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The Role of AI in 6G & Beyond

AI is playing an increasingly significant role in engineering.

Next-generation communication systems will leverage AI at all layers of the protocol
stack.

This imposes new requirements on the performance of AI.

Accuracy should be weighted against:
▶ reliability, or calibration, providing a faithful quantification of the uncertainty of the AI’s

decisions, e.g., for monitoring;
▶ robustness to deviations from design assumptions
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Predictive Uncertainty

Discriminative probabilistic models p(y |x , θ) output hard decisions and confidence levels.

θ
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input
vector
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output vector p(y |x)

Hard decision: ŷ(x |θ) = 1 (class with largest score)

Confidence level: conf(x |θ) = p(ŷ(x |θ)|x , θ) = 0.4 (self reported)

How reliable is the estimate of predictive uncertainty reported by the model?
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Quantifying Calibration

Assume that the data is generated from some ground-truth population distribution
P(x , y).

In practice, this can be estimated based on validation/ test data.

The accuracy of a probabilistic model p(y |x , θ) on input x is

acc(x |θ) = P(ŷ(x |θ)|x)

A probabilistic model p(y |x , θ) is reliable, or well calibrated, if

conf(x |θ) ≈ acc(x |θ),

or
confidence level ≈ accuracy
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Bayesian Learning
Bayesian learning:

▶ Optimization of a distribution q(θ) in the model parameter space
▶ Distribution q(θ) encodes epistemic uncertainty.

𝑞∗ (𝜃)
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(Generalized) Bayesian Learning

Generalized Bayesian learning obtain q∗(θ) by minimizing the free energy1,2

FD(q(θ)) = N Eθ∼q(θ)[f (θ,D)]︸ ︷︷ ︸
average training loss

+β KL (q(θ)||p(θ))︸ ︷︷ ︸
information-theoretic

With β = 0, the problem reduces to frequentist learning, which outputs a single model
parameter vector θ∗.

This criterion is well justified by PAC Bayes theory, which derives it as an upper bound
on the population loss.3

1
J. Knoblauch, et al, “Generalized variational inference: Three arguments for deriving new posteriors,” arXiv:1904.02063, 2019.

2
O. Simeone, “Machine Learning for Engineers”, Cambridge University Press, 2022.

3
P. Alquier, “User-friendly introduction to PAC-Bayes bounds,” arXiv preprint, 2021.
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Bayesian Learning
Decision obtained via ensembling, i.e., via

Eθ∼q∗(θ) [p(y |x , θ)] ,
accounting for the “opinions” of multiple models.

In practice, the average is done over S i.i.d. model parameters θ ∼ q∗(θ).

θ1 ∼ q∗(θ)

x

p(y |x , θ1)
θ2 ∼ q∗(θ)

x

p(y |x , θ2)
θS ∼ q∗(θ)

x

p(y |x , θS)

combine

...

p (y |x ,Dtr) = Eθ∼q∗(θ)[p(y |x , θ)] ≈ 1
S

∑S
s=1 p(y |x , θs)
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Bayesian Learning

At test time, we have
▶ Hard decision: ŷ(x |q∗) = argmaxy Eθ∼q∗(θ) [p(y |x , θ)] (class with largest average score)
▶ Confidence level:

conf(x |q∗) = Eθ∼q∗(θ)[p(ŷ(x |q∗)|x , θ)]
The confidence level accounts for epistemic uncertainty via the disagreement among
models.4

4
N. Houlsby, et al, “Bayesian active learning for classification and preference learning,” arXiv:1112.5745, 2011.
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Limitations of Bayesian Learning: Model Misspecification

A design assumption in Bayesian learning is that prior and likelihood reflect the
population data distribution.

When this is not the case, e.g., when we are forced to choose a “simple” model class, the
model is said to be misspecified.

Choosing β ̸= 1 in generalized Bayesian learning can partly address this problem:
▶ This is related to the “cold posterior problem”5

5
K. Pitas and J. Arbel, “Cold Posteriors through PAC-Bayes,” arXiv:2206.11173.
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A Toy Example
Consider a density estimation problem with an underlying data distribution that is a
mixture of Gaussians (e.g., a fading channel with blocking for mmwave or THz
communications):

P(x) = 0.7N (x |2, 2) + 0.3N (x | − 2, 2).

Assume a Gaussian likelihood function: p(x |θ) = N (x |θ, 1)
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A Toy Example
The model class is misspecified since it is not possible to capture both modes of the
data distribution using a single Gaussian model.
In this scenario, generalized Bayesian learning presents poor generalization, even with
β ̸= 1.
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Generalized Bayesian Learning and Misspecification

As we have seen, Bayesian learning leverages ensembling, producing the average across
multiple models

Eθ∼q∗(θ)[p(x |θ)],

with q∗(θ) being the distribution obtained via training.

However, generalized Bayesian learning does not capture the performance of ensemble
predictors as it merely include the average training loss Eθ∼q∗(θ)[LD(θ)].
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(m, 1)-Robust (Generalized) Bayesian Learning

To overcome the limitations of (generalized) Bayesian learning, it was recently proposed
to use a multi-sample version of the free energy: (m, 1)-robust Bayesian learning.

The m-sample free energy is defined as6

Fm
D (q(θ)) = NEθ1,...,θm∼q(θ)⊗m [LmD(θ)] + βKL (q(θ)||p0(θ))

where the training loss

LmD(θ) = − 1

N

∑
x∈D

log

(
1

m

m∑
i=1

p(x |θi )
)

explicitly captures the log-loss of a mixture of m models drawn from q(θ).

Like the free energy, it can be justified via the analysis of generalization based on PAC
Bayes theory.

6
W. Morningstar, et al “PAC m-Bayes: Narrowing the Empirical Risk Gap...”, NeurIPS 2021.
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Toy Example (Continued)

(m, 1)-robust Bayesian learning is clearly better able to capture the multi-modal
properties of the ground-truth distribution P(x).
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Limitations of Bayesian Learning: Outliers
Training data often contains outliers – anomalous data points that do not follow the
same distribution of test data

▶ Errors due to human labeling, measuring tools failures or interference, adversarial examples,
...

Outliers can be modelled via the gross-error model: Given a contamination ratio
ϵ ∈ (0, 1], the sampling distribution is7

P̃(x) = ϵ Q(x)︸ ︷︷ ︸
out-of-distribution
measure (OOD)

+(1− ϵ) P(x)︸︷︷︸
in-distribution
measure (ID)

7
P. J. Huber, “Robust estimation of a location parameter,” The Annals of Mathematical Statistics, 1964.
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Toy Example (Continued)

While more robust to misspecification, (m, 1)-robust Bayesian learning is significantly
affected by outliers.
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Reconsidering the Log-Loss

What is the cause of the lack of robustness of existing free energy metrics?

The free energy relies on the standard log-loss − log p(x |θ), which penalizes very strongly
models that do not cover well all data points, including outliers.
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Beyond the Log-Loss: t-Log-Loss

The t-log-loss, for t ∈ [0, 1), is defined as8,

− logt(p) := − 1

1− t

(
p1−t − 1

)
for x > 0,

▶ for t → 1 recovers the standard log-loss
▶ Since we have − logt(p) ≤ (1− t)−1, outliers have a bounded influence when t is small.
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8
C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” Journal of Statistical Physics, 1988.
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(m, t)-Robust (Generalized) Bayesian Learning

(m, t)-robust Bayesian learning minimizes the (m, t)-free energy criterion:9

Fm,t
D (q(θ)) = NEθ1,...,θm∼q(θ)⊗m

[
f m,t(θ,D)

]
+ KL (q(θ)||p(θ))

where

f m,t(θ,D) =
∑
x∈D

logt

(
1

m

m∑
i=1

p(x |θi )
)

replaces the log-loss with the t-log-loss.

The criterion has two tuning knobs:
▶ the generalized logarithm parameter t ∈ [0, 1), which determines the robustness to outliers;
▶ and the number constituent models m ≥ 1 in the ensemble, which determines the robustness

to misspecification.

9
M. Zecchin, et al, “Robust PACm ...” arXiv:2203.01859, 2022.
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Toy Example (Continued)

(m, t)-robust Bayesian learning is able to tackle both model misspecification and the
presence of outliers.
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Properties of (m, t)-robust Bayesian learning

The population risk can be bounded w.r.t to the ID and contaminated measures10.

Theorem (Population Risk Bound)

With probability 1− σ, with σ ∈ (0, 1), with respect to the random sampling of the data set
D, for all distributions q(θ) that are absolutely continuous with respect the prior p(θ), the
following bound on the risk of the ensemble model holds

Eq(θ),P̃(x)[− logt pθ(x)] ≤Fm,t
D (q)) + ψ(P̃, n,m, β, p, σ) (1)

Furthermore, the risk with respect to the ID measure P(x) can be bounded as

Eq(θ),P(x)[− logt pθ(x)] ≤
1

1− ϵ

(
Fm,t
D (q) + ψ(P̃, n,m, β, p, σ)

)
+

ϵ(C 1−t − 1)

(1− ϵ)(1− t)
, (2)

10 Zecchin, Park, Simeone, Kountouris and Gesbert. Robust PAC m: Training Ensemble Models Under Model Misspec-
ification and Outliers.
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Properties of (m, t)-robust Bayesian learning
For the number of samples n → ∞ and the number of ensemble components m → ∞,
robust Bayesian learning minimize the t−Tsallis divergence between the predictive
distribution pq(θ)(x) and the t−escort version of P̃(x).
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For t = 1 we recover the standard KL divergence minimization and the mode seeking
behaviour of standard Bayesian learning.
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Properties of (m, t)-robust Bayesian learning

The logt loss effectively bounds the effect of anomalous data points. We study the
influence function, measure changes of an estimator by the means of perturbation of a
training data point.
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Robust Bayesian Learning for Wireless Communications

Many wireless communication applications are characterized by:
▶ Training data affected by exogenous noise (e.g., interference and malicious reporting):

outliers
▶ Light-weight models deployed on resource constrained devices: misspecification

We now review some specific applications of robust Bayesian learning to wireless systems.
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Robust Bayesian Learning: Automatic Modulation Classification

Determine the modulation type y associated to a received based-band signal vector x .

Interference leads to uninformative training samples with ambiguous labels, i.e., outliers.
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Robust Bayesian Learning: Automatic Modulation Classification

The model is a neural network classifier comprising two convolutional layers and two
linear layers.

The dataset is the DeepSIG: RadioML 2016.10A11 data set with 30% of the samples
affected by interference.

Testing is done on a clean data set.

We evaluate the final model in terms of accuracy and calibration.

11
T. j O’Shea, et al, “Convolutional Radio Modulation Recognition Networks ” arXiv:1602.04105, 2016.
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Robust Bayesian Learning: Automatic Modulation Classification
Robust Bayesian learning can improve calibration for t < 1, while also enhancing accuracy
with m > 1 (β = 0.01).
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Robust Bayesian Learning: RSSI Based Localization

Determine the location y of a transmitter based on received signal strength indicator
(RSSI) vector x measured at different base stations.

Zecchin Matteo Robust Bayesian Learning 28 / 36



Robust Bayesian Learning: RSSI Based Localization

Outliers are modelled by replacing an ϵ-fraction of the true labels y with a random
location (e.g., malicious or inaccurate reporting).
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Robust Bayesian Learning: RSSI Based Localization
We consider a model class p(y |x , θ) = N (y |fθ(x), 0.01) where fθ(x) is the output of a
neural network.
The model class is misspecified whenever the device location conditioned on the RSSI
vector is not Gaussian distributed.
(m, 1)-robust Bayesian learning mitigates model misspecification.
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Robust Bayesian Learning: RSSI Based Localization

(m, t)-robust Bayesian learning with t < 1 mitigates performance degradation due to
outliers.
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Robust Bayesian Learning: Channel Simulation

Given a training dataset of channel responses x , train a generative model that is able to
simulate new samples approximately distributed as the target channel model.

We consider a training dataset comprising outliers from a different channel model.
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Robust Bayesian Learning: Channel Simulation

Target (ID) distribution: TDL-A channel model with delay τ = 100 ns

Outliers (OOD) distribution: TDL-A channel model with a longer delay spread τ = 300 ns
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Robust Bayesian Learning: Channel Simulation

We train a variational autoencoder (VAE) using the corrupted data set with ϵ = 0.2,
and use the generative model to generate new samples.
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Robust Bayesian Learning: Channel Simulation
Performance in terms of maximum mean discrepancy (MMD) between true and generated
distributions, and in terms of area under the receiver operating curve (AUROC):

▶ (m, t)-robust Bayesian learning with t < 1 yields higher accuracy in the generative model and
better out-of-distribution detection capabilities.
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Conclusion

Standard Bayesian learning does not cater reliability under pratical conditions in wireless
communication systems.

(m, t)-robust Bayesian learning is an alternative learning criterion based on multi-sample
estimators and generalized logarithmic losses that counteracts model misspecification and
outliers.

(m, t)-robust Bayesian learning enjoys nices mathematically properties and its merits have
been shown over a range of wireless communication problems.
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