence, our objective is to minimize the
volume of data exchanged by the reducers over the common-bus
link during the shuffle phase, as well as the communication load
between the mappers and the reducers. We start our analysis
by first neglecting the communication cost between mappers
and reducers, and we propose — for the aforementioned
MADC model with combinatorial topology — a coded scheme
that allows for efficient communication over the broadcast

1This choice is reasonable if we think of mappers as computing nodes that
are specialized in evaluating the map functions, and of reducers as computing
nodes that are specialized in evaluating the reduce functions [19], [20].
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Fig. 1. Multi-access distributed computing problem with Λ = 4 mappers and
K = 6 reducers, where each reducer is connected exactly and uniquely to a
subset of α = 2 map nodes.

communication channel. For such setting, we also provide an
information-theoretic lower bound on the communication load,
and we show this to be within a constant multiplicative gap of
1.5 from the achievable communication load guaranteed by the
proposed coded scheme. We then proceed to also account for
the download cost from mappers to reducers. For such setting,
our goal is to minimize the maximal (normalized) number of
bits across all links in the system. To this purpose, we introduce
an additional mappers-to-reducers communication scheme and
a novel converse bound which, together with the previous inter-
reducer scheme, allow us to characterize the optimal max-link
communication load within a constant multiplicative gap of 4.
Finally, we show how the results developed to characterize both
the communication load and the max-link communication load
can be employed to characterize a weighted linear load metric
Lw = w1L+w2J within a constant multiplicative factor of 2.

C. Paper Outline

The rest of the paper is organized as follows. First, the system
model is presented in Section II. Next, Section III provides
the main contributions of the paper. The general proofs of the
achievable schemes and the converse bounds are presented from
Section IV to Section VII. Finally, Section VIII concludes the
paper. Some additional proofs are provided in the appendices.

D. Notation

We denote by N the set of non-negative integers and by
N+ the set of positive integers. For n ∈ N+, we define [n] :=
{1, 2, . . . , n}. If a, b ∈ N+ such that a < b, then [a : b] :=
{a, a+ 1, . . . , b− 1, b}. For sets we use calligraphic symbols,
whereas for vectors we use bold symbols. Given a finite set A,
we denote by |A| its cardinality. For n,m ∈ N+, we define
[n]m := {A : A ⊆ [n], |A| = m}. We denote by

(
n
k

)
the

binomial coefficient and we let
(
n
k

)
= 0 whenever n < 0,

k < 0 or n < k. For n,m ∈ N+, we denote by Fn
2m the n-

dimensional vector space over the finite field with cardinality
2m. For n ∈ N+, we denote by Sn the group of all permutations
of [n].

II. SYSTEM MODEL

The general distributed computing problem [6] consists of
computing Q output functions from N input files with Q,N ∈



N+. Each file wn ∈ F2F with n ∈ [N ] consists of F bits for
some F ∈ N+, and the q-th function is defined as

ϕq : FN
2F → F2B (1)

for each q ∈ [Q], i.e., each function maps all the N input files
into a stream uq = ϕq(w1, . . . , wN ) ∈ F2B of B bits. The
main assumption is that each function ϕq is decomposable and
so can be written as

ϕq(w1, . . . , wN ) = hq(gq,1(w1), . . . , gq,N (wN )), ∀q ∈ [Q]
(2)

where there is a map function gq,n : F2F → F2T for each
n ∈ [N ], which maps the input file wn into an intermediate
value (IV) vq,n = gq,n(wn) ∈ F2T of T bits, and a reduce
function hq : FN

2T → F2B , which maps all the IVs (one per
input file) into the output value uq = hq(vq,1, . . . , vq,N ) ∈ F2B

of B bits.
In this paper, we assume to have machines that are devoted

to computing map functions, and machines that are devoted
to computing reduce functions. Thus, a node assigned map
functions is not assigned reduce functions, and vice versa. In
our setting, we consider Λ mappers and K =

(
Λ
α

)
reducers,

where — in accordance with the combinatorial topology of
choice — there is a unique reducer connected to each subset
of α mappers. Denoting by U ∈ [Λ]α the reducer connected
to the α mappers in the set U , before the computation begins,
each reducer U ∈ [Λ]α is assigned a subset WU ⊆ [Q] of the
output functions, where here WU contains the indices of the
functions assigned to reducer U . For simplicity, we assume in
our setting a symmetric and uniform task assignment, which
implies |WU | = Q/K = η2 for some η2 ∈ N+ and for each
U ∈ [Λ]α, and WU1

∩WU2
= ∅ for all U1,U2 ∈ [Λ]α such that

U1 ̸= U2. Afterwards, the computation is performed across the
set of mappers and reducers in a distributed manner following
the map-shuffle-reduce paradigm.

TABLE I
IMPORTANT PARAMETERS FOR THE MADC SYSTEM WITH COMBINATORIAL

TOPOLOGY

Number of Mappers Λ

Multi-Access Degree α

Number of Reducers K =
(Λ
α

)

Computation Load r

Number of Input Files N

Communication Load L

Download Cost J

Max-Link Load Lmax-link = max(L, J)

During the map phase, a set of files Mλ ⊆ {w1, . . . , wN}
is assigned to the mapper λ for each λ ∈ [Λ]. Each mapper
λ ∈ [Λ] computes the intermediate values Vλ = {vq,n : q ∈
[Q], wn ∈ Mλ} for all the Q reduce functions using the files
in Mλ which it has been assigned. Since reducer U ∈ [Λ]α is
connected to the mappers in U , it can access the intermediate
values in the set VU = {vq,n : q ∈ [Q], wn ∈ MU}, where

MU =
⋃

λ∈U Mλ is simply the union set of files assigned to
and mapped by the map nodes in U . When the communication
cost between mappers and reducers is not neglected, we can
define the download cost as follows.

Definition 1 (Download Cost). The download cost, denoted
by J , is defined as the maximal normalized number of bits
transmitted across the links from the mappers to the reducers,
and is given by

J := max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(3)

where RU
λ denotes the number of bits that are transmitted by

mapper λ ∈ [Λ] to reducer U ∈ [Λ]α where λ ∈ U .

Remark 1. With emphasis on distributed computing scenarios
where delay constraints are present, the nature of the download
cost metric above allows us to bound the overall communication
delay between mappers and reducers. While indeed the down-
load cost as defined above allows for a certain parallelizing
effect to remain unaccounted for, it remains a metric that
properly captures a tradeoff between the computational effort
at the mappers and a worst-case delivery time of data.

Assuming that each mapper computes all possible IVs from
locally available files2, we define the computation load as
follows.

Definition 2 (Computation Load). The computation load,
denoted by r, is defined as the total number of files mapped
across the Λ map nodes and normalized by the total number
of files N , and it takes the form

r :=

∑
λ∈[Λ] |Mλ|
N

. (4)

During the shuffle phase, each reducer U ∈ [Λ]α retrieves
the IVs from the mappers in U and creates a signal XU ∈
F2ℓU for some ℓU ∈ N+ and for some encoding function
ψU : FQ|MU |

2T
→ F2ℓU , where XU takes the form

XU = ψU (VU ). (5)

Then, the signal XU is multicasted to all other reducers via
the broadcast link which connects the reducers. Since such
link is assumed to be error-free, each reducer receives all
the multicast transmissions without errors. The amount of
information exchanged during this phase is referred to as the
communication load, which is formally defined in the following.

Definition 3 (Communication Load). The communication load,
denoted by L, is defined as the total number of bits transmitted
by the K reducers over the broadcast channel during the shuffle
phase, and — after normalization by the number of bits of all
intermediate values — this load is given by

L :=

∑
U∈[Λ]α

ℓU

QNT
. (6)

Recalling that reducer U ∈ [Λ]α is assigned a subset of
output functions whose indices are in WU , each reducer U ∈

2This means that each mapper λ ∈ [Λ] computes the intermediate value
vq,n for each q ∈ [Q] and for each wn ∈ Mλ.



[Λ]α wishes to recover the IVs {vq,n : q ∈ WU , n ∈ [N ]}
to correctly compute uq for each q ∈ WU . Thus, during the
reduce phase, each reducer U ∈ [Λ]α reconstructs all the needed
intermediate values for each q ∈ WU using the messages
communicated in the shuffle phase and the intermediate values
VU retrieved from the mappers in U , i.e., each reducer U ∈ [Λ]α
computes

(vq,1, . . . , vq,N ) = χq
U (XS : S ∈ [Λ]α,VU ) (7)

for each q ∈ WU and for some decoding function defined
as χq

U :
∏

S∈[Λ]α
F2ℓS × FQ|MU |

2T
→ FN

2T . In the end, each
reducer U ∈ [Λ]α computes the output function uq =
hq(vq,1, . . . , vq,N ) for each assigned q ∈ WU .

When the download cost is neglected, our goal is to
characterize the optimal tradeoff between computation and
communication L⋆(r). This optimal tradeoff is simply defined
as

L⋆(r) := inf{L : (r, L) is achievable} (8)

where the tuple (r, L) is said to be achievable if there exists
a map-shuffle-reduce procedure such that a communication
load L can be guaranteed for a given computation load r.
On the other hand, when we indeed jointly consider both the
inter-reducer communication cost and the mapper-to-reducer
download cost, then our aim will be to characterize the optimal
max-link communication load L⋆

max-link(r), which is defined as

L⋆
max-link(r) := inf{Lmax-link : (r, Lmax-link) is achievable} (9)

where Lmax-link := max(L, J) represents the maximum between
the communication load and the download cost for a given
computation load r. In simple terms, Lmax-link represents the
maximal normalized number of bits flowing across any link
in the considered system model, where this metric appears in
various settings such as in the recent work in [12]. Notice that
we will assume, throughout the paper, uniform computational
capabilities across the mappers and uniform assignment of
reduce functions across the reducers, as is commonly assumed
(see for example the original work in [6]).

Remark 2. When α = 1, there are K = Λ mapper-reducer
pairs. If we consider each pair to be a single computing server
and in absence of download-cost considerations, the proposed
system model trivially coincides with the original setting in [6].
Hence, since the results in this paper will hold for any α ∈ [Λ],
the proposed model can in fact be considered as a proper
extension of the original coded distributed computing model.
In addition, the definition of the communication load in (6)
is the same as in the original CDC setting in [6], and so this
explains why — as it will be clarified in Remark 4 — our
coded scheme coincides with the original CDC setting when
both α = 1 and the download cost is neglected.

Remark 3. If in a data center one separates the roles of
computing nodes as we suggest, we might have idle times
for mappers and reducers. Nevertheless, the fact that mappers
are idle in the reduce phase and vice versa should be seen as
an opportunity rather than as a problem. Indeed, we remind
that Fig. 1 simply represents a theoretical abstraction of the
considered MADC problem with combinatorial topology, and

so one should recall that mappers and reducers are most likely
computing nodes that are part of a bigger computing network,
where each computing node simply represents a shared network
resource within a data center. As a consequence, the mappers
can be exploited for other purposes within the data center when
they are idle, i.e., during the reduce phase, and vice versa for
what concerns the reduce nodes. This consideration should
further legitimize the idea of decoupling the map phase and
the reduce phase, since this makes the system more modular
and flexible in terms of computational efficiency.

III. MAIN RESULTS

In this section we will provide our main contributions. As
we have already mentioned, we will first consider a setting
where the download cost is neglected. Subsequently, we will
provide some additional results for the more realistic scenario
where the cost of delivering data from the mappers to the
reducers is non-zero.

A. Characterizing the Communication Load

The first result that we provide is the achievable computation-
communication tradeoff provided by the coded scheme that will
be presented in its general form in Section IV. As a reminder,
download-cost considerations are not considered here, but are
postponed to the next section. The result is formally stated in
the following theorem.

Theorem 1 (Achievable Bound). Consider the MADC setting
with combinatorial topology. Then, the optimal communication
load L⋆(r) is upper bounded by LUB(r) which is a piecewise
linear curve with corner points

(r, LUB(r)) =

(
r,

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
)) , ∀r ∈ [Λ− α+ 1].

(10)

Proof. The proof of the scheme is reported in Section IV.

Remark 4. As we already mentioned in Remark 2, if we set
α = 1 and we consider each mapper-reducer pair as a unique
entity, we obtain the same system model in [6]. Interestingly,
we can see that, if we specialize the result in Theorem 1 to the
case α = 1, we obtain the same computation-communication
tradeoff as in [6, Theorem 1], as our topology can be considered
to be a proper extension of the original CDC model.

We proceed to construct an information-theoretic converse
on the communication load of the MADC setting. As it will be
pointed out in the general proof in Section V, the construction
of the converse takes inspiration from [10, Lemma 2] as well
as from ideas in [22]. Essentially, the bound here manages
to merge the approach in [10, Lemma 2], where a converse
bound is built using key properties of the entropy function,
with the index coding techniques in [22], where the nodes of
a side information graph are iteratively selected in a proper
way to systematically identify large acyclic subgraphs that are
used to develop a tight converse. The result is formally stated
in the following.



Theorem 2 (Converse Bound). Consider the MADC setting
with combinatorial topology. Then, the optimal communication
load L⋆(r) is lower bounded by LLB(r) which is a piecewise
linear curve with corner points

(r, LLB(r)) =

(
r,

(
Λ

r+α

)(
Λ
α

)(
Λ
r

)) , ∀r ∈ [Λ− α+ 1]. (11)

Proof. The proof is described in Section V.

Finally, from the results in Theorem 1 and Theorem 2, we
can provide an order optimality guarantee for the MADC
model. Indeed, comparing the achievable performance and the
converse bound, we conclude that the two are within a constant
multiplicative gap. We see this in the following theorem3.

Theorem 3 (Order Optimality). For the MADC system with
combinatorial topology, Λ mappers and K =

(
Λ
α

)
reducers for

a fixed value of α ∈ [2 : Λ], the achievable performance in
Theorem 1 is within a factor of at most 1.5 from the optimal.

Proof. The proof is described in Appendix A.
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Fig. 2. Comparison between original CDC, where there are Λ = 10 pairs
of mappers and reducers, and MADC with combinatorial topology, Λ = 10
mappers and K = 45 reducers, where each of them is uniquely associated to
α = 2 mappers.

In Fig. 2 we can see a comparison between the original CDC
framework and the proposed MADC model. More specifically,
for the first setting we consider Λ = 10 pairs of mappers and
reducers, where each pair λ ∈ [10] can be considered as a
unique computing server having its own subset Mλ of assigned
files. For the second setting we consider Λ = 10 mappers and
K =

(
10
2

)
= 45 reducers, where there is a reducer connected to

any α = 2 mappers. The performance of our proposed MADC
model is better than the original CDC framework and this can
be attributed to the fact that each reduce has access to α = 2

3The order optimality result in Theorem 3 excludes the value α = 1. Indeed,
it can be verified that for such case the achievable performance in Theorem 1
and the converse in Theorem 2 are within a factor of at most 2. However, we
already know that the coded scheme in [6] is exactly optimal when α = 1.
Hence, such value is neglected when comparing the aforementioned results.

mappers, which consequently implies (intuitively) much less
data to be transferred over the common-bus link.
Remark 5. As our combinatorial architecture cannot be directly
compared with the original CDC model, the purpose of Fig. 2
remains mainly to offer an indication of the communicational
efficiencies of the proposed model. Unfortunately, any direct
comparison with other topologies with the same access degree
α remains unattainable due to the lack of such topologies in
the literature.

B. Characterizing the Max-Link Load

We now consider a distributed computing scenario where
the download cost may be prominent and so must be accounted
for. In such case, we switch to the more realistic max-link
load metric, which is an alternative metric that captures both
communication and download costs. The following describes
the achievable max-link communication load.

Theorem 4 (Achievable Bound). Consider the MADC setting
with combinatorial topology. Then, the optimal max-link com-
munication load L⋆

max-link(r) is upper bounded by Lmax-link,UB(r)
which is given by

Lmax-link,UB(r) = max

( ∑
j∈[Λ]

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
) ãj⋆
N
,

∑
j∈[Λ]

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) ãj⋆
N

)
(12)

where the vector ã⋆ = (ã1⋆, . . . , ã
Λ
⋆ ) is the optimal solution to

the linear program

min
ãM

1

2

∑
j∈[Λ]

( (
Λ

α+j

)(
Λ
α

)(
Λ
j

) + (
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãjM
N

(13a)

subject to ãjM ≥ 0, ∀j ∈ [Λ] (13b)∑
j∈[Λ]

ãjM
N

= 1 (13c)

∑
j∈[Λ]

j
ãjM
N

≤ r (13d)

and where ãM = (ã1M, . . . , ãΛM) is the control variable.

Proof. The proof of the scheme is reported in Section VI.

We proceed by proposing an information-theoretic converse
on the max-link communication load. The result is presented
in the following theorem.

Theorem 5 (Converse Bound). Consider the MADC setting
with combinatorial topology. Then, the optimal max-link com-
munication load L⋆

max-link(r) is lower bounded by Lmax-link,LB(r)
which is given by

Lmax-link,LB(r) =
1

2

∑
j∈[Λ]

( (
Λ

α+j

)(
Λ
α

)(
Λ
j

) + (
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãj⋆
N

(14)
where the vector ã⋆ = (ã1⋆, . . . , ã

Λ
⋆ ) is the optimal solution to

the linear program in (13).



Proof. The proof is described in Section VII.

Finally, we can compare the results in Theorem 4 and
Theorem 5 to establish the gap to optimality of the achievable
performance in Theorem 4. Notice that now we do not exclude
the value α = 1 for such comparison, since for such case there
is no previously known optimality result to the best of our
knowledge.

Theorem 6 (Order Optimality). For the MADC system with
combinatorial topology, Λ mappers and K =

(
Λ
α

)
reducers

for a fixed value of α ∈ [Λ], the achievable performance in
Theorem 4 is within a factor of at most 4 from the optimal.

Proof. The proof is described in Appendix B.

C. Characterizing a General Weighted Load
We devote this last part to show how the results developed

to characterize the communication load L⋆ and the max-link
load L⋆

max-link can be employed to directly characterize also
a general weighted load Lw = w1L + w2J . The following
theorems provide an achievable bound, a converse bound and
an order optimality result, respectively.

Theorem 7 (Achievable Bound). Consider the MADC setting
with combinatorial topology. Then, the optimal weighted load
L⋆
w(r) is upper bounded by Lw,UB(r) which is given by

Lw,UB(r) =
∑
j∈[Λ]

(
w1

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
)

+ w2

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãj⋆
N

(15)

where the vector ã⋆ = (ã1⋆, . . . , ã
Λ
⋆ ) is the optimal solution to

the linear program

min
ãM

∑
j∈[Λ]

(
w1

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) + w2

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãjM
N

(16a)

subject to ãjM ≥ 0, ∀j ∈ [Λ] (16b)∑
j∈[Λ]

ãjM
N

= 1 (16c)

∑
j∈[Λ]

j
ãjM
N

(16d)

and where ãM = (ã1M, . . . , ãΛM) is the control variable.

Proof. The proof follows from a weighted linear combination
of the achievable schemes for both the communication load
and the download cost described in Section VI.

Theorem 8 (Converse Bound). Consider the MADC setting
with combinatorial topology. Then, the optimal max-link com-
munication load L⋆

max-link(r) is lower bounded by Lmax-link,LB(r)
which is given by

Lmax-link,LB(r) =
∑
j∈[Λ]

(
w1

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) + w2

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãj⋆
N

(17)

where the vector ã⋆ = (ã1⋆, . . . , ã
Λ
⋆ ) is the optimal solution to

the linear program in (16).

Proof. The proof follows from a weighted linear combination
of the converse bounds for both the communication load and
the download cost already derived in Section VII.

Theorem 9 (Order Optimality). For the MADC system with
combinatorial topology, Λ mappers and K =

(
Λ
α

)
reducers

for a fixed value of α ∈ [Λ], the achievable performance in
Theorem 7 is within a factor of at most 2 from the optimal.

Proof. The proof works along the same lines as the proof
in Appendix B.

IV. PROOF OF ACHIEVABLE BOUND IN THEOREM 1
We assume that there are Λ mappers and K =

(
Λ
α

)
reducers,

and we assume the aforementioned combinatorial topology
where each reducer is exactly and uniquely connected to α
mappers. We then consider some arbitrary computation load
r ∈ [Λ− α+ 1] and we consider Q = η2K output functions
with η2 ∈ N+, allowing us to separate the Q functions into K
disjoint groups WU for each U ∈ [Λ]α, so that each reducer is
assigned η2 functions, corresponding to |WU | = η2 for each
U ∈ [Λ]α.

A. Map Phase

This phase follows the same mapping strategy proposed
by the authors in [6]. Hence, the input database is split
in
(
Λ
r

)
disjoint batches, each containing η1 = N/

(
Λ
r

)
files,

where we assume that N is large enough such that η1 ∈ N+.
Consequently, we have a batch of files for each T1 ⊆ [Λ] such
that |T1| = r, which implies

{w1, . . . , wN} =
⋃

T1⊆[Λ]:|T1|=r

BT1
(18)

where we denote by BT1
the batch of η1 files associated with

the label T1. Then, mapper λ ∈ [Λ] is assigned all batches BT1

having λ ∈ T1, which means that

Mλ = {BT1 : T1 ⊆ [Λ], |T1| = r, λ ∈ T1}. (19)

We can see that the computation load constraint is satisfied,
since we have ∑

λ∈[Λ] |Mλ|
N

=
Λη1

(
Λ−1
r−1

)
η1
(
Λ
r

) = r (20)

Then, each mapper computes Q intermediate values for each
assigned input file, so for each λ ∈ [Λ] we have Vλ = {vq,n :
q ∈ [Q], wn ∈ Mλ}. Since then each reducer has access to
α mappers, reducer U ∈ [Λ]α can retrieve4 the intermediate
values in VU = {vq,n : q ∈ [Q], wn ∈ MU} recalling that
MU = ∪λ∈UMλ. Since |VU | = Qη1

((
Λ
r

)
−
(
Λ−α
r

))
for each

U ∈ [Λ]α, we can conclude that each computing node has
access to all the intermediate values when r ≥ Λ − α + 1.
Hence, we focus on the non-trivial regime r ∈ [Λ−α+1] for
any given Λ and α.

4Since we are presenting here the proof of the achievable bound in
Theorem 1, we remind that in such case the download cost is neglected.



B. Shuffle Phase

Consider reducer U ∈ [Λ]α. Let S ⊆ ([Λ] \ U) with
|S| = r. First, for each R ⊆ (S ∪ U) such that |R| = α
and R ≠ U , and for T1 = (S ∪U)\R, reducer U concatenates
the intermediate values {vq,n : q ∈ WR, wn ∈ BT1

} into
the symbol UWR,T1

= (vq,n : q ∈ WR, wn ∈ BT1
) ∈ F2η2η1T .

Subsequently, such symbol is evenly split in
((

r+α
r

)
− 1
)

segments as

UWR,T1
= (UWR,T1,T2

: T2 ⊆ (R∪ T1), |T2| = α, T2 ̸= R) .
(21)

Then, reducer U constructs the coded message⊕
R⊆(S∪U):|R|=α,R̸=U

UWR,(S∪U)\R,U (22)

for each S ⊆ ([Λ] \ U) with |S| = r, and finally concatenates
all of them into the following message

XU =

( ⊕
R⊆(S∪U):
|R|=α,R̸=U

UWR,(S∪U)\R,U : S ⊆ ([Λ]\U), |S| = r

)
(23)

which is multicasted to all other reducers via the error-free
broadcast channel.

C. Reduce Phase

Consider reducer U ∈ [Λ]α. Since such reducer is connected
to α mappers, it misses a total of η2η1

(
Λ−α
r

)
intermediate

values, i.e, it misses η2 intermediate values for each of the η1
files in each batch that is not assigned to the mappers in U .
More precisely, reducer U misses the symbol UWU ,T1

for each
T1 ⊆ ([Λ] \ U) with |T1| = r. We know that during the shuffle
phase such symbol is evenly split in

((
r+α
r

)
− 1
)

segments as

UWU ,T1
= (UWU ,T1,T2

: T2 ⊆ (U ∪ T1), |T2| = α, T2 ̸= U) .
(24)

For each T2 ⊆ (U ∪ T1) with |T2| = α and T2 ̸= U , we
can verify that reducer U can decode UWU ,T1,T2 from XT2 .
Indeed, there exists an S ⊆ ([Λ] \ T2) with |S| = r such
that S = (U ∪ T1) \ T2. For such S , the corresponding coded
message in XT2

is⊕
R⊆(S∪T2):|R|=α,R̸=T2

UWR,(S∪T2)\R,T2
=

=
⊕

R⊆(U∪T1):|R|=α,R̸=T2

UWR,(U∪T1)\R,T2
(25)

= UWU ,T1,T2 ⊕
⊕

R⊆(U∪T1):
|R|=α,R̸=T2,R̸=U

UWR,(U∪T1)\R,T2

︸ ︷︷ ︸
interference

. (26)

Notice that reducer U can cancel the interference term by using
the intermediate values retrieved from mappers in U , so it can
correctly decode UWU ,T1,T2

. By following the same rationale
for each T2 ⊆ (U ∪ T1) with |T2| = α and T2 ̸= U , we can
conclude that reducer U can correctly recover UWU ,T1

and
can do so for each T1 ⊆ ([Λ] \ U), completely recovering all
the η2η1

(
Λ−α
r

)
missing intermediate values. The same holds

for any other U ∈ [Λ]α, and so we can conclude that each

reducer is able to recover from the multicast messages of other
reducers all the missing intermediate values.

D. Communication Load

The communication load guaranteed by the coded scheme
described above is given by

LUB(r) =

∑
U∈[Λ]α

|XU |
QNT

(27)

=

(
Λ
α

)
η2η1

(
Λ−α
r

)
T/
((

r+α
r

)
− 1
)

Qη1
(
Λ
r

)
T

(28)

=

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
) (29)

for each r ∈ [Λ−α+1]. Notice that the lower convex envelope
of the achievable points {(r, LLB(r)) : r ∈ [Λ − α + 1]} is
achievable by adopting the memory-sharing strategy presented
in [6]. The proof is concluded.

V. PROOF OF CONVERSE BOUND IN THEOREM 2
A. Preliminaries

We begin the proof by introducing some useful notation. For
q ∈ [Q] and n ∈ [N ], we let Vq,n be an i.i.d. random variable
and we let vq,n be the realization of Vq,n. Then, we define

DU := {Vq,n : q ∈ WU , n ∈ [N ]} (30)
CU := {Vq,n : q ∈ [Q], wn ∈ MU} (31)
YU := (DU , CU ). (32)

Recalling that we denote by XU the multicast message
transmitted by reducer U ∈ [Λ]α, the equation

H(XU | CU ) = 0 (33)

holds, since XU is a function of the intermediate values
retrieved by reducer U . Moreover, for any map-shuffle-reduce
scheme, each reducer U ∈ [Λ]α has to be able to correctly
recover all the intermediate values DU given the transmissions
of all reducers X[Λ]α := (XU : U ∈ [Λ]α) and given the IVs
CU computed by the mappers in U . Thus, the equation

H(DU | X[Λ]α , CU ) = 0 (34)

holds for each U ∈ [Λ]α.

B. Developing the Lower Bound

For a given file assignment M := (M1, . . . ,MΛ), we
let LM be the corresponding communication load under this
assignment M. Then, we provide a lower bound on LM for
any given file assignment in the following lemma.

Lemma 1. Consider a specific file assignment M =
(M1, . . . ,MΛ). Let c = (c1, . . . , cΛ) be a permutation of
the set [Λ] and define

Di := (DUi : U i ⊆ {c1, . . . , ci}, |U i| = α, ci ∈ U i) (35)

Ci := (CUi : U i ⊆ {c1, . . . , ci}, |U i| = α, ci ∈ U i) (36)

Yi−1 := (YUj : j ∈ [α : i− 1],U j ⊆ {c1, . . . , cj},
|U j | = α, cj ∈ Uj) (37)



for each i ∈ [α : Λ]. Then, the communication load is lower
bounded by

LM ≥ 1

QNT

∑
i∈[α:Λ]

H(Di | Ci,Yi−1). (38)

Proof. The proof is described in Appendix C.

Now, we proceed with the proof. Denote by ãT the number
of files which are mapped exclusively by the mappers in T
for some T ⊆ [Λ]. As each reducer U ∈ [Λ]α does not have
access to the intermediate values of all those files that are
not mapped by the mappers in U , the term ãT represents the
number of files whose intermediate values are required by each
reducer U ∈ [Λ]α that does not have access to the mappers
in T , i.e., each reducer U ∈ [Λ]α such that U ∩ T = 0 or,
equivalently, each reducer U ⊆ ([Λ] \ T ) such that |U| = α.
Taking advantage of the independence of the intermediate
values and recalling that each reducer computes η2 disjoint
output functions, from Lemma 1 and for a given permutation
c = (c1, . . . , cΛ) of the set [Λ], we can further write

LM ≥ 1

QNT

∑
i∈[α:Λ]

H(Di | Ci,Yi−1) (39)

=
1

QNT

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui

H(DUi | Ci,Yi−1) (40)

=
1

QNT

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui

∑
T ⊆[Λ]\{c1,...,ci}

ãT η2T

(41)

=
1

KN

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui

∑
T ⊆[Λ]\{c1,...,ci}

ãT . (42)

If we build a bound as the one in Lemma 1 for each permutation
of the set [Λ] and we sum up all these bounds together, we
obtain the expression

LM ≥ 1

KNΛ!

∑
c∈SΛ

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui

∑
T ⊆[Λ]\{c1,...,ci}

ãT

(43)
where we recall that SΛ represents the group of all permutations
of [Λ]. Our goal now is to simplify this expression and we start
doing so by counting how many times each term ãT appears
in the RHS of (43) for any fixed T ⊆ [Λ] with |T | = j and
j ∈ [Λ].

First, we focus on some reducer U ⊆ ([Λ]\T ) with |U| = α.
We can see that ãT appears in the RHS of (43) for all those
permutations in SΛ for which U = U i for some i ∈ [α : Λ]
such that U i ⊆ {c1, . . . , ci} with |U i| = α and ci ∈ U i, and
such that T ⊆ ([Λ] \ {c1, . . . , ci}) with |T | = j. Denoting by
PU,T the set of such permutations, we can see that

|PU,T | = α!j!(Λ− α− j)!

(
Λ

α+ j

)
(44)

where |PU,T | represents the number of permutation vectors in
SΛ for which the elements in U appear before the elements

in T in the permutation vector c ∈ SΛ. The same reasoning
applies to any reducer U ∈ [Λ]α for which U ∩ T = ∅. As a
consequence, the term ãT appears in the RHS of (43) a total
of ∑
U∈[Λ]α:U∩T =∅

|PU,T | =
(
Λ− j

α

)
α!j!(Λ− α− j)!

(
Λ

α+ j

)
(45)

times. The same rationale holds for any ãT where T ⊆ [Λ]
and |T | = j with j ∈ [Λ]. Consequently, we can rewrite the
expression in (43) as

LM ≥ 1

KNΛ!

∑
c∈SΛ

∑
i∈[α:Λ]

∑
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui

∑
T ⊆[Λ]\{c1,...,ci}

ãT

(46)

=
1

KNΛ!

∑
j∈[Λ]

∑
T ⊆[Λ]:|T |=j

((
Λ− j

α

)
α!j!

× (Λ− α− j)!

(
Λ

α+ j

)
ãT
)

(47)

=
1

KN

∑
j∈[Λ]

(
Λ

α+j

)(
Λ
j

) ∑
T ⊆[Λ]:|T |=j

ãT (48)

=
1

K

∑
j∈[Λ]

(
Λ

α+j

)(
Λ
j

) ãjM
N

(49)

where ãjM :=
∑

T ⊆[Λ]:|T |=j ã
T is defined as the total number

of files which are mapped by exactly j map nodes under this
particular file assignment M.

For any given file assignment M and for any given compu-
tation load r ∈ [K], the fact that |M1| + · · · + |MΛ| ≤ rN
also implies that ãjM ≥ 0 for each j ∈ [Λ], as well as implies
that

∑
j∈[Λ] ã

j
M = N and that

∑
j∈[Λ] jã

j
M ≤ rN . Thus, we

can further lower bound the above using Jensen’s inequality
and the fact that

(
Λ

α+j

)
/
(
Λ
j

)
is convex and decreasing5 in j.

Hence, we can write

LM ≥ 1

K

∑
j∈[Λ]

(
Λ

α+j

)(
Λ
j

) ãjM
N

(50)

≥ 1

K

(
Λ

α+r

)(
Λ
r

) (51)

=

(
Λ

α+r

)(
Λ
α

)(
Λ
r

) (52)

where (51) holds due to
∑

j∈[Λ] ã
j
M = N and the computation

constraint
∑

j∈[Λ] jã
j
M ≤ rN .

Given that (52) is independent of the file assignment M and
lower bounds LM for any M such that |M1|+ · · ·+ |MΛ| ≤
rN , we can further write

L⋆(r) ≥ inf
M:|M1|+···+|MΛ|≤rN

LM (53)

5This was already proved in the proof of [22, Lemma 3] by writing down
each combinatorial coefficient in

( Λ
α+j

)
/
(Λ
j

)
as a finite product and using

then the general Leibniz rule to show that its second derivative is non-negative.



≥ inf
M:|M1|+···+|MΛ|≤rN

(
Λ

α+r

)(
Λ
α

)(
Λ
r

) (54)

=

(
Λ

α+r

)(
Λ
α

)(
Λ
r

) (55)

= LLB(r). (56)

Notice that the bound LLB(r) can be extended to include also
the non-integer values of r as described in [6]. This concludes
the proof.

VI. PROOF OF ACHIEVABLE BOUND IN THEOREM 4

As we mentioned in the statement of Theorem 4, the coded
scheme depends on the solution of the linear program in (13).
Hence, the first step is to evaluate the optimal solution6 ã⋆ =
(ã1⋆, . . . , ã

Λ
⋆ ). Next, we partition the input database in Λ parts,

where we denote by Lj the j-th part, which contains |Lj | = ãj⋆
files for each j ∈ [Λ]. Then, each part j ∈ [Λ] of the database
is split in

(
Λ
j

)
batches containing ηj files each for some ηj ∈ N,

so that ãj⋆ = ηj
(
Λ
j

)
for each j ∈ [Λ]. This implies

{w1, . . . , wN} =
⋃

j∈[Λ]

Lj (57)

=
⋃

j∈[Λ]

⋃
T1⊆[Λ]:|T1|=j

Bj,T1
(58)

where we denote by Bj,T1
the batch containing ηj files

associated with the label T1. Then, mapper λ ∈ [Λ] is assigned
all batches Bj,T1 having λ ∈ T1 for each j ∈ [Λ], which implies

Mλ = {Bj,T1
: j ∈ [Λ], T1 ⊆ [Λ], |T1| = j, λ ∈ T1}. (59)

The computation load constraint is satisfied, since we have∑
λ∈[Λ] |Mλ|
N

=
Λ
∑

j∈[Λ] ηj
(
Λ−1
j−1

)
N

(60)

=

∑
j∈[Λ] jηj

(
Λ
j

)
N

(61)

=

∑
j∈[Λ] jã

j
⋆

N
≤ r (62)

where the last inequality holds under the constraint in (13d).
Our goal is to provide an achievable scheme for the max-link

communication load. Recalling that we denote by L and J the
communication load and the download cost, respectively, we
will have

L⋆
max-link(r) ≤ Lmax-link,UB(r) = max (L,D) . (63)

A. Communication Load

For what concerns the communication load, we can take
advantage of the achievable scheme described in Section IV.
Simply, the scheme in Section IV is applied Λ times, one time
per partition Lj which is considered as an independent input

6The linear program in (13) is not infeasible nor unbounded. Hence, it
admits an optimal solution. Nevertheless, we cannot easily find an analytical
solution to the optimization problem as the coefficients in the sum over j are
not convex.

database. If we denote by Lj the communication load when
we focus on the part Lj , we have that Lj is given by

Lj =

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
) ãj⋆
N

(64)

for each j ∈ [Λ]. Hence, the overall communication load L is
given by

L =
∑
j∈[Λ]

Lj =
∑
j∈[Λ]

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
) ãj⋆
N
. (65)

B. Download Cost

We remind that the download cost is defined as

J = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(66)

where RU
λ represents the number of bits which are sent from

mapper λ to reducer U . This quantity is minimized if the
number of bits transmitted over each link connecting a mapper
to a reducer is the same. This can be accomplished as follows.

Consider a reducer U ∈ [Λ]α and a mapper λ ∈ U .
According to the file assignment above, mapper λ computes
the IVs in the set Vλ = {vq,n : q ∈ [Q], wn ∈ Mλ}. The set
Vλ can equivalently be written as follows

Vλ = {Vλ,S : i ∈ [α],S ⊆ (U \ {λ}), |S| = i− 1} (67)

where Vλ,S is defined as

Vλ,S :=
{
vq,n : q ∈ [Q], wn ∈ Mλ∪S} (68)

and where Mλ∪S :=
⋂

s∈(λ∪S) Ms. This simply says that the
set Vλ,S contains the IVs which are mapped by mapper λ and
the (i− 1) mappers in S . Hence, if we evenly split Vλ,S in i
segments as follows

Vλ,S = (Vλ,S,s : s ∈ (λ ∪ S)) (69)

we simply let mapper λ send Vλ,S,λ. This implies

RU
λ =

∑
i∈[α]

∑
S⊆(U\{λ}):|S|=i−1

|Vλ,S,λ| (70)

=
∑
i∈[α]

∑
S⊆(U\{λ}):|S|=i−1

|Vλ,S |
i

(71)

=
∑
i∈[α]

∑
S⊆(U\{λ}):|S|=i−1

∑
j∈[Λ]

ηj
(
Λ−α
j−i

)
QT

i
(72)

=
∑
j∈[Λ]

∑
i∈[α]

ηj
(
Λ−α
j−i

)
QT

i

(
α− 1

i− 1

)
(73)

for each λ ∈ [Λ] and U ∈ [Λ]α with λ ∈ U . Hence, we can
further write

J = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(74)

=
1

QNT

∑
j∈[Λ]

∑
i∈[α]

ηj
(
Λ−α
j−i

)
QT

i

(
α− 1

i− 1

)
(75)



=
∑
j∈[Λ]

∑
i∈[α]

(
Λ−α
j−i

)(
α−1
i−1

)
i
(
Λ
j

) ãj⋆
N

(76)

recalling that ãj⋆ = ηj
(
Λ
j

)
for each j ∈ [Λ]. Further, the

following lemma holds.

Lemma 2. For any non-negative integers Λ, α and j, we have∑
i∈[α]

(
Λ−α
j−i

)(
α−1
i−1

)
i
(
Λ
j

) =

(
Λ
j

)
−
(
Λ−α
j

)
α
(
Λ
j

) . (77)

Proof. The proof is described in Appendix D.

As a consequence, the download cost J is equivalently given
by

J =
∑
j∈[Λ]

(
Λ
j

)
−
(
Λ−α
j

)
α
(
Λ
j

) ãj⋆
N

(78)

=
∑
j∈[Λ]

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) ãj⋆
N
. (79)

C. Max-Link Communication Load

Since we have now the expressions for both L and J , we
can write explicitly the achievable max-link communication
load as follows

Lmax-link,UB(r) = max (L,D) (80)

= max

( ∑
j∈[Λ]

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
) ãj⋆
N
,

∑
j∈[Λ]

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) ãj⋆
N

)
. (81)

The expression above coincides with the achievable expression
in Theorem 4. The proof is concluded.

VII. PROOF OF CONVERSE BOUND IN THEOREM 5

We quickly recall that LM denotes the communication load
under the file assignment M = (M1, . . . ,MΛ) and that we
know

LM ≥
∑
j∈[Λ]

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) ãjM
N

(82)

from Section V. Then, after denoting by JM and by
Lmax-link,M(r) = max(LM, JM) the download cost and
the max-link communication load, respectively, under file
assignment M, we can write

Lmax-link,M(r) = max(LM, JM) (83)

≥ max

∑
j∈[Λ]

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) ãjM
N

, JM

 . (84)

To develop a lower bound on JM, we start from the definition
of the download cost, so that we have

JM = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(85a)

≥ max
λ∈[Λ]

1(
Λ−1
α−1

)
QNT

∑
U∈[Λ]α:λ∈U

RU
λ (85b)

≥ 1

Λ
(
Λ−1
α−1

)
QNT

∑
λ∈[Λ]

∑
U∈[Λ]α:λ∈U

RU
λ (85c)

=
1

α
(
Λ
α

)
QNT

∑
U∈[Λ]α

∑
λ∈U

RU
λ (85d)

=
1

α
(
Λ
α

)
QNT

∑
U∈[Λ]α

RU (85e)

where RU is defined as

RU :=
∑
λ∈U

RU
λ (86)

to represent the overall number of bits received by reducer
U ∈ [Λ]α. Now, since each reducer U is expected to receive
all the IVs mapped by the mappers in U , we have

RU ≥ H(CU ) (87)

where we recall that CU = {Vq,n : q ∈ [Q], wn ∈ MU} from
Section V. Hence, we can write

JM ≥ 1

α
(
Λ
α

)
QNT

∑
U∈[Λ]α

RU (88a)

≥ 1

α
(
Λ
α

)
QNT

∑
U∈[Λ]α

H(CU ) (88b)

=
1

α
(
Λ
α

)
QNT

∑
U∈[Λ]α

∑
T ⊆[Λ]:T ∩U≠∅

ãTQT (88c)

=
1

α
(
Λ
α

)
N

∑
j∈[Λ]

∑
T ⊆[Λ]:|T |=j

((
Λ

α

)
−
(
Λ− j

α

))
ãT

(88d)

=
∑
j∈[Λ]

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) ãjM
N

(88e)

recalling that ãjM =
∑

T ⊆[Λ]:|T |=j ã
T . To conclude, for a

given file assignment M, the max-link communication load is
lower bounded as

Lmax-link,M(r) ≥ max

( ∑
j∈[Λ]

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) ãjM
N

, JM

)
(89)

≥ max

( ∑
j∈[Λ]

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) ãjM
N

,

∑
j∈[Λ]

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) ãjM
N

)
(90)

≥ 1

2

∑
j∈[Λ]

( (
Λ

α+j

)(
Λ
α

)(
Λ
j

)
+

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãjM
N

. (91)

Since each file assignment M such that |M1|+· · ·+|MΛ| ≤
rN also implies that ãjM ≥ 0 for each j ∈ [Λ], as well as
implies that

∑
j∈[Λ] ã

j
M = N and that

∑
j∈[Λ] jã

j
M ≤ rN ,



the max-link load L⋆
max-link(r) is lower bounded by the solution

to the following linear program

min
ãM

1

2

∑
j∈[Λ]

( (
Λ

α+j

)(
Λ
α

)(
Λ
j

) + (
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãjM
N

(92a)

subject to ãjM ≥ 0, ∀j ∈ [Λ] (92b)∑
j∈[Λ]

ãjM
N

= 1 (92c)

∑
j∈[Λ]

j
ãjM
N

≤ r (92d)

where ãM = (ã1M, . . . , ãΛM) is the control variable. The proof
is concluded.

VIII. CONCLUSIONS

In this work, we introduced multi-access distributed comput-
ing, focusing on the MADC model with combinatorial topology,
which implies Λ mappers and K =

(
Λ
α

)
reducers, so that there

is a reducer for any set of α mappers. Neglecting at first
the download cost from mappers to reducers and so focusing
only on the inter-reducer communication load, we proposed
a novel scheme which, together with an information-theoretic
converse, characterizes the optimal communication load within
a constant multiplicative gap of 1.5. Subsequently, we jointly
considered the setting which keeps into account the download
cost and for such scenario we characterized the optimal max-
link communication load within a multiplicative factor of 4. We
point out that the here introduced achievable shuffling scheme
generalizes the original coded scheme in [6] (corresponding to
the case α = 1).

Interesting future directions could include the study of the
here proposed MADC setting when mappers and reducers have
heterogeneous computational resources. A careful study of other
multi-access network topologies is also another challenging
research direction. Reflecting a design freedom, the search
for the best possible topology, for a given computation load,
remains a very pertinent open problem in distributed computing.

APPENDIX A
PROOF OF ORDER OPTIMALITY IN THEOREM 3

To prove the order optimality result in Theorem 3, we need
to upper bound the ratio LUB(r)/L

⋆(r) for each r ∈ [Λ−α+1].
We start by noting that the following

LUB(r)

L⋆(r)
≤ LUB(r)

LLB(r)
(93)

=

(
Λ−α
r

)
�
�
(
Λ
r

) ((
r+α
r

)
− 1
)��(Λr)(Λα)(

Λ
r+α

) (94)

=

(
Λ−α
r

)((
r+α
r

)
− 1
) (

Λ
α

)(
Λ

r+α

) (95)

=

(
r+α
r

)(
r+α
r

)
− 1

=: br (96)

holds. Further, we notice that br is decreasing in r, since

br+1 =

(
r+1+α
r+1

)(
r+1+α
r+1

)
− 1

(97)

=
1

1− 1

(r+1+α
r+1 )

(98)

=
1

1− r+1
r+1+α

1

(r+α
r )

(99)

<
1

1− 1

(r+α
r )

(100)

= br (101)

for each r ∈ N+. Thus, considering that r ∈ [Λ− α+ 1], we
can further write

LUB(r)

L⋆(r)
≤

(
r+α
r

)(
r+α
r

)
− 1

(102)

≤ α+ 1

α
(103)

where the last term is upper bounded when α is set to its
minimum value. Now, after neglecting the value α = 1 —
in which case the corresponding achievable performance in
Theorem 1 was already proved to be exactly optimal in [6] —
we focus on the case where α ∈ [2 : Λ], which implies that

LUB(r)

L⋆(r)
≤ α+ 1

α
(104)

≤ 3

2
. (105)

The proof is concluded.

APPENDIX B
PROOF OF ORDER OPTIMALITY IN THEOREM 6

From Theorem 4 we know that L⋆
max-link(r) is upper bounded

as

L⋆
max-link(r) ≤ Lmax-link,UB(r) (106)

= max

( ∑
j∈[Λ]

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
) ãj⋆
N
,

∑
j∈[Λ]

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) ãj⋆
N

)
(107)

≤
∑
j∈[Λ]

( (
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
)

+

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãj⋆
N

(108)

=
∑
j∈[Λ]

cj
ãj⋆
N

(109)

where the coefficient cj is defined as

cj :=

(
Λ−α
j

)
(
Λ
j

) ((
j+α
j

)
− 1
) +

(
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) . (110)



At the same time, we know from Theorem 5 that L⋆
max-link(r)

is lower bounded as

L⋆
max-link(r) ≥ Lmax-link,LB(r) (111)

=
1

2

∑
j∈[Λ]

( (
Λ

α+j

)(
Λ
α

)(
Λ
j

) + (
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) )
ãj⋆
N

(112)

=
1

2

∑
j∈[Λ]

dj
ãj⋆
N

(113)

where the coefficient dj is defined as

dj :=

(
Λ

α+j

)(
Λ
α

)(
Λ
j

) + (
Λ
α

)
−
(
Λ−j
α

)
α
(
Λ
α

) . (114)

Hence, we can evaluate the gap to optimality from the ratio
Lmax-link,UB(r)/Lmax-link,LB(r). In particular, we have

Lmax-link,UB(r)

Lmax-link,LB(r)
≤ 2

∑
j∈[Λ] cj ã

j
⋆/N∑

j∈[Λ] dj ã
j
⋆/N

(115)

= 2

∑
j∈[Λ]:ãj

⋆>0 cj ã
j
⋆/N∑

j∈[Λ]:ãj
⋆>0 dj ã

j
⋆/N

(116)

≤ 2 max
j∈[Λ]:ãj

⋆>0

cj ã
j
⋆/N

dj ã
j
⋆/N

(117)

= 2 max
j∈[Λ]:ãj

⋆>0

cj
dj

(118)

≤ 2max
j∈[Λ]

cj
dj

(119)

= 2max

(
max

j∈[Λ−α]

cj
dj
, max
j∈[Λ−α+1:Λ]

cj
dj

)
.

(120)

Now, we can see that cj = dj when j > Λ − α. Else, when
j ∈ [Λ− α], we have

cj
dj

=

(Λ−α
j )

(Λj)((
j+α
j )−1)

+
(Λα)−(

Λ−j
α )

α(Λα)

( Λ
α+j)

(Λα)(
Λ
j)

+
(Λα)−(

Λ−j
α )

α(Λα)

(121)

≤ max


(Λ−α

j )
(Λj)((

j+α
j )−1)

( Λ
α+j)

(Λα)(
Λ
j)

,

(Λα)−(
Λ−j
α )

α(Λα)

(Λα)−(
Λ−j
α )

α(Λα)

 (122)

= max

 (
Λ−α
j

)((
j+α
j

)
− 1
) (

Λ
α

)(
Λ

α+j

) , 1
 . (123)

Since we know from Appendix A that(
Λ−α
j

)((
j+α
j

)
− 1
) (

Λ
α

)(
Λ

α+j

) ≤ α+ 1

α
(124)

we can further write

max
j∈[Λ−α]

cj
dj

≤ max
j∈[Λ−α]

max

 (
Λ−α
j

)((
j+α
j

)
− 1
) (

Λ
α

)(
Λ

α+j

) , 1
 (125)

≤ max

(
α+ 1

α
, 1

)
. (126)

Hence, we can conclude that
Lmax-link,UB(r)

Lmax-link,LB(r)
≤ 2max

(
max

j∈[Λ−α]

cj
dj
, max
j∈[Λ−α+1:Λ]

cj
dj

)
(127)

≤ 2max

(
max

(
α+ 1

α
, 1

)
, 1

)
(128)

≤ 2max (max (2, 1) , 1) (129)
= 4. (130)

The proof is concluded.

APPENDIX C
PROOF OF LEMMA 1

Consider a permutation c = (c1, . . . , cΛ) of the set [Λ].
We know that H(DU | X[Λ]α , CU ) = 0 holds for any valid
shuffle scheme and for each U ∈ [Λ]α. Given this, for Uα =
{c1, . . . , cα} we can write

H(X[Λ]α) ≥ H(X[Λ]α | CUα) (131)
= H(X[Λ]α , DUα | CUα)−H(DUα | X[Λ]α , CUα)

(132)
= H(X[Λ]α , DUα | CUα) (133)
= H(DUα | CUα) +H(X[Λ]α | CUα , DUα)

(134)
= H(DUα | CUα) +H(X[Λ]α | Yα) (135)

where (131) follows from the fact that conditioning does
not increase entropy, and where (133) holds because of the
decodability condition H(DU | X[Λ]α , CU ) = 0 for each
U ∈ [Λ]α. Similarly, for each i ∈ [α+ 1 : Λ] we can write

H(X[Λ]α | Yi−1) ≥ H(X[Λ]α | Ci,Yi−1) (136)
= H(X[Λ]α ,Di | Ci,Yi−1)

−H(Di | X[Λ]α , Ci,Yi−1) (137)
= H(X[Λ]α ,Di | Ci,Yi−1) (138)
= H(Di | Ci,Yi−1)

+H(X[Λ]α | Di, Ci,Yi−1) (139)
= H(Di | Ci,Yi−1) +H(X[Λ]α | Yi)

(140)

where again (136) is true as conditioning does not increase
entropy, and where (138) follows because

H(Di | X[Λ]α , Ci,Yi−1) ≤ H(Di | X[Λ]α , Ci) (141)

≤
∑

Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui

H(DUi | X[Λ]α , CUi)

(142)
= 0 (143)

due to the independence of intermediate values and the
decodability condition. Considering that H(X[Λ]α | YΛ) = 0,
we can use iteratively the above to obtain

H(X[Λ]α) ≥
∑

i∈[α:Λ]

H(Di | Ci,Yi−1). (144)

Further, we notice that LM ≥ H(X[Λ]α)/QNT . This con-
cludes the proof.



APPENDIX D
PROOF OF LEMMA 2

First, we rewrite the equality in Lemma 2 as∑
i∈[α]

(
Λ−α
j−i

)(
α−1
i−1

)
i
(
Λ
j

) =

(
Λ
j

)
−
(
Λ−α
j

)
α
(
Λ
j

) (145)

∑
i∈[α]

(
Λ− α

j − i

)(
α

i

)
=

(
Λ

j

)
−
(
Λ− α

j

)
(146)

∑
i∈[0:α]

(
Λ− α

j − i

)(
α

i

)
=

(
Λ

j

)
. (147)

Thus, proving the equality in Lemma 2 is equivalent to showing
that the following equality∑

i∈[0:α]

(
Λ− α

j − i

)(
α

i

)
=

(
Λ

j

)
(148)

holds. From Vandermonde’s identity, we know that∑
i∈[0:j]

(
Λ− α

j − i

)(
α

i

)
=

(
Λ

j

)
(149)

and so it suffices to show that∑
i∈[0:α]

(
Λ− α

j − i

)(
α

i

)
=
∑

i∈[0:j]

(
Λ− α

j − i

)(
α

i

)
. (150)

Consider first the case j ≤ α. This means that we can write∑
i∈[0:α]

(
Λ− α

j − i

)(
α

i

)
=
∑

i∈[0:j]

(
Λ− α

j − i

)(
α

i

)

+
∑

i∈[j+1:α]

(
Λ− α

j − i
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α

i

)
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(151)
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α

i

)
(152)

where
∑

i∈[j+1:α]

(
Λ−α
j−i

)(
α
i

)
= 0 since we have

(
Λ−α
j−i

)
= 0

for i ∈ [j + 1 : α]. Similarly, if we consider j ≥ α, we have∑
i∈[0:j]
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Λ− α

j − i

)(
α

i

)
=
∑

i∈[0:α]

(
Λ− α

j − i

)(
α

i

)

+
∑
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Λ− α

j − i

)(
α

i

)
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(153)

=
∑

i∈[0:α]

(
Λ− α

j − i

)(
α

i

)
(154)

where
∑

i∈[α+1:j]

(
Λ−α
j−i

)(
α
i

)
= 0 since we have

(
α
i

)
= 0 for

i ∈ [α + 1 : j]. Hence, for any value of j ∈ [0 : Λ], we can
conclude that∑

i∈[0:α]

(
Λ− α

j − i

)(
α

i

)
=
∑

i∈[0:j]

(
Λ− α

j − i

)(
α

i

)
=

(
Λ

j

)
.

(155)
The proof is concluded.
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