Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications

Zecchin Matteo

joint work with S. Park, O. Simeone, M. Kountouris and D. Gesbert

FAAS Seminar 29/9/2022

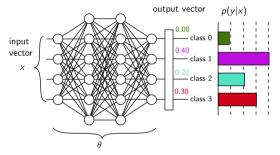
Zecchin Matteo

The Role of AI in 6G & Beyond

- Al is playing an increasingly significant role in engineering.
- Next-generation communication systems will leverage AI at all layers of the protocol stack.
- This imposes new requirements on the performance of AI.
- Accuracy should be weighted against:
 - reliability, or calibration, providing a faithful quantification of the uncertainty of the AI's decisions, e.g., for monitoring;
 - robustness to deviations from design assumptions

Predictive Uncertainty

• Discriminative probabilistic models $p(y|x, \theta)$ output hard decisions and confidence levels.



- Hard decision: $\hat{y}(x|\theta) = 1$ (class with largest score)
- Confidence level: $conf(x|\theta) = p(\hat{y}(x|\theta)|x, \theta) = 0.4$ (self reported)
- How reliable is the estimate of predictive uncertainty reported by the model?

Quantifying Calibration

- Assume that the data is generated from some ground-truth **population distribution** P(x, y).
- In practice, this can be estimated based on validation/ test data.
- The accuracy of a probabilistic model $p(y|x, \theta)$ on input x is

 $\operatorname{acc}(x|\theta) = P(\hat{y}(x|\theta)|x)$

• A probabilistic model $p(y|x, \theta)$ is **reliable**, or **well calibrated**, if

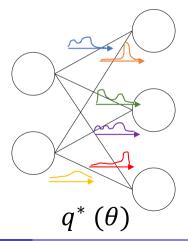
 $\operatorname{conf}(x|\theta) \approx \operatorname{acc}(x|\theta),$

or

confidence level $\approx~$ accuracy

Bayesian Learning

- Bayesian learning:
 - Optimization of a distribution $q(\theta)$ in the model parameter space
 - Distribution $q(\theta)$ encodes epistemic uncertainty.



(Generalized) Bayesian Learning

• Generalized Bayesian learning obtain $q^*(\theta)$ by minimizing the free energy^{1,2}

$$F_{\mathcal{D}}(q(\theta)) = N \underbrace{\mathbb{E}_{\theta \sim q(\theta)}[f(\theta, \mathcal{D})]}_{ ext{average training loss}} + eta \underbrace{\mathsf{KL}\left(q(\theta)||p(\theta)
ight)}_{ ext{information-theoretic}}$$

- With β = 0, the problem reduces to frequentist learning, which outputs a single model parameter vector θ*.
- This criterion is well justified by **PAC Bayes theory**, which derives it as an upper bound on the population loss.³

J. Knoblauch, et al, "Generalized variational inference: Three arguments for deriving new posteriors," arXiv:1904.02063, 2019.

O. Simeone, "Machine Learning for Engineers", Cambridge University Press, 2022.

P. Alquier, "User-friendly introduction to PAC-Bayes bounds," arXiv preprint, 2021.

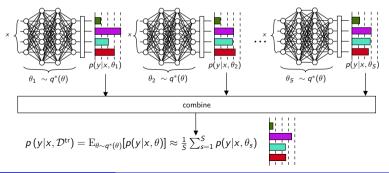
Bayesian Learning

• Decision obtained via ensembling, i.e., via

 $\mathrm{E}_{\theta \sim q^*(\theta)}\left[p(y|x,\theta)\right],$

accounting for the "opinions" of multiple models.

• In practice, the average is done over S i.i.d. model parameters $\theta \sim q^*(\theta)$.



Zecchin Matteo

Bayesian Learning

- At test time, we have
 - ▶ Hard decision: $\hat{y}(x|q^*) = \arg \max_{y} E_{\theta \sim q^*(\theta)} [p(y|x, \theta)]$ (class with largest average score)
 - Confidence level:

$$\operatorname{conf}(x|q^*) = \operatorname{E}_{\theta \sim q^*(\theta)}[p(\hat{y}(x|q^*)|x,\theta)]$$

• The confidence level accounts for **epistemic uncertainty** via the **disagreement** among models.⁴

4

N. Houlsby, et al, "Bayesian active learning for classification and preference learning," arXiv:1112.5745, 2011.

Limitations of Bayesian Learning: Model Misspecification

- A design assumption in Bayesian learning is that prior and likelihood reflect the population data distribution.
- When this is not the case, e.g., when we are forced to choose a "simple" model class, the model is said to be **misspecified**.
- Choosing $\beta \neq 1$ in generalized Bayesian learning can partly address this problem:
 - This is related to the "cold posterior problem"⁵

5

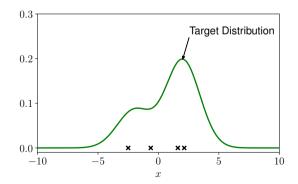
K. Pitas and J. Arbel, "Cold Posteriors through PAC-Bayes," arXiv:2206.11173.

A Toy Example

• Consider a density estimation problem with an underlying data distribution that is a mixture of Gaussians (e.g., a fading channel with blocking for mmwave or THz communications):

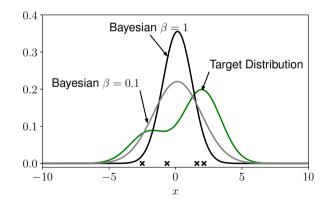
$$P(x) = 0.7\mathcal{N}(x|2,2) + 0.3\mathcal{N}(x|-2,2).$$

• Assume a Gaussian likelihood function: $p(x|\theta) = \mathcal{N}(x|\theta, 1)$



A Toy Example

- The model class is **misspecified** since it is not possible to capture both modes of the data distribution using a *single* Gaussian model.
- In this scenario, generalized Bayesian learning presents poor generalization, even with $\beta \neq 1$.



Generalized Bayesian Learning and Misspecification

• As we have seen, Bayesian learning leverages ensembling, producing the average across multiple models

 $E_{\theta \sim q^*(\theta)}[p(x|\theta)],$

with $q^*(\theta)$ being the distribution obtained via training.

 However, generalized Bayesian learning does not capture the performance of ensemble predictors as it merely include the *average* training loss E_{θ~q*(θ)}[L_D(θ)].

(m, 1)-Robust (Generalized) Bayesian Learning

- To overcome the limitations of (generalized) Bayesian learning, it was recently proposed to use a multi-sample version of the free energy: (m, 1)-robust Bayesian learning.
- The *m*-sample free energy is defined as⁶

$$F_{\mathcal{D}}^{m}(q(\theta)) = N \mathbb{E}_{\theta_{1},...,\theta_{m} \sim q(\theta)^{\otimes m}} \left[L_{\mathcal{D}}^{m}(\theta) \right] + \beta \mathsf{KL}\left(q(\theta) || p_{0}(\theta)\right)$$

where the training loss

$$L_{\mathcal{D}}^{m}(heta) = -rac{1}{N}\sum_{x\in\mathcal{D}}\log\left(rac{1}{m}\sum_{i=1}^{m}p(x| heta_{i})
ight)$$

explicitly captures the log-loss of a mixture of *m* models drawn from $q(\theta)$.

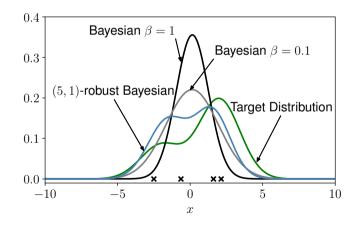
• Like the free energy, it can be justified via the analysis of generalization based on **PAC Bayes** theory.

6

W. Morningstar, et al "PAC ^m-Bayes: Narrowing the Empirical Risk Gap...", NeurIPS 2021.

Toy Example (Continued)

• (m, 1)-robust Bayesian learning is clearly better able to capture the multi-modal properties of the ground-truth distribution P(x).



Limitations of Bayesian Learning: Outliers

- Training data often contains **outliers** anomalous data points that do not follow the same distribution of test data
 - > Errors due to human labeling, measuring tools failures or interference, adversarial examples,

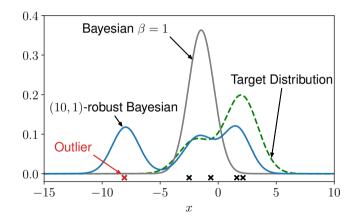
• Outliers can be modelled via the gross-error model: Given a contamination ratio $\epsilon \in (0, 1]$, the sampling distribution is⁷

$$\tilde{P}(x) = \epsilon \underbrace{Q(x)}_{\substack{\text{out-of-distribution}\\ \text{measure (OOD)}}} + (1 - \epsilon) \underbrace{P(x)}_{\substack{\text{in-distribution}\\ \text{measure (ID)}}}$$

P. J. Huber, "Robust estimation of a location parameter," The Annals of Mathematical Statistics, 1964.

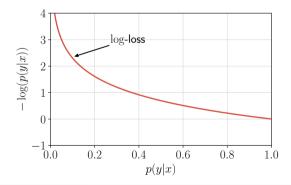
Toy Example (Continued)

• While more robust to misspecification, (m, 1)-robust Bayesian learning is significantly affected by outliers.



Reconsidering the Log-Loss

- What is the cause of the lack of robustness of existing free energy metrics?
- The free energy relies on the standard log-loss log p(x|θ), which penalizes very strongly models that do not cover well all data points, including outliers.



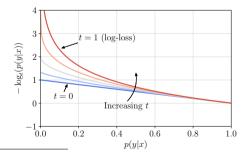
Zecchin Matteo

Beyond the Log-Loss: *t*-Log-Loss

• The *t*-log-loss, for $t \in [0, 1)$, is defined as⁸,

$$-\log_t(p):=-rac{1}{1-t}\left(p^{1-t}-1
ight) ext{ for } x>0,$$

- for $t \rightarrow 1$ recovers the standard log-loss
- Since we have $-\log_t(p) \le (1-t)^{-1}$, outliers have a bounded influence when t is small.



C. Tsallis, "Possible generalization of Boltzmann-Gibbs statistics," Journal of Statistical Physics, 1988.

8

(m, t)-Robust (Generalized) Bayesian Learning

• (m, t)-robust Bayesian learning minimizes the (m, t)-free energy criterion:⁹

$$F_{\mathcal{D}}^{m,t}(q(\theta)) = N \mathbb{E}_{\theta_1, \dots, \theta_m \sim q(\theta)^{\otimes m}} \left[f^{m,t}(\theta, \mathcal{D}) \right] + \mathsf{KL} \left(q(\theta) || p(\theta) \right)$$

where

$$f^{m,t}(heta, \mathcal{D}) = \sum_{x \in \mathcal{D}} \log_t \left(\frac{1}{m} \sum_{i=1}^m p(x| heta_i) \right)$$

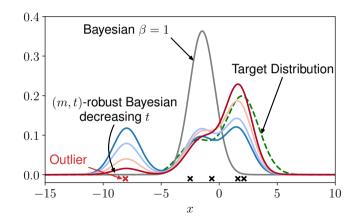
replaces the log-loss with the *t*-log-loss.

- The criterion has two tuning knobs:
 - the generalized logarithm parameter $t \in [0, 1)$, which determines the robustness to outliers;
 - ▶ and the number constituent models $m \ge 1$ in the ensemble, which determines the robustness to misspecification.

M. Zecchin, et al, "Robust PAC^m..." arXiv:2203.01859, 2022.

Toy Example (Continued)

• (*m*, *t*)-robust Bayesian learning is able to tackle both model misspecification and the presence of outliers.



Properties of (m, t)-robust Bayesian learning

• The *population* risk can be bounded w.r.t to the ID and contaminated measures¹⁰.

Theorem (Population Risk Bound)

With probability $1 - \sigma$, with $\sigma \in (0, 1)$, with respect to the random sampling of the data set \mathcal{D} , for all distributions $q(\theta)$ that are absolutely continuous with respect the prior $p(\theta)$, the following bound on the risk of the ensemble model holds

$$\mathbb{E}_{q(\theta),\tilde{P}(x)}[-\log_t p_{\theta}(x)] \leq F_{\mathcal{D}}^{m,t}(q)) + \psi(\tilde{P}, n, m, \beta, p, \sigma)$$
(1)

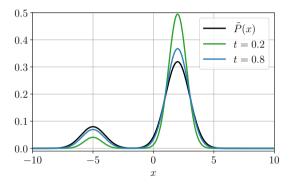
Furthermore, the risk with respect to the ID measure P(x) can be bounded as

$$\mathbb{E}_{q(\theta),P(x)}[-\log_t p_{\theta}(x)] \leq \frac{1}{1-\epsilon} \left(\mathcal{F}_{\mathcal{D}}^{m,t}(q) + \psi(\tilde{P},n,m,\beta,p,\sigma) \right) + \frac{\epsilon(C^{1-t}-1)}{(1-\epsilon)(1-t)}, \quad (2)$$

¹⁰ Zecchin, Park, Simeone, Kountouris and Gesbert. *Robust PAC*^m: *Training Ensemble Models Under Model Misspecification and Outliers.*

Properties of (m, t)-robust Bayesian learning

• For the number of samples $n \to \infty$ and the number of ensemble components $m \to \infty$, robust Bayesian learning minimize the *t*-Tsallis divergence between the predictive distribution $p_{q(\theta)}(x)$ and the *t*-escort version of $\tilde{P}(x)$.

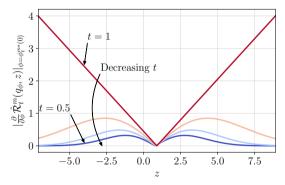


• For *t* = 1 we recover the standard KL divergence minimization and the mode seeking behaviour of standard Bayesian learning.

Zecchin Matteo

Properties of (m, t)-robust Bayesian learning

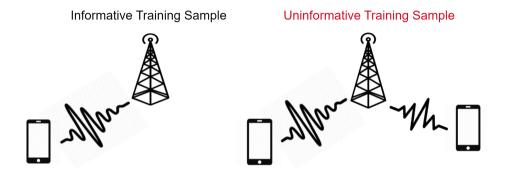
• The log_t loss effectively bounds the effect of anomalous data points. We study the influence function, measure changes of an estimator by the means of perturbation of a training data point.



Robust Bayesian Learning for Wireless Communications

- Many wireless communication applications are characterized by:
 - Training data affected by exogenous noise (e.g., interference and malicious reporting): outliers
 - Light-weight models deployed on resource constrained devices: misspecification
- We now review some specific applications of robust Bayesian learning to wireless systems.

Robust Bayesian Learning: Automatic Modulation Classification



- Determine the modulation type y associated to a received based-band signal vector x.
- Interference leads to uninformative training samples with ambiguous labels, i.e., outliers.

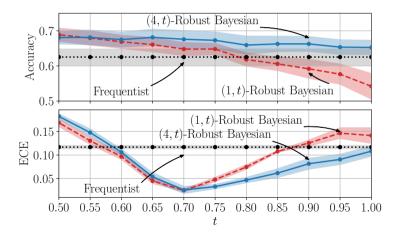
Robust Bayesian Learning: Automatic Modulation Classification

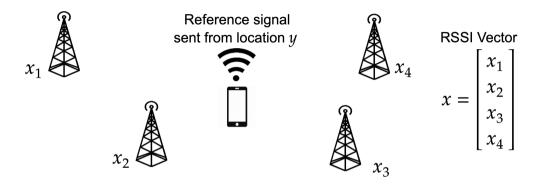
- The model is a neural network classifier comprising two convolutional layers and two linear layers.
- The dataset is the *DeepSIG: RadioML 2016.10A*¹¹ data set with 30% of the samples affected by interference.
- Testing is done on a clean data set.
- We evaluate the final model in terms of *accuracy* and *calibration*.

¹¹ T. j O'Shea, et al, "Convolutional Radio Modulation Recognition Networks " arXiv:1602.04105, 2016.

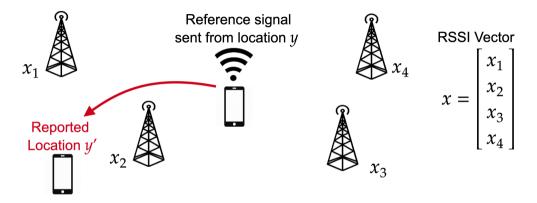
Robust Bayesian Learning: Automatic Modulation Classification

• Robust Bayesian learning can improve calibration for t < 1, while also enhancing accuracy with m > 1 ($\beta = 0.01$).



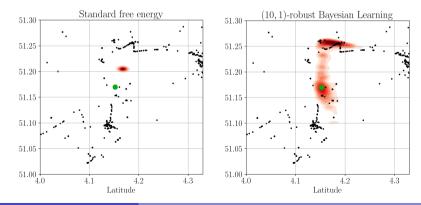


• Determine the location y of a transmitter based on received signal strength indicator (RSSI) vector x measured at different base stations.



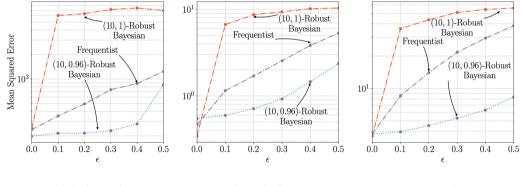
• **Outliers** are modelled by replacing an ϵ -fraction of the true labels y with a random location (e.g., malicious or inaccurate reporting).

- We consider a model class p(y|x, θ) = N(y|f_θ(x), 0.01) where f_θ(x) is the output of a neural network.
- The model class is misspecified whenever the device location conditioned on the RSSI vector is not Gaussian distributed.
- (m, 1)-robust Bayesian learning mitigates model misspecification.



Zecchin Matteo

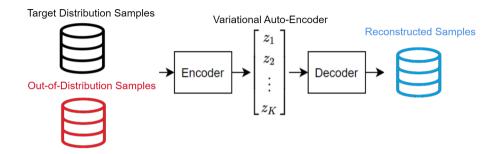
• (*m*, *t*)-robust Bayesian learning with *t* < 1 mitigates performance degradation due to outliers.



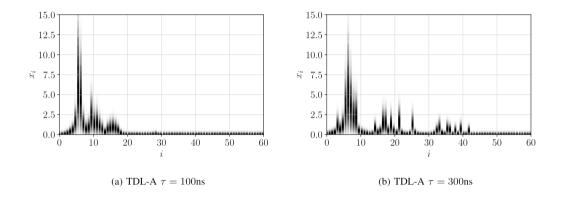
(a) SigfoxRural

(b) UTSIndoor

(c) UJIIndoor

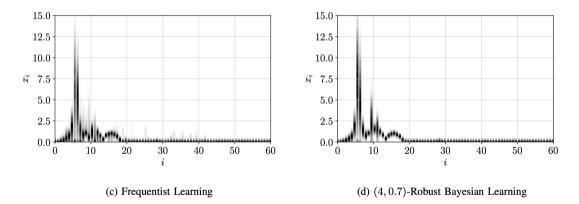


- Given a training dataset of channel responses x, train a generative model that is able to simulate new samples approximately distributed as the target channel model.
- We consider a training dataset comprising **outliers** from a different channel model.

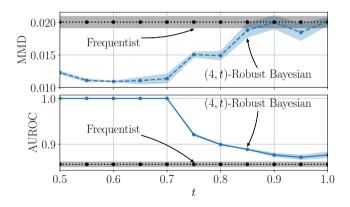


- Target (ID) distribution: TDL-A channel model with delay au = 100 ns
- Outliers (OOD) distribution: TDL-A channel model with a longer delay spread au= 300 ns

• We train a variational autoencoder (VAE) using the corrupted data set with $\epsilon = 0.2$, and use the generative model to generate new samples.



- Performance in terms of maximum mean discrepancy (MMD) between true and generated distributions, and in terms of area under the receiver operating curve (AUROC):
 - ► (m, t)-robust Bayesian learning with t < 1 yields higher accuracy in the generative model and better out-of-distribution detection capabilities.</p>



Zecchin Matteo

Conclusion

- Standard Bayesian learning does not cater reliability under pratical conditions in wireless communication systems.
- (*m*, *t*)-robust Bayesian learning is an alternative learning criterion based on multi-sample estimators and generalized logarithmic losses that counteracts model misspecification and outliers.
- (*m*, *t*)-robust Bayesian learning enjoys nices mathematically properties and its merits have been shown over a range of wireless communication problems.