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Abstract—In this work, we consider the max-min user rate
balancing problem w.r.t. imperfect Channel Knowledge at the
Transmitter (CSIT), namely: expected user rate balancing. This
combines an operation of balancing at the user level and sum rate
maximization at the level of the user streams. For the imperfect
CSIT, we exploit an approximation of the expected rate as the
Expected Signal and Interference Power (ESIP) rate, based on an
original minorizer for every individual rate term. We study the
latter with two expected rate approximations: i) Received signal
level ESIP (RESIP), which may seem the most natural, and ii)
Stream level ESIP (SESIP), which requires some more work for
the stream level power optimization. Simulation results confirm
the intuition that SESIP outperforms RESIP when the number
of streams is lower than the number of receive antennas.

Index Terms—Inter-cell interference coordination (ICIC), Co-
ordinated Beamforming (CoBF), Multi-User MIMO, Rate Bal-
ancing, Imperfect CSIT

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) has be-
come a key solution to increase the spectral efficiency of
wireless cellular systems [1]. In fact, MIMO technology for
wireless communications is now incorporated into wireless
broadband standards since 3G. The basic idea behind MIMO
technology is that the more antennas the transmitter and the
receiver are equipped with, the more the available signal paths,
the better the performance in terms of data rate and energy
efficiency [2]–[4].

In downlink communications, the base station (BS) with
multiple transmit antennas can serve multiple users within the
same time and frequency resource block. Therefore, proper
resource allocation is needed to fully harvest the gain in
spectral and energy efficiency; for example: user scheduling,
subcarrier allocation, power allocation and precoder (receiver)
design. The latter represents the most important aspect to
enhance the performance of the system in the physical layer,
and can be combined with frequency subcarrier allocation and
user scheduling to further boost the performance.

The power allocation optimization can be formulated as a
maximization of some utility in terms of data rate. Depending
on the chosen utility function, we can achieve different points
on the Pareto optimal boundary. In other words, we cannot
increase the rate of any of the active users without lowering
the rate of the other users [5]. The two most commonly used
utility functions are i) weighted sum rate [6]–[13] and ii)
weighted max-min fairness, also referred to as the balancing
problem. The latter ensures fairness by providing the same
quality-of-service for all users according to their priorities and
make this value as large as possible [14]. The weighted max-
min fairness problem can be expressed for different objectives
such as Signal-to-Noise-plus-Interference Ratio (SINR) [15]–

[18], the Mean Square Error (MSE) [19]–[21] and user rate
[22]–[26]. Actually, in the single stream per usercase (e.g. in
MISO systems), balancing w.r.t. SINR, MSE or user rate is
equivalent (in the unweighted case).

In this work, we focus on user rate balancing with im-
perfect Channel State Information at the Transmitter (CSIT),
which corresponds to maximizing the minimum (weighted)
per user expected (ergodic) rate in the network. We con-
sider a multi-cell multi-user MIMO system with imperfect
CSIT, which combines both channel estimates and channel
(error) covariance information. In [26] we have introduced
an approach based on an approximation of the expected rate
as the Expected Signal and Interference Power (ESIP) rate.
Actually, we now call the approach of [26] Stream level
ESIP (SESIP), to distinguish from a second variation on the
ESIP theme to be introduced here, Received signal level ESIP
(RESIP). Actually, the use of the expectation operator makes
the optimization a daunting task. In the MISO case, SESIP
and RESIP coincide. In the multiple receive antenna case,
there is not a unique or clear way of how to approximate
the expected rate. In [26] we had introduced one approach,
SESIP. But more recently we realized that what we had done
in earlier work, such as e.g. [27] and others, was different
and was somewhat ad hoc in the MIMO (as opposed to
MISO) case. E.g. in some of this previous work, the proposed
beamformers actually optimize a different criterion from the
one put forward. So the goal of this paper is to draw attention
to this non-uniqueness of possible approaches and to clearly
spell out two different approaches for the formulation of the
cost function (an expected rate approximation) and for the
corresponding optimizing beamformers and power distribu-
tion. The RESIP approach may seem more natural actually,
but leads to complications in the power optimization. In [28],
a refined analysis of the gap between expected Weighted Sum
Rate (WSR) and RESIP-WSR appears, where the actual gap
disappears in case of only covariance CSIT. Here we provide
an initial investigation into which of the two approaches is
more desirable, in terms of intuitive appeal, some heuristic
considerations on approximation quality (SESIP will turn out
to be better) and a few simulation results.

II. SYSTEM MODEL

We consider a MIMO system with C cells. Each cell c
has one base station (BS) of Mc transmit antennas serving
Kc users, with total number of users

∑
cKc = K. We refer

to the BS of user k ∈ {1, . . . ,K} by bk. Each user has Nk



antennas. The channel between the kth user and the BS in cell
c is denoted by Hk,c ∈ CNk×Mc . We consider zero-mean white
Gaussian noise nk ∈ CNk×1 with distribution CN (0, σ2

nI) at
the kth user.

We assume independent unity-power transmit symbols sc =
[sT
K1:c−1+1 . . . s

T
K1:c

]T, i.e., E
[
scs

H
c

]
= I, where sk ∈ Cdk×1

is the data vector to be transmitted to the kth user, with
dk being the number of streams allowed by user k and
K1:c =

∑c
i=1Ki. The latter is transmitted using the transmit

filtering matrix Gc = [GK1:c−1+1 . . .GK1:c
] ∈ CMc×Nc , with

Gk = p
1/2
k Gk, Gk being the (unit Frobenius norm) beamform-

ing matrix, pk is non-negative downlink power allocation of
user k and Nc =

∑
k:bk=c dk is the total number of streams

in cell c. Each cell is constrained with Pmax,c, i.e., the total
transmit power in c is limitted such that

∑
k:bk=c pk ≤ Pmax,c.

The received signal at user k in cell bk is
yk = Hk,bkGksk︸ ︷︷ ︸

signal

+
∑
i6=k
bi=bk

Hk,bkGisi

︸ ︷︷ ︸
intracel interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,jGisi︸ ︷︷ ︸
intercell interf.

+nk.

For details about the (prior) separable channel correlation
model and it’s impact on the posterior channel model, please
see [26]. It leads to e.g.

E
H|Ĥd

HHQH = ĤHQĤ + tr{CrQ}Cp (1)

and E
H|Ĥd

HPHH = ĤPĤH + tr{CpP }Cr . (2)

Note that ρP = tr{ĤHĤ}
tr{Cr}tr{Cp} is a form of Ricean factor

that represents posterior channel estimation quality. It depends
on the deterministic channel estimation quality ρD = 1/σ2

H̃
.

Below we consider Cr = I , and the only covariance C we
shall need is Cp, hence we drop the subscript p. Perfect CSIT
algorithms can be obtained by setting σ2

H̃
= 0, leading to

Ĥ = H and Cp = 0.

III. EXPECTED RATE BALANCING PROBLEM

In this work, we aim to solve the weighted user-rate max-
min optimization problem under per cell total transmit power
constraint, i.e., the user rate balancing problem expressed as
follows

max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (3)

where rk is the kth user-rate

rk = lndet
(
I+R−1

k
Hk,bkGkG

H
kH

H
k,bk

)
= ln det

(
R−1

k
Rk

)
, (4)

Rk = σ2
nI+

∑
l6=k

Hk,blGlG
H
l H

H
k,bl , (5)

Rk = Rk+Hk,bkGkG
H
kH

H
k,bk , (6)

Rk and Rk are the interference plus noise and total received
signal covariances, and r◦k is the rate priority (weight) for user
k. Actually, in the presence of imperfect CSIT, we shall be
interested in balancing the expected (or ergodic) rates

max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, c = 1, . . . , C (7)

where rk = E
H|Ĥ rk. The final ergodic rate achieved would

be E
Ĥ

maxG,p rk. We shall need the averaged quantities
Sk,i=Ĥk,biGiG

H
i Ĥ

H
k,bi +tr{GH

i Ck,biGi}I, Sk = Sk,k (8)

Rk = EH|ĤRk =σ2
nI+

∑
i6=k

piSk,i , Rk = Rk + pkSk (9)

However, the problem presented in (7) is complex and can
not be solved directly.

To solve the problem, we follow an approximation of the
expected rate expression. The latter will use a rate minorizer
for every rk, similar but not identical to what is used as in
the DC programming approach which for the optimization of
Gk keeps rk and linearizes the rk. It is worth noting that
this approach does not require the introduction of Rxs. We
consider again the (expected) rate balancing problem (7) where
rk = E

H|Ĥ rk is now approximated by the Expected Signal
and Interference Power (ESIP) rate
rk= EH|Ĥ lndet

(
I+pkG

H
k H

H
k,bkR

−1

k
Hk,bkGk

)
≈ EH|Ĥ lndet

(
I+pkG

H
k H

H
k,bk ( EH|ĤRk)−1Hk,bkGk

)
= EH|Ĥ lndet

(
I+pkG

H
k H

H
k,bkR

−1

k Hk,bkGk

)
≤ lndet

(
I+pk EH|ĤG

H
kH

H
k,bkR

−1

k Hk,bkGk

)
(10)

= rs,Sk = fs,Sk (
1

pk
Rk) = lndet

(
I+GH

k B
S
k(

1

pk
Rk) Gk

)
,

(11)
B

S
k(T k) = ĤH

k,bkT
−1
k Ĥk,bk + tr{T−1

k }Ck,bk (12)

where the rk approximation rs,Sk in (11) in general is neither
an upper nor a lower bound, but in the Massive MIMO
limit becomes a tight upper bound. Let us now consider an
alternative development

rk≈ EH|Ĥ lndet
(
I+pkG

H
k H

H
k,bkR

−1

k Hk,bkGk

)
= EH|Ĥ lndet

(
I+pkR

−1

k Hk,bkGkG
H
k H

H
k,bk

)
≤ lndet

(
I+pkR

−1

k EH|ĤHk,bkGkG
H
kH

H
k,bk

)
(13)

= rs,Rk = fs,Rk (
1

pk
Rk) = lndet

(
I+pkR

−1

k Sk
)
. (14)

This expected rate differs from the expected rate in (11),
because in (13) the average is taken over the expected received
signal covariance matrix of user k, Sk of dimension (Nk ×
Nk), whence Received signal level ESIP or RESIP. Whereas in
(11), the average is taken over the expected stream level signal
covariance matrix of dimension (dk×dk), whence Stream level
ESIP or SESIP.

Lemma 1. The approximate rk’s, rs,.k , i.e. rs,Sk , rs,Rk , can be
obtained as fs,.k ( 1

pk
Rk) = minTk

fs,.
k

(T k,
1
pk
Rk) with

fs,S
k

= lndet
(
I+GH

kB
S
k(T k)Gk

)
+tr{W̆ S

k (T k−
1

pk
Rk)} (15)

and fs,R
k

= lndet
(
I+T

−1
k Sk

)
+tr{W̆R

k (T k−
1

pk
Rk)} (16)

where W̆ S
k = T

−1
k

(
Ĥk,bkXk Ĥ

H
k,bk + tr{XkCk,bk}I

)
T
−1
k

(17)

with Xk = Gk

(
I+GH

kB
S
k(T k)Gk

)−1

GH
k (18)

and W̆R
k = T

−1
k −

(
T k + Sk

)−1 (19)

The optimizer is T k = 1
pk
Rk. Also, fs

k
is a minorizer for fsk( 1

pk
Rk)

as a function of 1
pk
Rk.

 



Indeed, since fsk(.) is a convex function, it gets minorized
by its tangent at any point:

fsk(
1

pk
Rk) ≥ fs

k
= fsk(T k)+tr{∂f

s
k(T k)

∂T k
(

1

pk
Rk−T k)} (20)

and W̆k = −∂f
s
k(T k)

∂T k
. Note that for the Perron-Frobenius

theory, we need a function that is linear in pk

pk
, hence we need

to work with 1
pk
Rk instead of Rk.
IV. PROPOSED SOLUTION

The user expected rate balancing problem (7) can be refor-
mulated as

min
t,G,p

− t

s.t. t r◦k − fsk ≤ 0, cT
c p− Pmax,c ≤ 0 , ∀k, c. (21)

Introducing Lagrange multipliers to augment the cost function
with the constraints leads to the Lagrangian

max
λ
′
,µ

min
t,G,p

L

L = −t+
∑
k

λ
′
k(t r◦k − fsk) +

∑
c

µc(c
T
c p− Pmax,c) (22)

where the Lagrangian for stream level ESIP is

LS =− t−
∑
k

λ̆
′
k

(
lndet

(
I+GH

kB
S
kGk

)
− 1

pk
tr{W̆ S

kRk}

+ tr{W̆ S
kT k}−t rok

)
+
∑
c

µc(c
T
c p− Pmax,c) (23)

=− t+
∑
k

λ̆k(
1

pk ξ̆S
k

tr{W̆ S
kRk}−1) +

∑
c

µc(c
T
c p− Pmax,c)

(24)

with ξ̆S
k = tr{W̆ S

kT k}+ lndet
(
I+GH

kB
S
kGk

)
− t rok,

(25)

λ̆
′

k = λ̆k/ξ̆
S
k,B

S
k = B

S
k(T k),

and the Lagrangian for received signal level is

LR = −t−
∑
k

λ̆
′
k

(
lndet

(
I+T

−1
k Sk

)
− 1

pk
tr{W̆ R

kRk}

+ tr{W̆ R
k T k}−t rok

)
+
∑
c

µc(c
T
c p− Pmax,c) (26)

= −t+
∑
k

λ̆k(
1

pk ξ̆R
k

tr{W̆ R
kRk}−1) +

∑
c

µc(c
T
c p− Pmax,c)

(27)

with ξ̆R
k = tr{W̆ R

k T k}+ lndet
(
I+T

−1
k Sk

)
− t rok, (28)

The balancing of the rates in (7) is equivalent to balancing
the weighted interference plus noise powers in (24) or (27),

max
λ̆

min
G,p

∑
k

λ̆k

ξ̆k

tr(W̆kRk)

pk
s.t.

C∑
c=1

θcc
T
c p ≤

C∑
c=1

θcPmax,c (29)

where cc is a column vector with cc(j) = 1 for K1:c−1 +1 ≤
j ≤ K1:c, and 0 elsewhere. This problem formulation is a
relaxation of (7), and θ = [θ1 · · · θC ]Tcan be interpreted as
the weights on the individual power constraints in the relaxed
problem. The power constraint in (29) can be interpreted as a
single weighted power constraint

(θTCT
C) p ≤ θTpmax (30)

with CC = [c1 · · · cC ] ∈ RK1:C×C
+ and pmax =

[Pmax,1 · · ·Pmax,C ]T, from which we get µc = µθc.

Now, define the following matrix (reparameterize p =
θTpmax

θTCT
Cp
′ p
′

where now p
′

is unconstrained, and rewriting p
′

as p)

Λ = ξ̆−1Ψ̆ +
1

θTpmax
ξ̆−1σ̆θTCT

C with (31)

[Ψ̆]ij =

{
tr{W̆i(Ĥi,bjGjG

H
j Ĥ

H
i,bj

+tr{GH
j Ci,bjGj}I)}, i 6= j

0, i = j
(32)

σi = σ2
n tr{W̆i}, ξ̆ = diag(ξ̆1, . . . , ξ̆K) , (33)

we can reformulate (29) as

∆ = max
λ:

∑
k λk=1

min
p

∑
k

λk
[Λp]k
pk

(34)

which is the Donsker–Varadhan–Friedland formula [29, Chap-
ter 8] for the Perron Frobenius eigenvalue of Λ. A related
formula is the Rayleigh quotient

∆ = max
q

min
p

qTΛp

qTp
(35)

where p, q are the right and left Perron Frobenius eigenvectors.
Comparing (35) to (34), then apart from normalization factors,
we get λk/pk = qk or hence λk = pkqk.

The Tx BF and stream power optimization will be based
on

∑
i
λ̆i

ξ̆i
fs
i
, for both SESIP and RESIP approximates, which

becomes (apart from noise terms) as described in the follow-
ing.

A. SESIP Tx BF
We have from (23)∑
k

λ̆k

ξ̆k
fs,S
k

=
∑
k

λ̆k

ξ̆S
k

lndet
(
I+GH

kB
S
kGk

)
−
∑
k

tr{pkGH
k A

S
kGk}

(36)

with A
S
k=
∑
i6=k

λ̆i

pi ξ̆S
i

(̂
HH
i,bkW̆

S
i Ĥi,bk +tr{W̆ S

i }Ci,bk
)
. (37)

For the optimal Tx BF Gk, the gradient of LS yields

∂LS

∂G∗
= 0 =

λ̆k

ξ̆S
k

B
S
kGk (I +GH

k B
S
kGk)−1−pk(A

S
k + µbkI)Gk .

(38)
The solution is the dk maximal generalized eigen vectors

G
′
k = V1:dk (B

S
k,A

S
k + µbkI),Gk=G

′
kP

1/2
k ,Gk=Gk

√
pk (39)

where the P k = diag(pk,1, . . . , pk,dk ), tr{P k} = 1, are the relative
stream powers. Indeed, (38) represents the definition of generalized
eigen vectors. Consider

Σ
(1)
k =G

′H
k B

S
kG
′
k, Σ

(2)
k =G

′H
k A

S
kG
′
k (40)

then the generalized eigen vectors G
′
k of Bk,A

S
k + µbkI lead to

diagonal matrices Σ
(1)
k , Σ

(2)
k +µbkG

′H
k G

′
k. Note that the normalized

G
′
k are not orthogonal. Then (38) represents the generalized eigen

vector condition with associated generalized eigen values in the
diagonal matrix pk ξ̆

S
k

λ̆k
(I + Σ

(1)
k P k). Also, plugging in generalized

eigen vectors into (36) reveals that one should choose the eigen
vectors associated to dk maximal eigen values to maximize (36).
Now, premultiplying both sides of (38) by pkGH

k , summing over all

 



users k : bk = c, taking trace and identifying the last term with∑
k:bk=c pktr{GH

kGk} = Pmax,c allows to solve for

µc=
1

Pmax,c

 ∑
k:bk=c

tr{ λ̆k
ξ̆S
k

Σ
(1)
k P k(I+Σ

(1)
k P k)−1−pkΣ

(2)
k P k}


+

.

(41)
The P k are themselves found from an interference leakage aware

water filling (ILAWF) operation. Substituting G
′
k into term k of (36),

dividing by pk, and accounting for the constraint tr{P k} = 1 by
Lagrange multiplier νk, we get the Lagrangian

λ̆k

pk ξ̆S
k

ln det
(
I+Σ

(1)
k P k

)
− tr{(Σ(2)

k + νkI)P k}

Maximizing w.r.t. P k leads to the ILAWF

P k =

⌊
λ̆k

pk ξ̆S
k

(diag(Σ
(2)
k ) + νkI)−1 − Σ

−(1)
k

⌋
+

(42)

where the Lagrange multiplier νk is adjusted (e.g. by bisection) to
satisfy tr{P k} = 1. Elements in P k corresponding to zeros in Σ

(1)
k

should also be zero.

B. RESIP Tx BF
We have from (26)∑
k

λ̆k

ξ̆R
k

fs,R
k

=
∑
k

λ̆k

ξ̆R
k

lndet
(
I+T

−1
k Sk

)
−
∑
k

tr{pkGH
k A

R
kGk},

(43)

with A
R
k =

∑
i6=k

λ̆i

pi ξ̆R
i

(̂
HH
i,bkW̆

R
i Ĥi,bk +tr{W̆R

i }Ci,bk
)
. (44)

For the optimal Tx BF Gk, the gradient of LR yields

∂LR

∂G∗
= 0⇔ λ̆k

ξ̆R
k

B
R
kGk −pk(A

R
k + µbkI)Gk = 0 , (45)

with B
R
k = ĤH

k,bk (I + T
−1
k Sk)−1T

−1
k Ĥk,bk

+tr{(I + T
−1
k Sk)−1T

−1
k }Ck,bk . (46)

The solution is the dk maximal generalized eigen vectors

G
′
k = V1:dk (B

R
k ,A

R
k +µbkI),Gk=G

′
kP

1/2
k ,Gk=Gk

√
pk. (47)

Then, we can solve for µc by multiplying (45) from the left by
GH
k and summing over the users in cell c, i.e.,

µc = 1/Pmax,c

∑
k:bk=c

[ λ̆k
ξ̆R
k

GH
k B

R
kGk −pkGH

k A
R
k Gk

]
. (48)

Now, we have to find the corresponding P̄k. Substituting P̄k in (43),
we can write the following

lndet
(
I+

dk∑
i=1

pk,i[Jk]i,i
)
−
dk∑
i=1

pk,iak,i (49)

where
P̄k = diag(p̄k), p̄k = [p1 . . . pdk ], ak,i =

pk ξ̆
R
k

λ̆k
[G
′
k]H:,iA

R
k [G

′
k]:,i,

and
[Jk]i,i = T

−1
k (Ĥk,bk [G

′
k]:,i[G

′
k]H:,iĤ

H
k,bk + [G

′
k]H:,iCk,bk [G

′
k]:,iI).

Let Uk(p̄k) =
∑dk
i=1 pk,i[Jk]i,i and ak = [a1 . . . adk ], we can

rewrite (49) as

lndet
(
I +Uk(p̄k)

)
− akp̄Tk − νk1dk p̄

T
k . (50)

with νk being the Lagrangian multiplier for the constraint ||p̄k||1 = 1
and 1dk is a line vector of ones, of length dk.

In the following, we omit the user indices k for simplicity.
Consider the Taylor series expansion for matricesX,Y of dimension
Nk,

ln det(X+Y ) ≈ ln det(X)+tr{X−1Y }− 1

2
tr{X−1Y X−1Y }.

Let p̄ = ˆ̄p + ˜̄p and choose X = I + U(ˆ̄p) and Y = U(˜̄p), we
obtain the following Lagrangian

˜̄pvT − 1

2
˜̄pZ ˜̄pT − a˜̄pT − ν1˜̄pT (51)

where v = [v1 . . . vdk ] with vi = tr{(I +U(ˆ̄p))−1[J ]i,i}, and Z
is a matrix with the elements [Z]i,j = tr{(I +U(ˆ̄p))−1[J ]i,i(I +
U(ˆ̄p))−1[J ]j,j}. Taking the gradient of (51) w.r.t. ˜̄p, we get

vT −Z ˜̄pT − aT − ν1T = 0 (52)

⇔ ˜̄pT = Z−1(vT − aT − ν1T ) (53)

thus
p̄T = [ˆ̄pT +Z−1(vT − aT − ν1T )]+ (54)

and ν gets determined by p̄1T = 1. Having ˆ̄p being p̄ at the current
iteration i, we can write

p̄T (i+1) = [p̄T (i) +Z−1(vT − aT − ν1T )]+. (55)

The SESIP approach and its corresponding algorithm have been
introduced in [26]. The algorithm for RESIP approach follows the
same update steps.

C. Discussion

The approaches SESIP and RESIP lead to two precoder designs
resulting from taking the expectation of dk dimensional vs. Nk di-
mensional matrices, respectively. Actually, the smaller the dimension,
the more averaging occurs of the given amount of random entries,
and so bringing in the expectation E inside log det() should be a
tighter upper bound for the smaller dimension case. Nevertheless,
when dk = Nk, this reasoning stops applying and either one can be
larger or smaller. Simulation results, however, have shown that the
difference is negligible when dk = Nk, S/R-ESIP then becoming
equivalent.

V. RESULTS

In this section, we numerically evaluate the performance of RESIP-
based vs. SESIP-based approaches. We consider for the multipath
channel model the prior Tx side channel covariance matrix

Ct =

Np∑
n=1

αi
vHi vi

viv
H
i (56)

with tr{Ct} =
∑Np

n=1 αi = Mc, αi = ci−1α1 and the vi are i.i.d.
vectors of Mc i.i.d. elements CN (0, 1). We take Np = Mc/K and
c = 0.5.

Figure 1 shows the difference between the approximates received
signal level and stream level ESIP, by considering Nk 6= dk. We can
see that for Nk = dk, both R- and S-ESIP are equivalent, whereas for
Nk ≥ dk, SESIPrate outperforms RESIPrate, and the more Nk/dk
increases, the more we have gap, especially at intermediate values
for SNR.

In Figure 2, we evaluate the average rate w.r.t. SNR, in a broadcast
channel (only one communicating cell), for varying levels of channel
estimation error σ2

H̃
. It is clear that the gap between SESIP and

RESIP increases when ρD = 1/σ2

H̃
decreases.
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Fig. 1: Average Rate with Imperfect CSIT w.r.t. SNR: RESIP
vs. SESIP, C = 2,Kc = 3, and ρD = 10.
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Fig. 2: Average Rate with Imperfect CSIT w.r.t. SNR: RESIP
vs. SESIP, C = 1,K = 3, Nk = 3, and dk = 2.

VI. CONCLUDING REMARKS
We have introduced two approximation approaches for the ex-

pected rate in the MIMO case with imperfect CSIT, and we have
used them in a rate balancing set-up. A priori, it is not that obvious
which approach is the better one. The two MIMO expected rate
approximations coincide in the MISO case and in [28] an analysis
was provided for the approximation quality in that case. Equations
(13) introduce the RESIP approach, which might at first seem more
straightforward since it corresponds to a matrix version of SINR in
which then numerator and denominator are replaced by averages.
However, the power optimization turns out to be less straightforward
in the RESIP approach, leading to (49)-(55), unlike the SESIP
approach, (42), for which it remains similar to the perfect CSIT case.
Section IV.C provides the discussion on comparing approximation
quality. Actually, it can also be shown that SESIP and RESIP coincide
at low or (very) high SNR and only differ at intermediate SNR.
Section V provides a few simulation results which confirm the
discussion in section IV.C.
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LifeLock, Principauté de Monaco, and by the French ANR projects
EEMW4FIX, CellFree6G.

REFERENCES

[1] A. Goldsmith, Wireless Communications.
[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in

a fading environment when using multiple antennas,” Wireless Personal
Communications, vol. 6, no. 3, p. 311–335, 1998.

[3] R. K. Mueller and G. J. Foschini, “The capacity of linear channels with
additive gaussian noise,” The Bell System Technical Journal, vol. 49,
no. 1, pp. 81–94, 1970.

[4] E. Telatar, “Capacity of multi-antenna gaussian channels,” European
Transactions on Telecommunications, vol. 10, no. 6, p. 585–595, 1999.

[5] E. A. Jorswieck, E. G. Larsson, and D. Danev, “Complete characteri-
zation of the pareto boundary for the miso interference channel,” IEEE
Transactions on Signal Processing, vol. 56, no. 10, pp. 5292–5296, 2008.

[6] L. P. Qian, Y. J. Zhang, and J. Huang, “Mapel: Achieving global
optimality for a non-convex wireless power control problem,” IEEE
Transactions on Wireless Communications, vol. 8, no. 3, pp. 1553–1563,
2009.

[7] E. Björnson, G. Zheng, M. Bengtsson, and B. Ottersten, “Robust
monotonic optimization framework for multicell miso systems,” IEEE
Transactions on Signal Processing, vol. 60, no. 5, pp. 2508–2523, 2012.

[8] P. C. Weeraddana, M. Codreanu, M. Latva-aho, A. Ephremides, and
C. Fischione, 2012.

[9] S. S. Christensen, R. Agarwal, E. de Carvalho, and J. M. Cioffi,
“Weighted Sum-Rate Maximization using Weighted MMSE for MIMO-
BC Beamforming Design,” in Weighted Sum-Rate Maximization using
Weighted MMSE for MIMO-BC Beamforming Design, Dec 2008.

[10] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An Iteratively Weighted
MMSE Approach to Distributed Sum-Utility Maximization for a MIMO
Interfering Broadcast Channel,” in IEEE Trans. Signal Processing, Sept.
2011.
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