
Mix-Nets from Re-Randomizable and
Replayable CCA-secure Public-Key Encryption

Antonio Faonio and Luigi Russo

EURECOM, Sophia Antipolis, France
{faonio, russol}@eurecom.fr

Abstract. Mix-nets are protocols that allow a set of senders to send
messages anonymously. Faonio et al. (ASIACRYPT’19) showed how to
instantiate mix-net protocols based on Public-Verifiable Re-randomizable
Replayable CCA-secure (Rand-RCCA) PKE schemes. The bottleneck of
their approach is that public-verifiable Rand-RCCA PKEs are less effi-
cient than typical CPA-secure re-randomizable PKEs. In this paper, we
revisit their mix-net protocol, showing how to get rid of the cumbersome
public-verifiability property, and we give a more efficient instantiation for
the mix-net protocol based on a (non publicly-verifiable) Rand-RCCA
scheme. Additionally, we give a more careful security analysis of their
mix-net protocol.

1 Introduction

Mixing Networks (aka mix-nets), originally proposed by Chaum [Cha81], are
protocols that allow a set of senders to send messages anonymously. Typically, a
mix-net is realized by a chain of mix-servers (aka mixers) that work as follows.
Senders encrypt their messages and send the ciphertexts to the first mix-server
in the chain; each mix-server applies a transformation to every ciphertext (e.g.,
partial decryption, or re-encryption), re-orders the ciphertexts according to a
secret random permutation, and passes the new list to the next mix-server.
The idea is that the list returned by the last mixer contains (either in clear or
encrypted form, depending on the mixing approach) the messages sent by the
senders in a randomly permuted order.

Mix-net protocols are fundamental building blocks to achieve privacy in a
variety of application scenarios, including anonymous e-mail [Cha81], anonymous
payments [JM99], and electronic voting [Cha81]. Informally, the basic security
property of mix-nets asks that, when enough mix-servers are honest, the privacy
of the senders of the messages (i.e., “who sent what”) is preserved. In several
applications, it is also desirable to achieve correctness even in the presence of
an arbitrary number of dishonest mixers. This is for example fundamental in
electronic voting where a dishonest mixer could replace all the ciphertexts with
encrypted votes for the desired candidate.

Realizing Mix-Nets. A popular design paradigm of mixing networks are re-
encryption mix-nets [PIK94] in which each server decrypts and freshly encrypts
every ciphertext. Interestingly, such a transformation can be computed even

https://orcid.org/0000-0002-7152-6478
https://orcid.org/0000-0001-9869-786X

publicly using re-randomizable encryption schemes (e.g., El Gamal). The pro-
cess of re-randomizing and randomly permuting ciphertexts is typically called
a shuffle. Although shuffle-based mix-nets achieve privacy when all the mix-
servers behave honestly, they become insecure if one or more mixers do not
follow the protocol. An elegant approach proposed to solve this problem is to
let each mixer prove the correctness of its shuffle with a zero-knowledge proof.
This idea inspired a long series of works on zero-knowledge shuffle arguments,
e.g., [BG12,FS01,Gro03,Gro10,Nef01,TW10,Wik05,Wik09]. Notably, some re-
cent works [BG12,TW10,Wik09] improved significantly over the early solutions,
and they have been implemented and tested in real-world applications (elec-
tions) [Wik10]. In spite of the last results, zero-knowledge shuffle arguments are
still a major source of inefficiency in mix-nets. This is especially a concern in
applications like electronic voting where mix-nets need to be able to scale up to
millions of senders (i.e., voters).

Mix-Nets from Replayable CCA Security. Most of the research effort for
improving the efficiency of mix-nets has been so far devoted to improving the
efficiency of shuffle arguments. A notable exception is the work of Faonio et
al. [FFHR19]. Typical mixing networks based on re-randomizable encryption
schemes make use of public-key encryption (PKE) schemes that are secure
against chosen-plaintext attack (CPA), thus to obtain security against mali-
cious mixers they leverage on the strong integrity property offered by the zero-
knowledge shuffle arguments. The work of Faonio et al. instead showed that,
by requiring stronger security properties from the re-randomizable encryption
scheme, the NP-relation proved by the zero-knowledge shuffle arguments can
be relaxed. This design enables faster and more efficient instantiations for the
zero-knowledge proof but, on the other hand, requires more complex cipher-
texts and thus a re-randomization procedure that is slower in comparison, for
example, with the re-randomization procedure for ElGamal ciphertexts. More in
detail, Faonio et al. propose a secure mixing network in the universal compos-
ability model of Canetti [Can01] based on re-randomizable PKE schemes that
are replayable-CCA (RCCA) secure (as defined by Canetti et al. [CKN03]) and
publicly-verifiable. The first notion, namely RCCA security, is a relaxation of
the standard notion of chosen-ciphertext security. This notion offers security
against malleability attacks on the encrypted message (i.e. an attacker cannot
transform a ciphertext of a message M to a ciphertext of a message M′) but it still
allows for malleability on the ciphertext (i.e. we can re-randomize the cipher-
texts). The second requirement, namely public verifiability, requires that anyone
in possession of the public key can check that a ciphertext decrypts correctly
to a valid message, in other words, that the decryption procedure would not
output an error message on input such a ciphertext. Unfortunately, this sec-
ond requirement is the source of the major inefficiency in the mixing networks
of Faonio et al.. For example, the re-randomization procedure of the state-of-
art non publicly-verifiable re-randomizable PKE scheme with RCCA-security
(Rand-RCCA PKE, in brief) in the random oracle model of Faonio and Fiore
[FF20] costs 19 exponentiations in a pairing-free cryptographic group, while

2

the re-randomization procedure of the publicly-verifiable Rand-RCCA PKE of
[FFHR19] costs around 90 exponentiations plus 5 pairing operations.

1.1 Our Contribution

We revisit the mix-net design of Faonio et al. [FFHR19]. Our contributions
are two-fold: we generalize the mix-net protocol of [FFHR19] showing how to
get rid of the cumbersome public verifiability property, and we give a more effi-
cient instantiation for the mix-net protocol based on the (non publicly-verifiable)
Rand-RCCA scheme of [FFHR19]. Our generalization of the mix-net protocol is
based on two main ideas. The first idea is that, although the verification of the
ciphertexts is still necessary, it is not critical for the verification to be public and
non-interactive. In particular, we can replace the public verifiability property
with a multi-party protocol (that we call a verify-then-decrypt protocol) that
verifies the ciphertexts before the decryption phase and that decrypts the ci-
phertexts from the last mixer in the chain only if the verification succeeded. The
second idea is that in the design of the verify-then-decrypt multiparty protocol
we can trade efficiency for security. In particular, we could design a protocol
that eventually leaks partial information about the secret key and, if the Rand-
RCCA PKE scheme is resilient against this partial leakage of the secret key, we
could still obtain a secure mix-net protocol. Along the way, we additionally (1)
abstract the necessary properties required by the zero-knowledge proof that the
mixers need to attach to their shuffled ciphertexts and (2) give a more careful
security analysis of the mixnet protocol. More technically, we define the notion
sumcheck-admissible relation w.r.t. the Rand-RCCA PKE scheme (see Defini-
tion 5) which is a property of an NP-relation that, informally, states that given
two lists of ciphertexts if all the ciphertexts in the lists decrypt to valid messages,
then the sum of the messages in the first list is equal to the sum of the mes-
sages in the second list. For example, a shuffle relation is a sumcheck-admissible
relation, however simpler (and easier to realize in zero-knowledge) NP-relations
over the lists of ciphertexts can be considered as well.

Our second contribution is a concrete instantiation of the mix-net protocol.
The main idea of our concrete protocol is that many (R)CCA PKE schemes
can be conceptually divided into two main components: the first “CPA-secure”
component assures that the messages are kept private, while the second compo-
nent assures the integrity of the ciphertexts, namely, the component can iden-
tify malformed ciphertexts and avoid dangerous decryptions through the CPA-
secure component. Typical examples for such PKE schemes are those based on
the Cramer-Shoup paradigm [CS02]. Intuitively, these schemes should be secure
even if the adversary gets to see the secret key associated with the second compo-
nent under the constraint that once such leakage is available the adversary must
lose access to the decryption oracle. This suggests a very efficient design for the
verify-then-decrypt multiparty protocol: the mixers commit to secret shares of
the secret key, once all the ciphertexts are available the mixers open to the secret
key material for the second component, now any mixer can non-interactively and
efficiently verify the validity of the ciphertexts. If all the ciphertexts are valid

3

the mixers can engage a CPA-decryption multiparty protocol for the cipher-
texts in the last list. As last contribution, we show that the Rand-RCCA PKE
scheme of [FFHR19] is leakage resilient (under the aforementioned notion) and
we instantiate all the necessary parts.

A final remark, an important property of a mixnet protocol is the so-called
auditability1, namely the capability of an external party to verify that a given
transcript of a protocol execution has produced an alleged output. Intuitively,
mixnets based on non-interactive zero-knowledge proofs of shuffle usually should
have this property. However, one must be careful, because not only the shuffling
phase, but the full mixnet protocol should be auditable. In particular, for our
mixnet protocol to be auditable the verify-then-decrypt protocol should be au-
ditable as well. We show that the latter protocol for our concrete instantiation
is indeed auditable.

1.2 Related work

The notion of mix-net was introduced by Chaum [Cha81]. The use of zero-
knowledge arguments to prove the correctness of a shuffle was first suggested by
Sako and Kilian [SK95]. The first proposals used expensive cut-and-choose-based
zero-knowledge techniques [Abe98,SK95]. Abe et al. removed the need for cut-
and-choose by proposing a shuffle based on permutation networks [Abe99,AH01].
Furukawa and Sako [FS01] and independently Neff [Nef01] proposed the first
zero-knowledge shuffle arguments for ElGamal ciphertexts that achieve a com-
plexity linear in the number of ciphertexts. These results have been improved by
Wikström [Wik09], and later Terelius and Wikström [TW10], who proposed ar-
guments where the proof generation can be split into an offline and online phase
(based on an idea of Adida and Wikström [AW07]). These protocols have been
implemented in the Verificatum library [Wik10]. Groth and Ishai [GI08] proposed
the first zero-knowledge shuffle argument with sublinear communication. Bayer
and Groth gave a faster argument with sublinear communication in [BG12]. The
notion of Rand-RCCA PKE encryption was introduced by Groth [Gro04]. The
work of Prabhakaran and Rosulek [PR07] showed the first Rand-RCCA PKE in
the standard model. The work of Faonio and Fiore [FF20] presented a practical
Rand-RCCA PKE scheme in the random oracle model. Recently, Wang et al.
[WCY+21] introduced the first receiver-anonymous Rand-RCCA PKE, solving
the open problem raised by Prabhakaran and Rosulek in [PR07]. The state-of-art
Rand-RCCA PKE scheme can be found in the work of Faonio et al. [FFHR19].
Other publicly-verifiable Rand-RCCA PKE schemes were presented by Chase et
al. [CKLM12] and Libert et al. [LPQ17]. As far as we know, our design for the
verify-then-decrypt protocol cannot be easily instantiated with the schemes in
[FF20,PR07,WCY+21]. The reason is that for all these schemes the decryption
procedures have a “verification step” that depends on the encrypted message.

1 This notion is sometimes called verifiability, however, we prefer to use the term
“auditability” to avoid confusion with the verifiability of the ciphertexts property.

4

2 Preliminaries

A function is negligible in λ if it vanishes faster than the inverse of any polynomial
in λ. We write f(λ) ∈ negl(λ) when f is negligible in λ.

The expression [n] denotes the set {1, 2, . . . , n} for an integer n ≥ 1. Calli-
graphic letters denote the sets, while set sizes are written as |X |. Capital letters
denote the lists; they are represented as ordered tuples, e.g. L := (Li)i∈[n] is a
shortcut for the list of n elements (L1, . . . , Ln). Given n lists Li, i ∈ [n], and an
element x, we define the following operations: (i) Count(x, Li) returns the num-
ber of times the value x appears in the list Li, (ii) Concat(L1, . . . , Ln) returns a
list L as a concatenation of the input lists, and L1 ⊆ L2 returns 1 if each element
of L1 is contained in the list L2, or 0 otherwise.

An asymmetric bilinear group G is a tuple (q,G1,G2,GT , e,P1,P2), where
G1,G2 and GT are groups of prime order q, the elements P1,P2 are generators
of G1,G2 respectively, e : G1 × G2 → GT is an efficiently-computable non-
degenerate bilinear map, and there is no efficiently computable isomorphism
between G1 and G2. Let GGen be some probabilistic polynomial-time algorithm
which on input 1λ, where λ is the security parameter, returns a description of a
bilinear group G. Elements in Gi, i ∈ {1, 2, T} are denoted in implicit notation
as [a]i := aPi, where PT := e(P1,P2). Every element in Gi can be written as
[a]i for some a ∈ Zq, but note that given [a]i, a ∈ Zq is in general hard to
compute (discrete logarithm problem). Given a, b ∈ Zq we distinguish between
[ab]i, namely the group element whose discrete logarithm base Pi is ab, and [a]i·b,
namely the execution of the multiplication of [a]i and b, and [a]1 · [b]1 = [a · b]T ,
namely the execution of a pairing between [a]1 and [b]1.

Vectors and matrices are denoted in boldface. We extend the pairing oper-
ation to vectors and matrices as e([A]1, [B]2) = [A⊤ · B]T and e([y]1, [A]2) =
[y ·A]T .

We recall that a NP-relation R is a set of tuples (x,w) where x is the instance
and w witness such that there exists an efficiently computable predicate R that
decides the membership in the set, i.e. R(x,w) outputs 1 if (x,w) ∈ R. The
corresponding language L(R) is the set of x for which there exists a witness w
such that (x,w) ∈ R.

2.1 Re-randomizable PKE

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:

Setup(1λ) : upon input the security parameter 1λ produces parameters prm,
which include the description of the message and ciphertext space M, C.

KGen(prm) : upon input the parameters prm, outputs a key pair (pk, sk).
Enc(pk, M) : upon inputs a public key pk and a message M ∈ M, outputs a ci-

phertext C ∈ C.
Dec(pk, sk, C) : upon inputs a secret key sk and a ciphertext C, outputs a message

M ∈M or an error symbol ⊥.

5

Rand(pk, C) : upon inputs a public key pk and a ciphertext C, outputs another
ciphertext C′.

Definition 1 (Perfect Re-randomizability, [FFHR19]). We say that PKE
is perfectly re-randomizable (Re-Rand, for short) if the following three conditions
are met:

(Indistinguishability) For any λ ∈ N, any prm←$ Setup(1λ), any (pk, sk)←$
KGen(prm, 1λ), for any M ∈ M and any C ∈ Enc(pk, M) the following two
distributions are identical

C0 ←$ Enc(pk, M) and C1 ←$ Rand(pk, C);

(Correctness) For any λ ∈ N, any prm←$ Setup(1λ), any (pk, sk)←$ KGen(prm, 1λ),
for any (possibly malicious) ciphertext C and every C′ ←$ Rand(pk, C) it holds

Dec(sk, C′) = Dec(sk, C).

(Tightness of Decryption) For any (possibly unbounded) adversary A and
any sequence of parameters {prmλ ←$ Setup(1λ)}λ∈N the following holds:

Pr
[
∃M : C ̸∈ Enc(pk, M) ∧ Dec(sk, C) = M ̸= ⊥ : (pk, sk)←$ KGen(prmλ)

C←$A(pk)

]
∈ negl(λ).

2.2 All-but-One tag-based NIZK systems

Let NIZK = (Init,P,V) be a NIZK proof system for a relation R with tag space
T , and let TPInit(prm, τ) be an algorithm that upon input prm and a tag τ ∈ T
outputs a common reference string crs and trapdoor information (tpe, tps). Let
τ ∈ T , and T ′ subset of T . We define the following three properties:

– We say that TPInit is CRS indistinguishable w.r.t. NIZK if the common ref-
erence string generated by Init(prm) and the one generated by TPInit(prm, τ)
are computationally indistinguishable, i.e. if for any sequences of {prmλ ←
Setup(1λ)}λ∈N, and for any PT adversary A:

|Pr[A(crs) = 1 : crs←$ Init(prmλ)]−
Pr[A(crs) = 1 : crs, tpe, tps←$ TPInit(prmλ)]| ∈ negl(λ)

– We say that NIZK is T ′-tag Composable Perfect Zero-Knowledge if there
exists a PT TPInit that is CRS indistinguishable w.r.t. NIZK and for any
prm, τ and any (crs, tpe, tps) ← TPInit(prm, τ), and any (x,w) ∈ R and any
τ ′ ∈ T ′ we have that the distributions P(crs, τ ′, x, w) and Sim(tps, τ ′, x) are
equivalently distributed.

– We say that NIZK is T ′-tag Adaptive Perfect g-Extractable if if there ex-
ists a PT TPInit that is CRS indistinguishable w.r.t. NIZK and for any
prm, τ there exists a PT extractor Ext such that for any prm, τ , for any
(crs, tps, tpe) ← TPInit(prm, τ), and for any (possibly unbounded) adver-
sary (τ ′, x, π) ← A(crs) we have that if τ ′ ∈ T ′ and V(τsnd, x, π) = 1 then
Ext(tpe, τsnd, x, π) outputs z such that ∃w : (x,w) ∈ R ∧ g(w) = z.

6

– We say that NIZK is T ′-tag Adaptive Perfect Sound if if there exists a
PT TPInit that is CRS indistinguishable w.r.t. NIZK and for any prm, τ ,
for any prm, τ , for any (crs, tps, tpe) ← TPInit(prm, τ), and for any (possi-
bly unbounded) adversary (τ ′, x, π) ← A(crs) we have that if τ ′ ∈ T ′ and
V(τsnd, x, π) = 1 then ∃w : (x,w) ∈ R.

Definition 2 (All-but-One NIZK). We say that a tag-based NIZK NIZK for
a relation R and with tag-space T is:

– All-but-one Perfect Sound if for all τ ∈ L it is {τ}-tag Composable Perfect
Zero-Knowledge and T \ {τ}-tag Adaptive Perfect Sound.

– All-but-one Perfect Hiding and g-Extractable if for all τ ∈ L it is T \ {τ}-
tag Composable Perfect Zero-Knowledge and {τ}-tag Adaptive Perfect g-
Extractable.

For ABO-NIZK we sometimes use the alias ABOInit for the algorithm TPInit.

Construction of an ABO Perfect Hiding. Consider the instantiation of GS
Proof system of [EHK+13] based on Dk-MDDH. The common reference string
is of the following two forms:

[A∥Aw] Perfect Sound Mode
[A∥Aw− z] Perfect Hiding Mode

where A ←$ Dk, w ←$ Zk
q and z /∈ span(A) is a fixed and public vector. We

can consider a NIZK with tags where the common reference string is made by
two independent CRSs crs1, crs2, both the verifier and the prover on input a tag
τ ∈ Zq derive a CRS crsτ = crs1 +crs2 ·τ . We are ready to define the ABOInithid.

ABOInithid(prm, τ∗):
1. Sample A1,A2 and w1,w2 and set crs′1 = (A1∥A1w1) and crs′2 =

(A2∥w2 − z);
2. Set crs1 = crs′1 − crs′2 · τ∗ and crs2 = crs′2;
3. Output crs1, crs2.

The all-but-one composable zero-knowledge comes readily from the Dk-MDDH
assumption and the composable zero-knowledge of GS proofs. The all-but-one
adaptive perfect soundness comes readily from the adaptive perfect soundness
of GS proofs, in fact we notice that crsτ∗ = crs′1 − τ∗crs′2 + τ∗crs′2 = crs′1 which
allows for perfectly sound proofs.

2.3 The Universal Composability model

In this section, we briefly review some basic notions of the Universal Compos-
ability framework introduced by Canetti [Can01]. Let consider the following
executions:

7

RealΠ,A,Z(λ): run an interaction involving adversary A and environment Z.
When Z generates an input for an honest party, the honest party runs the
protocol Π, and gives its output to Z. Finally, Z outputs a value which is
taken as the output of RealΠ,A,Z(λ).

IdealF,S,Z(λ): run an interaction involving the simulator S and the environment
Z. When Z generates the input for an honest party, the input is passed
directly to functionality F , and the corresponding output is given to Z on
behalf of that honest party. The output value of Z is taken as the output of
IdealF,S,Z(λ).

The environment Z provides the inputs to all the parties of the protocols
and schedules the order of the messages in the networks. Also, Z decides which
party to corrupt: since we consider static corruption, the set of corrupted par-
ties is decided by Z before the protocol starts. Without loss of generality, the
environment’s final output can be just a single bit: this can be interpreted as the
environment’s “guess” of whether it is instantiated in the real or ideal world.

Often, for the sake of modularity, it is useful to design a protocol Π that
realizes a functionality F that makes use of other ideal functionalities, e.g., the
functionality G. This means that we can define the G-hybrid world, where the
parties of Π also interact with the additional functionality G.

G-HybridΠ,A,Z(λ): run an interaction involving adversary A, environment Z and
the ideal functionality G. When Z generates an input for an honest party,
the honest party runs the protocol Π, and gives its output to Z. Finally, Z
outputs a value.

The ideal world, instead, interacts only with the ideal functionality F : thus, it
is the simulator that simulates the functionality G to the environment.

Security is captured by the fact that no PPT environment Z can distinguish
an execution of the protocol Π (which can interact with the setup assumption
G) from a joint execution of the simulator S with the ideal functionality F ; this
leads to the following definition.

Definition 3. A protocol Π UC-realizes an ideal functionality F with setup
assumption G if for all real-world adversaries A there exists a PPT simulator S
such that, for all environments Z:

|Pr
[
G-HybridΠ,A,Z(λ) = 1

]
− Pr[IdealF,S,Z(λ) = 1]| ∈ negl(λ)

Let Π be a protocol that securely realizes an ideal functionality F in the G-
hybrid world, and let Σ be a protocol that securely realizes the ideal functionality
G. Then, composing Π and Σ, i.e., replacing every invocation of G with a suitable
invocation of Σ, results in a secure protocol for F .

When specifying an ideal functionality, we use the “delayed outputs” ter-
minology adopted in [Can01]: when a functionality F sends a public delayed
output y to a party P, we mean that y is first sent to the simulator S and then
forwarded to P only after an acknowledgment by S.

8

Experiment ExplRCCA
A,PKE,f (λ, b)

prm← Setup(1λ)
(pk, sk)←$ KGen(prm)

(M0, M1, z)← AODec
1 (pk)

C←$ Enc(pk, Mb)

z
′ ← AODec

2 (C, z)

b
′ ← A3(f(sk), z

′)

return b
′ ?= b

Oracle ODec(C)
M← Dec(sk, C)
if M ∈ {M0, M1} :

return ⋄
return M

Fig. 1. The lRCCA security experiment.

For the sake of simplicity, we assume that all the ideal functionalities have an
implicit public parameter prm hardcoded. We can think of prm as being the de-
scription of a cryptographic group or some other publicly-available information.
We tweak the definitions of both the hybrid and the ideal world to include such
public parameters; specifically, we consider that the ideal world (resp. hybrid
world) samples prm ←$ Setup(1λ) and passes along this information, together
with the security parameters, to all the ITMs involved in the execution of the
protocol.

3 Definitions

3.1 Replayable CCA with Leakage Security

We rely on the following notion of security for Rand-PKE.

Definition 4 (RCCA with leakage Security). Consider the experiment
ExplRCCA

A,PKE,f in Fig. 1, with parameters λ, an adversary A := (A1,A2,A3), a
PKE scheme PKE, and a leakage function f . We say that PKE is leakage-resilient
replayable CCA-secure (lRCCA-secure) w.r.t. a leakage function f if for any
PPT adversary A:

AdvlRCCA
A,PKE,f (λ) :=

∣∣2 Pr
[
ExplRCCA

A,PKE,f (λ, b) = 1, b←$ {0, 1}
]
− 1

∣∣ ∈ negl(λ).

We note that the above experiment is identical to a classical RCCA security
game, with the difference that here A is given the additional leak information
f(sk) just before committing to the verdict bit b′. A cannot invoke the decryption
oracle after the leak occurs.

3.2 The Verify-then-Decrypt Ideal Functionality

We give in Fig. 2 the formal definition of this ideal functionality. Informally, the
ideal functionality accepts two lists of ciphertexts, such that the first list includes

9

Functionality FPKE,f
VtDec

The ideal functionality has as parameters a public-key encryption scheme
PKE := (Setup, KGen, Enc, Dec), an efficiently-computable function f and (im-
plicit) group parameters prm ∈ Setup(1λ). The functionality interacts with m
parties Pi and with an adversary S.

Public Key. Upon message (KEY, sid) from a party Pi, i ∈ [m], if (sid, pk, sk)
is not in the database sample (pk, sk) ←$ KGen(prm) and store the tuple
(sid, pk, sk) in the database. Send (KEY, sid, pk) to Pi.

Verify then Decrypt. Upon message (VTDEC, sid, CV , CD) from party Pi:
– If the tuple (sid, pk, sk) does not exist in the database, ignore the message.
– Check that a tuple (sid, CV , CD, I) where I ⊆ [m] exists in the database;

if so, update I including the index i, otherwise create the new entry
(sid, CV , CD, {i}) in the database.

If |I| = m and CD ⊆ CV then:
– Send (sid, f(sk)) to the adversary S.
– Parse CV as (CV

i)i∈[|CV |] and CD as (CD
i)i∈[|CD|]

– Compute the vector b ∈ {0, 1}|CV | such that for any i, bi = 1 iff
Dec(sk, CV

i) ̸= ⊥.
– If ∃i : bi = 0 set Mo := (), else compute Mo := (Dec(sk, CD

i))i∈[|CD|], send
a public delayed output (VTDEC, sid, b, Mo) to the parties Pi for i ∈ [m],

Fig. 2. UC ideal functionality for Verify-then-Decrypt.

10

Functionality FMix

The functionality has n sender parties PSi , m mixer parties PMi .

Input. Upon activation on message (INPUT, sid, M) from PSi (or the adversary
if PSi is corrupted), if i ∈ LS,sid ignore the message else register the index
i in the list of the senders LS,sid and register the message M in the list LI,sid
of the input messages. Notify the adversary that the sender PSi has sent
an input.

Mix. Upon activation on message (MIX, sid) from PMi (or the adversary if
PMi is corrupted), register the index i in the list of the mixers Lmix,sid and
notify the adversary.

Delivery. Upon activation on message (DELIVER, sid) from the adversary S
If |Lmix,sid| = m and |LS,sid| = n then send a public delayed output Msid ←
Sort(LI,sid) to all the mixer parties.

Fig. 3. UC ideal functionality for MixNet.

all the ciphertexts in the second list, it first verifies that all the ciphertexts in the
first list decrypt to valid messages (i.e. no decryption error) and releases such
output together with the decryption from the second list. The functionality has
parameter f that denotes the leakage of secret information allowed to realize
such functionality.

4 Mix-Net

We now describe our mixnet protocol that UC-realizes the ideal functionality
FMix with setup assumptions FVtDec and Fcrs. We start by giving the definition
of Sumcheck-Admissible relation with respect to a PKE. In this definition we
abstract the necessary property for the zero-knowledge proof system used by
the mixers in the protocol.

Definition 5 (Sumcheck-Admissible Relation w.r.t. PKE). Let PKE be a
public-key encryption scheme with public space PK and the ciphertext space being
a subset of CT . For any λ, any prm ∈ Setup(1λ), let Rprm

ck : (PK×CT 2n)×{0, 1}∗
be an NP-relation. We parse an instance of Rprm

ck as x = (pk, L1, L2) where
Lj = (Cj

i)i∈[n] for j ∈ {1, 2}. Rck is Sumcheck-Admissible w.r.t. PKE if:

(Sumcheck) For any (pk, sk) ←$ KGen(prm) and for any x := (pk, L1, L2) we
have that if x ∈ L(Rck) and ∀j, i : Dec(sk, Cj

i) ̸= ⊥ then
∑

i Dec(sk, C1
i) −

Dec(sk, C2
i)=0.

(Re-Randomization Witness) For any (pk, sk) ←$ KGen(prm) and for any
x := (pk, L1, L2) such that there exists (ri)i∈[n] where ∀i ∈ [n],∃j ∈ [n] :
C2

i = Rand(pk, C1
j ; ri) we have that (x, (ri)i∈[n]) ∈ Rck.

Building Blocks. Let PKE be a Rand-PKE scheme, let f be any efficiently-

11

Functionality F Init
CRS

The functionality interacts with n parties Pi and an adversary S and has pa-
rameters a PPT algorithm Init that outputs obliviously sampleable common-
reference string and an (implicit) public parameter prm.

Initialization. Upon activation, sample crs←$ Init(prm) and store it.
Public Value. Upon activation on message CRS from a party Pi, i ∈ [n],send

crs to Pi.

Fig. 4. UC ideal functionality for Common Reference String, parametrized by group
parameters prm and a NIZK setup Init.

computable function and let Rck be any Sumcheck-Admissible relation w.r.t.
PKE. The building blocks for our Mix-Net are:

1. A Rand-PKE scheme PKE that is lRCCA-secure w.r.t. f according to Defi-
nition 4.

2. An All-but-One Perfect-Sound tag-based NIZK (cfr. Section 2.2) NIZKmx :=
(Initmx,Pmx,Vmx) for proving membership in the relation Rck, with tag space
[m].

3. An All-but-One Perfect-Hiding tag-based NIZK NIZKsd = (Initsd,Psd,Vsd) for
knowledge of the plaintext, i.e. a NIZK for the relationRmsg := {(pk, C), (M, r) :
C = Enc(pk, M; r)}, with tag space [n]. In particular, a weaker notion of ex-
tractability that guarantees that the message M is extracted is sufficient.

4. An ideal functionality FPKE,f
VtDec , as defined in Fig. 2.

5. An ideal functionality for the common reference string (see Fig. 4) of the
above NIZKs. In particular, the functionality initializes a CRS crsmx for
NIZKmx, and an additional CRS crssd for NIZKsd.

Finally, we implicitly assume that all parties have access to point-to-point au-
thenticated channels.

Protocol Description. To simplify the exposition, we describe in this section
the case of a single invocation, i.e. the protocol is run only once with a single,
fixed session identifier sid; in Fig. 5 we describe in detail the protocol for the
general case of a multi-session execution. At the first activation of the protocol,
both the mixer parties and the sender parties receive from the functionality
FVtDec the public key pk for the scheme PKE and the CRSs from FCRS. At
submission phase, each sender PSi

encrypts their input message Mi by computing
Ci ←$ Enc(pk, Mi), and attaches a NIZK proof of knowledge πsd

i of the plaintext,
using i as tag. Finally, the party PSi

broadcasts their message (Ci, π
i
sd). After all

sender parties have produced their ciphertexts, the mixers, one by one, shuffle
their input lists and forward to the next mixer their output lists. In particular,
the party PMi

produces a random permutation of the input list of ciphertexts
Li−1 (L0 is the list of ciphertexts from the senders) by re-randomizing each

12

Protocol ΠMix

Input. Upon activation on message (INPUT, sid, M), PSi computes
C←$ Enc(pk, M), and πsd ←$ Psd(crssd, i, (pk, C), (M, r)). Broadcasts (sid, i, C, πsd).

Mix. Upon activation, the party PMi , depending on its state, does as follow:

– If it is the first activation with message (MIX, sid) from the environment
sends the message (KEY, sid) to FVtDec and return.

– If the message (KEY, sid, pk), the messages (sid, i, C, πsd) for all the senders
and the messages (sid, Lj , πj

mx) for all the mixers with index j ≤ i− 1 were
received:
1. Samples a permutation ζi

2. Reads the pair message (Li−1, πi
mx) sent by the party PMi−1 (or simply

reads L0 if this is the first mixer party)
3. Shuffles and re-randomizes the list of ciphertexts: produces the new

list Li = (C′
ζi(j))j∈[n] where C′

j ← Rand(pk, Ci−1; rj) and rj uniformly
random string.

4. Computes the sumcheck proof for the two lists of ciphertexts πi
mx ←$

Pmx(crsmx, (pk, L1, L2), (rj)j∈[n])
5. Sends to all the mixers (sid, Li, πi

mx).
– If the message (sid, Lm, πm

mx) was received, checks that all the mixer proofs
πi

mx, for i ∈ [m] accept, else abort.
– Computes L := Concat(L1, . . . , Lm) and sends (VtDEC, sid, L, Lm) to FVtDec
– If the message (sid, b, Mo) from FVtDec was received, if ∃i : bi = 0 then

returns ⊥, else computes and returns Lo := Sort(Mo)

Fig. 5. Our protocol ΠMix.

ciphertext in the list and then permuting the whole list, thus computing a new
list Li. Additionally, the mixer computes a NIZK proof of membership πi

mx with
tag i, for the instance (pk, Li−1, Li) being in the sumcheck-admissible relation,
because of the re-randomization witness property of Definition 5, the mixer holds
a valid witness for such an instance. After this phase, the mixers are ready for
the verification: the mixers invoke the Verify-then-Decrypt functionality FVtDec
to (i) verify that each list seen so far is made up only of valid ciphertexts and (ii)
decrypt the ciphertexts contained in the final list. Finally publishes the list of
the messages received by FVtDec, sorted according to some common deterministic
criterion, e.g. the lexicographical order.

Theorem 1. For any arbitrary leakage function f , if PKE is lRCCA-secure
w.r.t. f , NIZKmx is ABO Perfect Sound, NIZKsd is ABO Perfect Hiding, then
the protocol described in Fig. 5 UC-realizes the functionality FMix, described in
Fig. 3, with setup assumptions FPKE,f

VtDec and Fcrs.

Proof. We now prove the existence of a simulator S, and we show that no PPT
environment Z can distinguish an interaction with the real protocol from an in-

13

teraction with S and the ideal functionality FMix (the ideal world), i.e. the distri-
bution (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ) is indistinguishable from IdealZ,FMix,S(λ).
In our proof, we give a sequence of hybrid experiments in which the (FVtDec,Fcrs)-
hybrid world is progressively modified until reaching an experiment that is iden-
tically distributed to the ideal world. In what follows, we indicate with h∗ the
index of the first honest mixer. For label ∈ {in,hide}, we introduce the set Ψlabel
consisting of tuples (x, y). We define the functions ψlabel and ψ−1

label associated
with the corresponding set:

ψlabel(x) :=
{
y if (x, y) ∈ Ψlabel

x otherwise
ψ−1

label(y) :=
{
x if (x, y) ∈ Ψlabel

y otherwise

Informally, the pair of functions ψin, ψ
−1
in helps the hybrids to keep track of

the ciphertexts sent by the honest senders while they are mixed by the first
h∗ − 1 mixers, while the pair of functions ψhide, ψ

−1
hide helps to keep track of

the ciphertexts output by the first honest mixer while they are mixed by the
remaining mixers in the chain. We recall that in the protocol the mixers PMi

,
for i ∈ [m], send a message which includes a list Li of ciphertexts. Whenever it
is convenient we parse Li as (Ci,j)j∈[n]. Let Invalid be the event that, during
the interaction of Z with the simulator/protocol, there exist i ∈ [m], j ∈ [n] such
that Dec(sk, Ci,j) = ⊥ or Vf(crsmx, (pk, Li−1, Li), πi

mx) = 0 (namely, πi
mx does not

verify). Clearly, when the event Invalid occurs, the protocol aborts.

Hybrid H0. This first hybrid is equivalent to (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ).

Hybrid H1. In this hybrid, we change the way crsmx is generated. We run
(crsmx, tps) ←$ ABOInit(prm, h∗). Also, the proof πh∗

mx of the first honest mixer
is simulated. This hybrid is indistinguishable from the previous one because
of the ABO Composable Perfect Zero-Knowledge property of the NIZK (cfr.
Section 2.2).

Hybrid H2. The first honest mixer PMh∗ , rather than re-randomizing the
ciphertexts received in input, decrypts and re-encrypts all the ciphertexts. If
the decryption fails for some ciphertext Ci, PMh∗ re-randomizes this “invalid”
ciphertext and continues. This hybrid is indistinguishable from the previous
one because the PKE scheme PKE is perfectly re-randomizable (cfr. Defini-
tion 1): because of the tightness of the decryption property, we have that ∀j, if
Dec(sk, Ch∗−1,j) = Mh∗−1,j ̸= ⊥ then Ch∗,j ∈ Enc(pk, Mh∗−1,j) with overwhelming
probability; also, by the indistinguishability property, the distribution of the re-
randomized ciphertext Rand(pk, Ch∗−1,j) and a fresh encryption Enc(pk, Mh∗−1,j)
are statistically close.

Hybrid H3. Here we introduce the set Ψhide and we populate it with the pairs
(Mh∗−1,i, Hi)i∈[n], where the messages H1, . . . , Hn are distinct and sampled at
random from the message space M. When we simulate the ideal functional-
ity FVtDec, we output ψ−1

hide(M) for all successfully decrypted messages M. The
only event that can distinguish the two hybrids is the event that ¬Invalid and
∃j, j′ : Dec(sk, Cm,j) = Hj′ . However, the messages H1, . . . , Hn are not in the view

14

of Z, thus the probability of such event is at most n2

|M| . This hybrid and the
previous one are statistically indistinguishable.
Hybrid H4. In this hybrid, rather than re-encrypting the same messages, the
first honest mixer re-encrypts the fresh and uncorrelated messages H1, . . . , Hn

(used to populate Ψhide). Specifically, PMh∗ samples a random permutation ζh∗

and computes the list Lh∗ := (Ch∗,j)j∈[n], with Ch∗,ζh∗ (j) ←$ Enc(pk, ψhide(Mh∗−1,j)).
This hybrid is indistinguishable from the previous one, and the proof can be re-
duced to the lRCCA security of the scheme PKE.

Lemma 1. Hybrids H3 and H4 are computationally indistinguishable.

Proof. We use a hybrid argument. Let H3,i be the hybrid game in which the
first honest mixer computes the list Lh∗ := (Ch∗,j)j∈[n] as:

Ch∗,ζh∗ (j) :=
{

Enc(pk, ψhide(Mh∗−1,j)) if j ≤ i
Enc(pk, Mh∗−1,j) if j > i

In particular, it holds that H3 ≡ H3,0 and H4 ≡ H3,n. We prove that ∀i ∈ [n]
the hybrid H3,i−1 is computationally indistinguishable from H3,i, reducing to
the lRCCA-security of the scheme PKE. Consider the following adversary against
the lRCCA-security experiment.

Adversary B(pk) with oracle access to ODec(·).
– Simulate the hybrid experiment H3,i−1, in particular, when the en-

vironment instructs a corrupted mixer to send the message (KEY, sid)
simulate the ideal functionality FVtDec sending back the answer (KEY, sid, pk).

– When it is time to compute the list of the first honest mixer Lh∗ ,
namely, when the mixer PMh∗ is activated by the environment and has
received for all j ∈ [n] the messages (sid, j, C, πsd) from the senders and
the messages (sid, Lj , π

j
mx) from all the mixers with index j ≤ h∗ − 1,

first decrypt all the ciphertexts received so far using oracle access to
ODec(·). Let Mh∗−1,i be the decryption of the ciphertext Ch∗−1,i. If
Mh∗−1,i = ⊥ then output a random bit, else send the pair of mes-
sages (Mh∗−1,i, Hi) to the lRCCA challenger, thus receiving a challenge
ciphertext C∗.

– Populate the list Lh∗ by setting Cζh∗ (i) ← C∗, and computing all the
other ciphertexts as described in H3,i−1. Continue the simulation as
the hybrid does.

– When all the mixers have sent the message (VtDEC, L, Lm), to FVtDec,
check that all the mixer proofs accept, otherwise abort the simulation
and output a random bit. Then decrypt all the ciphertexts in L by
sending queries to the guarded decryption oracle, i,e. send the query
Ci′,j , receiving back the message Mi′,j ∈ M ∪ {⋄,⊥}. If Mi′,j = ⊥,
abort and output a random bit. If Mi′,j = ⋄, then set Mi′,j := Mh∗−1,i.
Simulate the leakage from FVtDec through the leakage received by the
lRCCA security experiment: in particular, the reduction loses access
to the guarded decryption oracle, receives the value f(sk) and sends
the message (sid,b, {Mm,j}j∈[n]) as required by the protocol.

15

– Finally, forward the bit returned by Z.
First we notice that when the guarded decryption oracle returns a message Mi′,j =
⋄ then the reduction can safely return Mh∗−1,i. In fact, the ciphertext would
decrypt to either Hi or to Mh∗−1,i, however by the change introduced in H3, we
have that Mh∗−1,i = ψ−1

hide(Hi) and Mh∗−1,i = ψ−1
hide(Mh∗−1,i).

It is easy to see that when the challenge bit b of the experiment is equal
to 0, the view of Z is identically distributed to the view in H3,j−1, while if the
challenge bit is 1, the view of Z is identically distributed to the one in H3,j . Thus
|Pr[H3,j−1(λ) = 1]− Pr[H3,j(λ) = 1]| ≤ AdvlRCCA

B,PKE,f (λ).

Hybrid H5. Let Vm := (Mm,j)j∈[n] (resp. Vh∗ := (Mh∗,j)j∈[n]) be the list of
decrypted ciphertexts output by the last mixer PMm (resp. by the first honest
mixer PMh∗). In the hybrid H5 the simulation aborts if ¬Invalid and Vm ̸= Vh∗ .

Lemma 2. Hybrids H4 and H5 are computationally indistinguishable.

Proof. Since |Vm| = |Vh∗ | and the messages H1, . . . , Hn are distinct, the event
Vh∗ ̸= Vm holds if and only if there exists an index j ∈ [n] such that Count(Hj , Vm) ̸=
1. Let H4,i be the same as H4 but the simulation aborts if ¬Invalid and
∃j ∈ [i] : Count(Hj , Vm) ̸= 1. Clearly, H4,0 ≡ H4 and H4,n ≡ H5. Let Badi

be the event that (¬Invalid ∧ Count(Hi, Vm) ̸= 1). It is easy to check that:

|Pr[H4,i−1(λ) = 1]− Pr[H4,i(λ) = 1]| ≤ Pr[Badi].

In fact, the two hybrids are equivalent if the event Badi does not happen.
We define an adversary to the lRCCA security of PKE that makes use of the

event above.
Adversary B(pk) with oracle access to ODec(·).

1. Simulate the hybrid experiment H5; in particular, when the environ-
ment instructs a corrupted mixer to send the message (KEY, sid) simu-
late the ideal functionality FVtDec sending back the answer (KEY, sid, pk).
(Thus embedding the public key from the challenger in the simulation.)

2. When it is time to compute the list of the first honest mixer Lh∗ ,
namely, when the mixer PMh∗ is activated by the environment and has
received the messages (sid, i, C, πsd) for all the senders and the messages
(sid, Lj , π

j
mx) for all the mixers with index j ≤ h∗ − 1, first decrypt

all the ciphertexts received so far using oracle access to the guarded
decryption oracle. If there is a decryption error, output a random bit
b′.

3. Sample H(0), H(1) ←$ M and send the pair of messages (H(0), H(1)) to
the lRCCA challenger, receiving back the challenge ciphertext C∗. Set
the list Lh∗ = (Ch∗,j)j∈[n] as follow:

Ch∗,ζh∗ (j) :=
{

Enc(pk, Mh∗−1,j) if j ̸= i
C∗ else

where recall that ζh∗ is the random permutation used by the h∗-th
mixer. Continue the simulation as the hybrid does.

16

4. When all the mixer have sent the message (VtDEC, L, Lm), to FVtDec,
decrypt all of the ciphertexts in L by sending queries to the guarded
decryption oracle, namely, send the query Ci′,j for all i′ > h∗ and
all j ∈ [n], receiving back as answer the plaintext messages Mi′,j ∈
M∪ {⋄,⊥}.
If the event Invalid holds, then abort the simulation and output a
random bit b′.

5. Let C ← Count(⋄, Vm), if C = 1 then abort the simulation and output
a random bit b′.

6. From now one we can assume that ¬Invalid and C ̸= 1; Compute

M← (C − 1)−1 ·

 ∑
j∈[n],Mm,j ̸=⋄

Mm,j −
∑

j ̸=ζh∗ (i)

Mh∗,j

 . (1)

Output b′ s.t. M = H(b′).
First, we notice that the simulation B provides to the environment Z is perfect,
indeed, independently of the challenge bit, the message H(b) is distributed identi-
cally to Hj . Thus the probability that Badi happens in the reduction is the same
as the probability the event happens in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).

Let Wrong be the event that ∃j : Dec(sk, Cm,j) = H(1−b); notice that the message
H(1−b) is independent of the view of the environment Z, thus the probability of
Wrong is at most n/|M|. Moreover, we have Badi ≡ ¬Abort ∧ ¬Wrong because,
by definition of ¬Wrong, all the ciphertexts that decrypt to ⋄ in Lm are indeed an
encryption of H(b); thus, assuming the event holds, C ̸= 1 iff Count(H(b), Vm) ̸= 1.
The probability of guessing the challenge bit when B aborts is 1

2 , thus we have:

Pr[b = b′] ≥ 1
2 Pr[¬Badi] + Pr[b = b′|Badi] Pr[Badi]− n

|M| (2)

We now compute the probability that b = b′ conditioned on Badi. First notice
that ¬Invalid implies that the ciphertexts in the lists Lh∗ , . . . , Lm decrypt cor-
rectly and that the proofs πj

mx for j > h∗ verify. Thus by applying the sumcheck-
admissibility w.r.t. PKE of the relation Rmx and by the ABO perfect soundness
of NIZKmx we have:∑

j∈[n]

Dec(sk, Ch∗,j)−
∑

j∈[n]

Dec(sk, Cm,j) = 0.

If we condition on ¬Wrong then:H(b) +
∑

j ̸=ζh∗ (j∗)

Mh∗,j

−
C · H(b) +

∑
j∈[n],Mm,j ̸=⋄

Mm,j

 = 0.

By solving the above equation for H(b), we obtain M = H(b), therefore B guesses
the challenge bit with probability 1 when conditioning on ¬Abort ∧ ¬Wrong.

17

Hybrid H6. In this hybrid,we modify the decryption phase. When for all j ∈ [m]
the mixer has sent (VtDEC, sid, L, Lm) to FVtDec, the hybrid simulates the answer
of the ideal functionality sending the message (sid,b,M ′o) where b is computed as
defined by the ideal functionality FVtDec and M ′o is the empty list () if Invalid
occurs; else, if all the messages in L correctly decrypt and the mixer proofs
are valid, compute M ′o ← (Mh∗−1,ζo(j))j∈[n], where ζo is an uniformly random
permutation. Notice that H6 does not use the map ψ−1

hide at decryption phase.
We show that this hybrid and the previous one are equivalently distributed.

First, by the change introduced in the previous hybrid, if the hybrid does not
abort then Vm = Vh∗−1. Moreover, the two sets below are equivalently dis-
tributed:

{(Mh∗−1,j , Hj) : j ∈ [n]} ≡ {(Mh∗−1,j , Hζo(j) : j ∈ [n])}

because the messages H1, . . . , Hn are uniformly distributed.

Hybrid H7. Similarly to what done in H3, in this hybrid we introduce the set
Ψin, and we populate it with the pairs (Mi, M̃i)i≤[n], where the messages Mi are
the inputs of the honest senders, and the messages M̃i are distinct and sampled
uniformly at random from the message space M. When we simulate the ideal
functionality FVtDec, in case all the ciphertexts decrypts, we output the list Mo :=
(Mo,i)i, where Mo,ζo(i) ← ψ−1

in (Mh∗−1,i). We notice that if Vh∗−1 ∩MH ̸= ∅, the
map ψ−1

in would modify the returned value; however, since the messages M̃i are
not in the view of Z, there is a probability of at most n2

|M| that this event happens
and that Z distinguishes H6 from H7.

Hybrid H8. In this hybrid, we encrypt the simulated (honest) sender inputs M̃j

instead of the (honest) sender inputs Mj to populate the list L0. The proof that
this hybrid and the previous one are computationally indistinguishable follows
by the lRCCA security of PKE and the zero-knowledge of NIZKsd.

Lemma 3. Hybrids H7 and H8 are computationally indistinguishable.

Proof. First, we switch to hybrid H′7 and H′8 that are exactly the same but where
the crssd is sampled with ABOInit(j) for an arbitrary index j for a corrupted
party. The hybrids can be shown indistinguishable based on the lRCCA-security
of the scheme PKE, and the zero-knowledge of NIZKsd. We can use a hybrid
argument. Let H′7,j be the hybrid game in which we encrypt the simulated
sender inputs M̃i, for i ≤ j, and we encrypt the honest sender inputs Mi for
i > j. In particular, H′7 ≡ H′7,0 and H′8 ≡ H′7,n. We can prove that the hybrids
H′7,j−1 is indistinguishable from H′7,j ,∀j ∈ [n]. In particular, when the j-th
party is corrupt, the two hybrids are identically distributed. We focus on the
more interesting case when the j-th sender party is honest.

Adversary B(pk) with oracle access to ODec(·).
1. Start simulating the ideal functionality FVtDec sending the answer (KEY, sid, pk)

to the mixer parties, when instructed by the environment, thus embed-
ding the public key from the challenger in the simulation.

18

2. When the honest sender party PSi
is activated by Z on input (INPUT, Mi),

if i < j sample a random message M̃i, encrypt M̃i, and add the pair
(Mi, M̃i) to the set Ψin, and finally simulate the proof πi

sd. Instead, if
i > j, behave like in H8 encrypting the honest sender input Mi. For
i = j, sample a random message M̃j and submit the pair (Mj , M̃j) to
the lRCCA challenger, thus receiving back the challenge ciphertext C∗;
produce a simulated proof πj

sd to be attached to C∗ and continue the
simulation.

3. When all the mixers have sent the message (VtDEC, L, Lm) to FVtDec,
decrypt all of the ciphertexts in L by sending queries to the guarded
decryption oracle, i,e. send the query Ci′,j , receiving back the message
Mi′,j ∈ M ∪ {⋄,⊥} and if Mi′,j = ⋄ then set Mi′,j := ψ−1

in (M̃j). If a
decryption error is returned for any of the queries, or any of the proofs
attached to the ciphertexts are not valid (i.e. in case of Invalid),
abort and output a random bit b′. Else, simulate the leakage from
FVtDec through the leakage received by the lRCCA security experiment;
receive the value f(sk) and send the message (sid,b, (Mh∗−1,ζo(j))j∈[n])
as described by the hybrid.

4. Finally, when the simulation is complete, outputs the same as Z.

We notice that if the challenge bit b of the lRCCA game is equal to 0, the
simulation of B offered to Z is identically distributed to the view in H′7,j−1, while
if the challenge bit is 1, Z is given a view identically distributed to the one in H7,j .
Also, whenever the event Invalid occurs, the reduction B outputs a random bit,
so conditioning on Invalid the advantage in the lRCCA security game is equal
to 0. We have that for an environment Z, AdvlRCCA

B,PKE,f (λ) = |Pr
[
H′7,j−1 = 1

]
−

Pr[H7,j = 1]|.

We now introduce the latest two hybrids that ensure that none of the inputs of
the honest senders is duplicated or discarded: we start by introducing a check on
malicious senders, while in H10 we ensure that no malicious mixer can duplicate
or discard the honest inputs.

Hybrid H9. Let MH be the set of simulated messages {M̃i}i≤[n] for the honest
sender parties and let V0 be the decryption of the list of ciphertexts received by
the first mixer. If ¬Invalid and a message M ∈MH appears more than once in
the list V0 then the simulation aborts.

Lemma 4. Hybrids H8 and H9 are computationally indistinguishable.

Proof. We rely on the lRCCA-security of PKE and the soundness of NIZKsd, that
indeed prevents the adversary from sending valid ciphertexts whose messages
are correlated with the honest ones, to show that this abort happens only with
negligible probability. Let H8,i be the hybrid that aborts if ¬Invalid and a
message M ∈MH appears more than once in the list (M0,j)j≤i. Clearly, H8,0 ≡ H8
and H8,n ≡ H9. Next, let H′8,i be the same as H8,i but where the common
reference string crssd is sampled using ABOInit(i). We now show that H′8,i−1 is

19

indistinguishable from H′8,i for all i ∈ [n]. Notice that only difference between
them is when one hybrid aborts while the other does not. Let Badi be the event
that (¬Invalid ∧ M0,i ∈MH). It holds that:

|Pr
[
H′8,i−1(λ) = 1

]
− Pr

[
H′8,i(λ) = 1

]
| ≤ n · Pr[Badi].

We focus on the case where i is the index of a malicious sender, as the other
case is obvious. We can show a reduction to the lRCCA security of PKE.

Adversary B(pk) with oracle access to ODec(·).
1. Simulate the hybrid experiment H′8,i; in particular, when Z instructs a

corrupted mixer to send the message (KEY, sid), simulate FVtDec send-
ing back the answer (KEY, sid, pk), embedding the public key from the
challenger in the simulation. Also, sample crssd ←$ ABOInit(i).

2. Sample M̃(0), M̃(1) ←$ M and send the pair of messages (M̃(0), M̃(1)) to
the lRCCA challenger, receiving back the challenge ciphertext C∗.

3. Sample an index h ∈ [n], such that the h-th sender is honest.
4. When the honest sender party PSj

is activated on input (INPUT, sid, Mj),
if j ̸= h sample a random message M̃j (and populate the set Ψin), com-
pute C←$ Enc(pk, M̃j), the honest proof πj

sd (as in H8) and send to the
other parties (sid, j, Cj , π

j
sd). For j = h, instead, send (sid, h, C∗, π̃h

sd),
where the proof π̃h

sd is simulated. Wait for all the senders to broadcast
their messages (sid, j, Cj , π

j
sd) and continue the simulation.

5. When all the mixers have sent the message (VtDECsid, L, Lm), decrypt
all of the ciphertexts in the list L by sending queries to the guarded
decryption oracle, namely, send the query Ck,j for all k ∈ [m] and
all j ∈ [n], receiving back as answer the plaintext messages Mk,j ∈
M∪ {⋄,⊥}.
If the event Invalid holds, then abort the simulation and output a
random bit b′.

6. If M0,i ̸= ⋄ then abort the simulation and output a random bit b′.
7. From now one we can assume that ¬Invalid and M0,i ∈ {M̃(0), M̃(1)};

extract from the proof πi
sd the plaintext message M. Output b′ s.t. M =

M̃(b′). If the extraction fails, output a random bit.

First, we notice that the simulation B provides to the environment Z is per-
fect: independently of the challenge bit b, the message M̃(b) is distributed iden-
tically to M̃h, and the simulated proof is indistinguishable from the honest one,
due to the ABO Zero-Knowledge property of NIZKsd. Thus the probability that
Badi happens in the reduction is the same as the probability the event happens
in the hybrid experiments, conditioned on the fact that the guess of index h is
correct (i.e. our strategy works with probability 1

n).
With an analysis similar to what done in Lemma 2, we can easily prove

that the event Wrong, i.e. the fact that M0,i = M̃(1−b), only happens with negligi-
ble probability 1

|M| . Conditioning on ¬Wrong ∧ ¬Abort, we have that B always
outputs the correct bit b′ = b.

20

Hybrid H10. Recall that Vh∗ := (Mh∗,j)j∈[n] is the list of decrypted ciphertexts
output by the first honest mixer PMh∗ . In the hybrid H10 the simulation aborts
if ¬Invalid and ∃i ∈ [n] such that Count(M̃i, Vh∗−1) ̸= 1, i.e., some of the
simulated honest inputs do not appear or appear more than once, encrypted, in
the list received in input by the first honest mixer. With this check we ensure
that none of the inputs of the honest senders has been discarded or duplicated
by the (malicious) mixers.

Lemma 5. Hybrids H9 and H10 are computationally indistinguishable.

Proof. First, we switch to hybrid H′9 and H′10 that are exactly the same but
where the crssd is sampled with ABOInit(j) for an arbitrary index j for a cor-
rupted party.

We prove this using an hybrid argument. Let H9′,i the hybrid in which the
simulation aborts if ¬invalid and ∃j ≤ i such that Count(M̃j , Vh∗−1) ̸= 1.
Clearly we have that H′9 ≡ H′9,0 and H′10 ≡ H′9,n. We now show that for all
i ∈ [n], the hybrid H′9,i−1 is indistinguishable from H′9,i. This is trivially true
when the i-th sender is corrupted (H′9,i−1 and H′9,i in this case are identically
distributed).

Let Badi be the event that (¬Invalid ∧ Count(M̃i, Vh∗−1) = 0). It is easy to
check that:

|Pr
[
H′9,i−1(λ) = 1

]
− Pr

[
H′9,i(λ) = 1

]
| ≤ Pr[Badi].

In fact, the two hybrids are equivalent if the event Badi does not happen.
We define an adversary to the lRCCA security of PKE that makes use of the

event above.

Adversary B(pk) with oracle access to ODec(·).
1. Simulate the hybrid experiment H′9,i; in particular, when the environ-

ment instructs a corrupted mixer to send the message (KEY, sid), simu-
late the ideal functionality FVtDec sending back the answer (KEY, sid, pk),
embedding the public key from the challenger in the simulation.

2. Sample M̃(0), M̃(1) ←$ M and send the pair of messages (M̃(0), M̃(1)) to
the lRCCA challenger, receiving back the challenge ciphertext C∗.

3. When the honest sender party PSj
is activated on input (INPUT, sid, Mj),

if i ̸= j sample a random message M̃j (and populate the set Ψin), encrypt
the message M̃j as in H10 and continue the simulation by sending to
the other parties (sid, j, Cj , π

j
sd). For j = i, instead, send (sid, i, C∗, π̃j

sd),
where the proof π̃j

sd is simulated. Wait for all the senders to broadcast
their messages (sid, j, Cj , π

j
sd) and continue the simulation.

4. When all the mixers have sent their message (sid, Lj), decrypt all of the
ciphertexts in those lists by sending queries to the guarded decryption
oracle, namely, send the query Ci′,j for all i′ ∈ [m] and all j ∈ [n],
receiving back as answer the plaintext messages Mi′,j ∈M∪ {⋄,⊥}.
If the event Invalid holds, then abort the simulation and output a
random bit b′.

21

5. Let C ← Count(⋄, Vh∗−1), if C = 1 then abort the simulation and
output a random bit b′.

6. From now one we can assume that ¬Invalid and C ̸= 1;Compute

M← (C − 1)−1 ·

 ∑
j∈[n],M0,j ̸=⋄

M0,j −
∑

j ̸=ζh∗−1(i)

Mh∗−1,j

 . (3)

Output b′ s.t. M = M̃(b′).

First, we notice that the simulation B provides to the environment Z is perfect,
indeed, independently of the challenge bit, the message M̃(b) is distributed identi-
cally to M̃j . Thus the probability that Badi happens in the reduction is the same
as the probability the event happens in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).

Let Wrong be the event that ∃j : Dec(sk, Ch∗−1,j) = M̃(1−b), notice that the
message M̃(1−b) is independent of the view of the environment Z, thus the prob-
ability of Wrong is at most n/|M|. Moreover, we have Badi ≡ ¬Abort ∧ ¬Wrong
because, by definition of ¬Wrong, all the ciphertexts that decrypt to ⋄ in Lh∗−1
are indeed an encryption of M̃(b), thus assuming the event holds then C ̸= 1 iff
Count(M̃(b), Vh∗−1) ̸= 1. The probability of guessing the challenge bit when B
aborts is 1

2 , thus we have:

Pr[b = b′] ≥ 1
2 Pr[¬Badi] + Pr[b = b′|Badi] Pr[Badi]− n

|M| (4)

We now compute the probability that b = b′ conditioned on the event Badi. First,
we notice that ¬Invalid implies that the ciphertexts in the lists L0, . . . , Lh∗−1
decrypt correctly and that the proofs πj

mx for j < h∗ verify. Thus by applying the
sumcheck-admissibility w.r.t. PKE of the relation Rmx and by the ABO perfect
soundness of NIZKmx we have:∑

j∈[n]

Dec(sk, C0,j)−
∑

j∈[n]

Dec(sk, Ch∗−1,j) = 0.

If we condition on ¬Wrong then:M̃(b) +
∑

j ̸=ζ0(j∗)

M0,j

−
C · M̃(b) +

∑
j∈[n],Mh∗−1,j ̸=⋄

Mh∗−1,j

 = 0.

By solving the above equation for M̃(b), we obtain that M = M̃(b). We recall that
the index τ∗ ∈ [n] is (only) computationally hidden: B is able to extract from
the proof πi′

sd with probability 1
n − negl(λ). Therefore, B guesses the challenge

bit with probability 1 when conditioning on ¬Abort ∧ ¬Wrong ∧ τ∗ = i′.

22

Simulator S.

Initialization. Simulate the ideal functionality Fcrs by sampling crsmx in ABO
Perfect Sound mode on the tag h∗, while crssd is honestly generated with
Init(1λ). Also, simulate FVtDec by a sampling key pair (pk, sk)←$ KGen(prm).
Populate the setMH of the simulated honest inputs, by sampling uniformly
random (and distinct) messages from the message space M.

Honest Senders. On activation of the honest sender PSi , where i ∈ [n], sim-
ulate by executing the code of the honest sender on input the simulated
message M̃j chosen uniformly at random, without re-introduction, fromMH .

Extraction of the Inputs. Let Lh∗−1 be the list produced by the malicious
mixer PMh∗−1 . For any j ∈ [n], decrypt Mj ←$ Dec(sk, Ch∗−1,j) and if a
decryption error occurs, or some of the mixer proofs πj

mx is not valid, i.e. the
event Invalid occurs, abort the simulation. If Mj /∈ MH then submit it as
input to the ideal functionality FMix.

First Honest Mixer. Simulate by computing Lh∗ as a list of encryption of
random (distinct) messages H1, . . . , Hn, simulating the proof of mixing πh∗

mx.
Verification Phase. Receive from the ideal mixer functionality FMix the sorted

output (Mi)i∈[n]. Sample a random permutation ζo and populate the list of
outputs Mo := (Mo,i)i∈[n] with Mo,ζo(i) ← Mi.

We notice that there are some differences between H10 and the interaction
of S with the ideal functionality FMix. In particular, the hybrid defines the
function ψin by setting a mapping between the inputs of the honest senders and
the simulated ones, and, during the decryption phase, and uses ψ−1

in to revert this
change. S cannot explicitly set this mapping, because the inputs of the honest
senders are sent directly to the functionality and are unknown to S. However,
the simulator is implicitly defining the function ψin (and ψ−1

in) since during the
simulation chooses a simulated input M̃i for each honest sender and at decryption
phase outputs the messages coming from the sorted list (given in output by the
ideal functionality) which contains the inputs of the honest senders.

5 A concrete Mix-Net protocol from RCCA-PKE

As already mentioned, to instantiate the blue-print protocol defined in Fig. 3
we need two main components: (1) a Rand lRCCA PKE scheme PKE and (2) a
verify-then-decrypt protocol for such PKE.

5.1 Split PKE

We start by introducing the notion of Split Public-Key Encryption scheme. In-
formally, a Split PKE scheme is a special form of PKE scheme that extends and
builds upon another PKE scheme. For example, CCA-secure PKE schemes alá
Cramer-Shoup [CS98] can be seen as an extension of CPA-secure PKE schemes.
We give the formal definition in the following.

23

Definition 6 (Split PKE). A split PKE scheme PKE is a tuple of seven ran-
domized algorithms:

Setup(1λ) : upon input the security parameter 1λ produces public parameters
prm, which include the description of the message (M) and two ciphertext
spaces (C1, C2).

KGenA(prm) : upon input the parameters prm, outputs a key pair (pkA, skA).
KGenB(prm, pkA) : upon inputs the parameters prm and a previously generated

public key pkA, outputs a key pair (pkB , skB).
EncA(pkA, M; r) : upon inputs a public key pkA, a message M ∈M, and random-

ness r, outputs a ciphertext CA ∈ CA.
EncB(pkA, pkB , C; r) : upon inputs a pair of public keys (pkA, pkB), a ciphertext

C ∈ CA, and some randomness r, outputs a ciphertext CB ∈ CB.
DecA(pkA, skA, C) : upon inputs a secret key skA and a ciphertext C ∈ CA, outputs

a message M ∈M or an error symbol ⊥.
DecB(pkA, pkB , skA, skB , C) : upon inputs secret keys skA, skB and a ciphertext

C ∈ CB, outputs a message M ∈M or an error symbol ⊥.

Moreover, we say that a split PKE scheme PKE splits on a PKE scheme PKEA :=
(KGenA,EncA,DecA) defined over message spaceM and ciphertext space CA and
we say that a split PKE scheme PKE forms a PKE PKE := (KGen,Enc,Dec)
defined over message space M and ciphertext space CB where KGen(prm) is
the algorithm that first runs pkA, skA ←$ KGenA(prm), then runs pkB , skB ←$
KGenB(prm, pkA) and sets pk := (pkA, pkB), sk := (skA, skB), where Enc(pk, M) is
the algorithm that outputs EncB(pkA, pkB ,EncA(pkA, M; r); r) and Dec := DecB.

The correctness property is straightforward: a split PKE is correct if it forms a
PKE that is correct in the standard sense. Our definition is general enough to
capture a large class of schemes. We first note that any PKE scheme is trivially
split: it suffices that EncB on input C outputs C, and DecB runs DecA. A more
natural (and less trivial) example is the above-cited Cramer-Shoup.

In this paper, we will focus on PKE schemes that are Re-Randomizable and
Verifiable. Since, as we noted above, any PKE can be parsed as a Split PKE,
Re-Randomizability is captured by an additional algorithm Rand(pk, C; r) that
takes as input a ciphertext C and outputs a new ciphertext Ĉ (see Section 2.1).

As for the verifiability property, instead, there are three possible levels: (i)
both the secret keys are required to verify a ciphertext, or (ii) only skA is needed,
or (iii) no secret key is required at all. We refer to the third one as the public
setting, while the other two are different flavors of a private/designated-verifier
setting. We give the definition of (ii) in what follows.

Definition 7 (verifiable split PKE). A verifiable split PKE is a split PKE,
as defined above, with an additional algorithm Vf(pk, skB , C) that takes as input
the public key pk, the secret key skB and a ciphertext C ∈ CB and outputs 1
whenever DecB(pk, sk, C) ̸= ⊥, otherwise outputs 0 for invalid ciphertexts.

24

Functionality FPKE
Dec

The ideal functionality has as parameters a public-key encryption scheme
PKE := (KGen, Enc, Dec) and (implicit) public parameters prm. The function-
ality interacts with m parties Pi and with an adversary S.

Public Key. Upon activation on message (KEY, sid) from a party Pi, i ∈ [m],
if (sid, pk, sk) is not in the database sample (pk, sk)←$ KGen(prm) and store
the tuple (sid, pk, sk) in the database and send (KEY, sid, pk) to Pi.

Decryption. Upon activation on (DECRYPT, sid, C) from party Pi, i ∈ [m]:
– If the tuple (sid, pk, sk) does not exist in the database, ignore the message.
– Check that a tuple (sid, C, Mo, I), where I ⊆ [m], exists in the database; if

so, update I including the index i. Else, parse C as (Ci)i and compute the
list Mo := (Dec(sk, Ci))i∈[|C|], and create the new entry (sid, C, Mo, {i}) in
the database.

– If |I| equals m, then send a public delayed output (DECRYPT, sid, Mo) to
the parties Pi for i ∈ [m].

Fig. 6. UC ideal functionality for (n-out-n Threshold) Key-Generation and Decryption
of PKE

5.2 A protocol for Verify-then-Decrypt for verifiable split PKE

We realize the Verify-then-Decrypt ideal functionality (see Section 3.2) needed to
instantiate our Mix-Net protocol. Let PKE be a verifiable split PKE. We define
in Fig. 8 the protocol ΠVtDec that realizes FVtDec in the FCom-hybrid model.
Before doing that, we need to assume an extra property for our verifiable split
PKE, so we introduce the notion of linear key-homomorphism for a PKE.

Definition 8 (Linearly Key-Homomorphic PKE). We say that a PKE
PKE := (Setup,KGen,Enc,Dec) is linearly key-homomorphic if there exist PPT
algorithms GenPK,CheckPK and an integer s such that:

– The algorithm KGen(prm), where prm contains the description of a group of
order q, first executes sk ←$ Zs

q, and then produces the public key pk ←$
GenPK(sk).

– The algorithm GenPK is linearly homomorphic in the sense that for any
sk1, sk2 ∈ Zs

q and α ∈ Zs
q we have GenPK(α · sk1 + sk2) = α · GenPK(sk1) +

GenPK(sk2).
– The algorithm CheckPK on input the public key pk outputs a bit b to indicate

if the public key belongs on the subgroup of PK spanned by GenPK. Namely,
for any pk we have CheckPK(pk) = 1 iff pk ∈ Im(GenPK(prm, ·)).

Moreover, a split PKE PKE is linearly key-homomorphic it forms a linearly key-
homomorphic PKE and it splits to a key-homomorphic PKE.

It is not hard to verify that the key generation of a linearly key-homomorphic
split PKE can be seen as sampling two secret vectors skA ∈ Zs

q and skB ∈ Zs′

q

25

for s, s′ ∈ N and then applying two distinct homomorphisms GenPKA,GenPKB

to derive the public key.

Building Blocks. Let PKE be a split PKE that splits over PKEA, consider the
following building blocks:

1. An ideal functionality FPKEA

Dec for threshold decryption, as defined in Fig. 6,
of PKEA.

2. A single-sender multiple-receiver commitment ideal functionality FCom [CF01]
for strings, as defined in Fig. 7.

We describe the protocol in Fig. 8. At a high level, the protocol works as follows.
Each party Pi interacts with the ideal functionality FDec to get the public key pkA

and, after that, samples the pair of keys (pki
B , sk

i
B). The secret key is committed

through the ideal functionality FCom. After this step, the parties compute the
final key pkB as the sum of all their input public key shares. To verify the
ciphertexts CV , the parties reveal their secret key shares ski

B , verify that all the
keys are consistent, and locally verify the ciphertexts. Finally, to decrypt the
ciphertexts CD, the parties invoke FDec after checking that CD ⊆ CV .

Functionality FCom

The functionality interacts with n parties Pi and an adversary S.

Commitment. Upon activation on message (COMMIT, sid,Pi, s) from a party
Pi, where s ∈ {0, 1}∗, record the tuple (sid,Pi, s) and send the public
delayed output (RECEIPT, sid,Pi) to all the parties Pj , j ∈ [n], j ̸= i.

Opening. Upon activation on message (OPEN, sid,Pi) from a party Pi, i ∈
[n], proceed as follows: if the tuple (sid,Pi, s) was previously recoded, then
send the public delayed output (OPEN, sid,Pi, s) to all other parties Pj , j ∈
[n], j ̸= i. Otherwise halt.

Fig. 7. UC ideal functionality for (Single) Commitment.

Theorem 2. Let PKE be a verifiable split PKE that is linearly key-homomorphic,
let f be the leakage function that on input sk := (skA, skB) outputs skB. The pro-
tocol ΠPKE

VtDec described in Fig. 8 UC-realizes the functionality FPKE,f
VtDec described in

Fig. 2 with setup assumptions FPKEA

Dec and FCom.

Proof. We now prove that there exists a simulator S such that no PPT environ-
ment Z can distinguish an interaction with the real protocol from an interaction
with S and the ideal functionality FVtDec.

Simulator S.

26

Protocol ΠPKE
VtDec

The party Pi executes the following commands:

Public Key. Upon activation on message:
– (KEY, sid) from the environment, forward the message to FPKEA

Dec .
– (KEY, sid, pkA) from FPKEA

Dec proceed as below:
1. Sample ski

B ←$ Zs
q compute pki

B ← GenPK(ski
B).

2. Commit the secret key ski
B through the ideal functionality FCom, i.e.

send the message (COMMIT, sid, ski
B) to the functionality FCom.

– (RECEIPT, sid,Pj) from all j ∈ [m] broadcast (KEY, sid, i, pki
B).

When the parties have sent their public key shares, compute pkB :=
∑

i
pki

B

and abort if ∃i : CheckPK(pkA, pki
B) = 0 else output (KEY, sid, pk).

Verify then Decrypt. Upon activation on message:
– (VTDEC, sid, CV , CD) send (OPEN, sid,Pi) to FCom and broadcast

(VTDEC, sid, CV , CD) to the other parties.
– (OPEN, sid,Pj , skj

B) for all i ∈ [m] compute skB :=
∑

i
skj

B and assert that
GenPKB(skB) ?= pkB and that all parties broadcast the same lists CV and
CD. Parse CV as (Ci

V)i∈|CV |, compute ∀j : bj ← Vf(pk, skB , Cj
V).

If CD ̸⊆ CV or ∃i : bi = 0 return (DECRYPT, sid, b, ()) else send
(DECRYPT, sid, CD) to FPKEA

Dec and upon receipt of (DECRYPT, sid, Mo),
output (DECRYPT, sid, b, Mo)

Fig. 8. Our protocol ΠVtDec.

Public Key. The simulator S receives in input from Z the set of corrupted
parties, and receives from FVtDec the public key pk that is parsed as the
tuple (pkA, pkB). S gets to see the secret key shares of the corrupted parties
when they send the message (COMMIT, sid, ski

B). Let h∗ be the index of
an honest party. S samples at random the secret keys ski

B for all honest
parties Pi, with i ̸= h∗, from which can honestly compute the corresponding
public keys through GenPK. As for the h∗-th party, S checks if ∀j ̸= h∗ :
CheckPK(pkA, pkj

B) = 1. If so it computes directly the public key pkh∗

B :=
pkB−

∑
i ̸=h∗ pki

B , else it samples skh∗

B and computes the corresponding public
key.

Verification. When all the parties have sent the message (OPEN, sid,Pi) to the
commitment functionality FCom, the simulator receives the leakage (sid, skB)
from FPKE,f

VtDec , it computes the secret key for party Ph∗ , i.e. it computes skh∗

B :=
skB −

∑
i̸=h∗ ski

B . From this point on, the simulation becomes trivial since
the simulator follows the protocol, and can easily verify and decrypt all the
ciphertexts by interacting with the ideal functionality FVtDec.

We observe that the inputs simulated for the honest parties Pi, for i ̸= h∗, are
perfectly simulated since S chooses uniformly at random the matrices and the
vectors for the secret keys ski

B . The public key for the h∗-th party is chosen

27

KGenA(prm)
D←$ Dk; a ←$ Zk+1

q

D∗ ← (D⊤
, (a⊤D)⊤)⊤

skA ← a; pkA ← ([D]1, [a⊤D]1)
return (pkA, skA)

KGenB(prm, pkA)
E←$ Dk; f , g←$ Zk+1

q

F←$ Zk+1×k+1
q , G←$ Zk+1×k+2

q

skB ← (f , g, F, G)

pkB ← ([E]2, [f ⊤D]T , [F⊤D]1,

[g⊤E]T , [G⊤E]2, [GD∗]1, [FE]2)
return (pkB , skB)

DecA(pkA, skA, C = [x]1)
return [p]1 − [a⊤u]1

EncA(pkA, [M]1; r)
[u]1 ← [D]1 · r; [p]1 ← [a⊤D]1 · r + [M]1

return ([u⊤]1, [p]1)⊤

EncB(pk, C = [x]1; (r, s))
[v]2 ← [E]2 · s

[π1]T ← [f ⊤D]T · r + e([F⊤D]1 · r, [v]2)

[π2]T ← [g⊤E]T · s + e([x]1, [G⊤E]2 · s)
[π]T ← [π1]T + [π2]T

return ([x]1, [v]2, [π]T)

DecB(pk, sk, C = ([x]1, [v]2, [π]T))
[π1]T ← [(f + Fv)⊤u]T

[π2]T ← [(g + Gx)⊤v]T

if [π]T ̸= [π1]T + [π2]T return ⊥
else return DecA(skA, [x]1)

Rand(pk, C = ([x]1, [v]2, [π]T))
parse [x]1 as ([u⊤]1, [p]1)⊤

, r̂, ŝ←$ Zk
q

[x̂]1 ← [x]1 + [D∗]1 · r̂, [v̂]2 ← [v]2 + [E]2 · ŝ

[π̂1]T ← [f ⊤D]T · r̂ + e([F⊤D]1 · r̂, [v̂]2) + e([u]1, [FE]2 · ŝ)

[π̂2]T ← [g⊤E]T · ŝ + e([x̂]1, [G⊤E]2 · ŝ) + e([GD∗]1 · r̂, [v]2)
[π̂]← [π]T + [π̂1]T + [π̂2]T

return ([x̂]1, [v̂]2, [π̂]T)

Fig. 9. The Split RCCA-secure Scheme. prm include the description of a bilinear group.

dependently of the message of the corrupted parties. In particular, if one of
the corrupted parties sends an invalid public key the h∗-th mixer follows the
specification of the protocol, thus the simulation is perfect; if all the public
keys are valid, the public key of h∗-th party is chosen as a function of the
previously chosen keys and the public key given in input to the simulator. This
is distributed identically to a real execution of the protocol: the only difference
is that S computes the random public key, while in the real execution the party
Ph∗ would choose at random their secret key and then project it to compute
the corresponding public key, but this difference is only syntactical. In the next
steps, the simulation is perfect since it proceeds exactly as in the real protocol.

5.3 Our concrete verifiable split PKE

In this section, we show that the Rand-PKE in [FFHR19] has all the proper-
ties needed to instantiate our protocol ΠMix. In particular, in Fig. 9 we parse

28

their PKE as a split PKE, and we prove that the scheme is lRCCA w.r.t. the
leakage function f such that f(sk) := skB , and that the scheme is linearly key-
homomorphic. Moreover, we show a checksum-admissible relation Rmx w.r.t.
the PKE, we show how to instantiate the ABO perfect sound tag-based NIZK
NIZKmx using the Kiltz-Wee quasi-adaptive (QA) NIZK [KW15], and we instan-
tiate the NIZK NIZKsd using GS-Proofs. The schemes in [FFHR19] are proven
secure under a decisional assumption that we briefly introduce here. Let ℓ, k
be two positive integers. We call Dℓ,k a matrix distribution if it outputs (in
probabilistic polynomial time, with overwhelming probability) matrices in Zℓ×k

q .

Definition 9 (Matrix Decisional Diffie-Hellman Assumption in Gγ, [EHK+13]).
The Dℓ,k-MDDH assumption holds if for all non-uniform PPT adversaries A,

|Pr[A(G, [A]γ , [Aw]γ) = 1]− Pr[A(G, [A]γ , [z]γ) = 1]| ∈ negl(λ),

where the probability is taken over G := (q,G1,G2,GT , e,P1,P2)← GGen(1λ),
A←$Dℓ,k,w←$ Zk

q , [z]γ ←$ Gℓ
γ and the coin tosses of adversary A.

Theorem 3. The split PKE PKE described in Fig. 9 is linearly key-homomorphic
and lRCCA-secure w.r.t. f such that f(sk) := skB under the Dk+1,k-MDDH as-
sumption.
Proof. To show that the scheme PKE of [FFHR19] is linear key-homomorphic, we
briefly sketch that there exist the algorithms GenPK and CheckPK satisfyng the
property. The KGen algorithm samples the secret material sk := (a, f ,F,g,G),
consisting of vectors and matrices of elements in Zq. Then, in order to compute
the public key pk, the secret key is projected: GenPK produces some matri-
ces ([̃f j]T , [F̃j]1, [g̃j]T , [G̃j]2, [H̃j]1, [̃Ij]2). It is also immediate to check that, for
any α ∈ Zq and any two secret keys sk1, sk2, the linear homomorphic property
holds, i.e. GenPK(α · sk1 + sk2) = α · GenPK(sk1) + GenPK(sk2). To verify that
CheckPK(pk), instead, it is sufficient to check the following pairing equations:

e([H̃]1, [E]2) = e([D∗]1, [G̃j]2)
e([D]1, [̃I]2) = e([F̃]1, [E]2)

We now prove that the scheme is lRCCA-secure w.r.t. the function f , where
f(sk) := skB . We briefly recall the proof strategy from [FFHR19]. We only
highlight the main differences.

– The hybrid H1 computes the challenge ciphertext using the secret key.
Namely p∗ ← a⊤u∗+Mb and similarly the proofs are π∗1 ← f⊤Dr+v⊤F⊤DrF
and π∗2 ← g⊤Es + x⊤G⊤Es. This hybrid is equivalent to the lRCCA exper-
iment.

– The hybrid H2 samples for the challenge ciphertext u∗ and v∗ uniformly at
random from Zk+1

q . The hybrids H1 and H2 are computationally indistin-
guishable. This follows by applying the Dk-MDDH Assumption on [D,u∗]1
in G1 and [E,v∗]2 in G2. Notice that the reduction can sample sk2 itself and
easily reveal sk2 to the adversary.

29

From now on, we prove that each pair of consecutive hybrids is statistically close.
In particular, this means that the hybrids (and, in principle, also the adversary)
are allowed to run in unbounded time.

– The hybrid H3 adds the two decryption rules, if u = Dr uses r to compute
π1 and M at decryption time, similarly, if v = Es then uses r to compute π2.
It is easy to see that this hybrid is equivalent to the previous by the linearity
of the decryption procedure.

– The hybrid H4 adds another decryption rule, if u ̸∈ Span(D) and v− v∗ ̸∈
Span(E) then the decryption oracle returns ⊥ to the adversary. This is the
main core of the technique of [FFHR19]. In particular, they show that the
probability that the proof π of the queried ciphertext is valid when the
condition holds is O(1/q). By inspection of their reduction, we notice that
the reduction stops the simulation of the hybrid H4 as soon as a decryption
query triggers the event in the newly added decryption rule. In particular,
it means that the reduction does not have to simulate for the adversary the
leakage value f(sk) = sk2. In other words, the reduction [FFHR19] works
exactly the same also in our leakage resilient experiment because it stops
the adversary before the latter may receive the leaked value.

– The hybrid H5, similarly to the previous hybrid, adds a new the decryption
rule that if v ̸∈ Span(E) and x− x∗ ̸∈ Span(D∗) then the decryption oracle
returns ⊥ to the adversary. The proof for this hybrid is almost identical to
the proof for the previous hybrid.

– The hybrid H6 adds a new decryption rule that iff x − x∗ ∈ Span(D∗)
and v − v∗ ∈ Span(E) then the proof is verified in an alternative way. In
particular, let r̃, s̃ be such that x − x∗ = x̃ = Dr̃ it computes π′ as a re-
randomization of the proof of the challenge ciphertext π∗ using randomness
r̃ and s̃ and if π′ ̸= π the decryption oracle returns ⊥ to the adversary. The
proof of this hybrid follows the correctness of the re-randomization algorithm
for the PKE.

– The hybrid H7 is the same as the previous, but it never uses the secret key
material sk to decrypt. This hybrid is only syntactically different than the
previous; in fact, by the decryption rules added in the previous hybrids also
the H6 would never use the secret key material for the decryption query.

At this point, we can show that H6 is independent of the challenge bit even if the
adversary additionally gets to see the leakage sk2. Notice that only dependence
on b is given by p∗ = a⊤u∗ + Mb. Moreover, b is independent of sk2 thus, even
leaking this value the view of the adversary is independent from the challenge
bit.

5.4 Putting all together

We can instantiate the ABO Perfect Hiding NIZK proof of membership NIZKmx
using Groth-Sahai proofs [EG14] . In particular, notice that the necessary tag-
space for NIZKmx is the set [m] which in typical scenarios is a constant small

30

number (for example 3 mixers). Thus we can instantiate the tag-based ABO
Perfect Hiding NIZKmx by considering an Init algorithm that samples m different
common reference strings (crsi)i∈[m], the prover algorithm (resp. the verify algo-
rithm) on tag j invokes the GS prover algorithm (resp. verifier algorithm) with
input the common reference string crsj . We can instantiate the tag-based ABO
Perfect Sound NIZK NIZKsd using the technique presented in the full version
of [FFHR19] (see Section 2.2 for more details). By the universal composability
theorem [Can01], once we compose the protocol ΠMix from Fig. 5 and ΠVtDec
from Fig. 8 we obtain a protocol with setup assumption FDec, FCom and FCRS.
The first ideal functionality can be implemented using classical approaches (for
example, see Benaloh [Ben06]). Briefly, the mixers can compute the shares of
the public key [a⊤D]1 for KGenA as in Fig. 9 and prove the knowledge of the
secret key share a(i) where a =

∑
i a(i), to obtain UC security in the malicious

setting against static corruptions we can use an ABO Perfect Hiding NIZK proof
system for this step. At decryption time, the mixers can compute a batched zero-
knowledge proof of knowledge for “encryption of zero”, they can use a NIZK
proof of membership and, for UC security, it is sufficient for such proofs to be
adaptive perfect sound.

Auditability. Here we sketch the auditability of our protocol. Roughly speaking,
a protocol Π is auditable if there exists a PT algorithm Audit that on input a
transcript τ and an output y output 1 if and only if the execution of the protocol
that produces the transcript τ ends up with the parties outputting y. We focus
on the auditability of the protocol obtained composing ΠMix from Fig. 5 and
ΠVtDec from Fig. 8. The auditing algorithm, given a transcript of ΠVtDec can
reconstruct the secret key sk2 and can check that Vf(sk2, Ci,j) = 1 for all i ∈ [m]
and j ∈ [n] moreover it checks that all the NIZK proofs verify. The checks
performed guarantee that the protocol execution resulting to the transcript did
not abort, moreover, the auditability is guaranteed by the correctness of the
protocol. Finally, we notice that the protocol for FDec sketched in the previous
section is auditable (see [Ben06]).

Efficiency. We analyze the efficiency of the protocol obtained composing ΠMix
and ΠVtDec, and we consider the most efficient instantiation of the scheme in
[FFHR19] based on SXDH assumption, i.e. for k = 1. We denote with E1, E2
(resp. ET) the cost of a multiplication in groups G1 and G2 (resp. exponentiation
in GT), and with P the cost of computing a bilinear pairing. We give an intuition
on how much the protocol scales when a mixer is given N processors and may
make use of parallelism. We compare our results with the Mix-Net protocol of
[FFHR19]. In our protocol ΠMix, each mixer re-randomizes a list of n ciphertexts
which requires n(7E1 +7E2 +2ET +9P), and additionally computes a proof πmx
for the sumcheck relation Rmx which requires n additions in Zq and 6E1 + 8E2.
Re-randomization of a ciphertext in the list does not depend on other ciphertexts
in the list, so the parallel cost is n

N (7E1 + 7E2 + 2ET + 9P). Additionally, the
mixers verify all the sumcheck NIZK proofs, which requires 3nm additions in
G1 and around 8 pairings. The parallel cost is 8m

N pairings plus logN (3n) m
N

additions.

31

In the protocol ΠVtDec, each mixer sends a commitment of their secret key
share, which requires a UC-commitment for the elements of the secret key sk,
and receives commitments of secret key shares of the other m− 1 mixers. Addi-
tionally, the mixers derives the public key shares, using GenPK, this corresponds
to the cost of generating m times a key pki

B and requires m(4ET + 6E1 + 6E2).
Finally, each mixer needs to verify the n ·m ciphertexts produced in the protocol
execution of the last list which requires n(m− 1)(6E1 + 4E2 + 4P).

The protocol of [FFHR19] the public key shares pki
B (and not the secret

ones) are committed using an equivocable commitment and an ABO NIZK proof
(which can be seen as a UC-secure commitment against static corruption). The
parallel cost of re-randomize their ciphertexts is n

N 36E1 + 45E2 + 6ET + 5P ,
while the cost of verifying the ciphertexts and decrypting the last list is equal
to nm

N 36P + m
N (2E1 + 50P). In comparison, our approach allows to save at least

n
N (30E1 + 39E2 + 36P) cryptographic operations, where we recall that n is the
number of shuffled ciphertexts.

Acknowledgements
This work has been partially supported by the MESRI-BMBF French-German joint
project named PROPOLIS (ANR-20-CYAL-0004-01).

References

Abe98. Masayuki Abe. Universally verifiable mix-net with verification work inde-
pendent of the number of mix-servers. In Kaisa Nyberg, editor, EURO-
CRYPT’98, volume 1403 of LNCS, pages 437–447. Springer, Heidelberg,
May / June 1998.

Abe99. Masayuki Abe. Mix-networks on permutation networks. In Kwok-Yan Lam,
Eiji Okamoto, and Chaoping Xing, editors, ASIACRYPT’99, volume 1716
of LNCS, pages 258–273. Springer, Heidelberg, November 1999.

AH01. Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on
permutation networks. In Kwangjo Kim, editor, PKC 2001, volume 1992
of LNCS, pages 317–324. Springer, Heidelberg, February 2001.

AW07. Ben Adida and Douglas Wikström. Offline/online mixing. In Lars Arge,
Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP
2007, volume 4596 of LNCS, pages 484–495. Springer, Heidelberg, July
2007.

Ben06. Josh Benaloh. Simple verifiable elections. In 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT 06), Vancouver, B.C., Au-
gust 2006. USENIX Association.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer,
Heidelberg, April 2012.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

32

CF01. Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40.
Springer, Heidelberg, August 2001.

Cha81. David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, February 1981.

CKLM12. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. Malleable proof systems and applications. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 281–300. Springer, Heidelberg, April 2012.

CKN03. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 565–582. Springer, Heidelberg, August 2003.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, Heidelberg, August 1998.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer, Heidelberg, April / May 2002.

EG14. Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 630–649.
Springer, Heidelberg, March 2014.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 129–147. Springer, Heidelberg, August 2013.

FF20. Antonio Faonio and Dario Fiore. Improving the efficiency of re-
randomizable and replayable CCA secure public key encryption. In Mauro
Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, edi-
tors, ACNS 20, Part I, volume 12146 of LNCS, pages 271–291. Springer,
Heidelberg, October 2020.

FFHR19. Antonio Faonio, Dario Fiore, Javier Herranz, and Carla Ràfols. Structure-
preserving and re-randomizable RCCA-secure public key encryption and
its applications. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 159–190. Springer,
Heidelberg, December 2019.

FS01. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 368–387.
Springer, Heidelberg, August 2001.

GI08. Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for cor-
rectness of a shuffle. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 379–396. Springer, Heidelberg, April 2008.

Gro03. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In
Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 145–160.
Springer, Heidelberg, January 2003.

Gro04. Jens Groth. Rerandomizable and replayable adaptive chosen ciphertext
attack secure cryptosystems. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 152–170. Springer, Heidelberg, February 2004.

Gro10. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Journal
of Cryptology, 23(4):546–579, October 2010.

33

JM99. Markus Jakobsson and David M’Räıhi. Mix-based electronic payments. In
Stafford E. Tavares and Henk Meijer, editors, SAC 1998, volume 1556 of
LNCS, pages 157–173. Springer, Heidelberg, August 1999.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-
spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015.

LPQ17. Benôıt Libert, Thomas Peters, and Chen Qian. Structure-preserving
chosen-ciphertext security with shorter verifiable ciphertexts. In Serge Fehr,
editor, PKC 2017, Part I, volume 10174 of LNCS, pages 247–276. Springer,
Heidelberg, March 2017.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 116–125. ACM Press, November 2001.

PIK94. Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous
channel and all/nothing election scheme. In Tor Helleseth, editor, EURO-
CRYPT’93, volume 765 of LNCS, pages 248–259. Springer, Heidelberg, May
1994.

PR07. Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA encryption.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
517–534. Springer, Heidelberg, August 2007.

SK95. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a prac-
tical solution to the implementation of a voting booth. In Louis C. Guil-
lou and Jean-Jacques Quisquater, editors, EUROCRYPT’95, volume 921 of
LNCS, pages 393–403. Springer, Heidelberg, May 1995.

TW10. Björn Terelius and Douglas Wikström. Proofs of restricted shuffles. In
Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10, volume
6055 of LNCS, pages 100–113. Springer, Heidelberg, May 2010.

WCY+21. Yi Wang, Rongmao Chen, Guomin Yang, Xinyi Huang, Baosheng Wang,
and Moti Yung. Receiver-anonymity in rerandomizable RCCA-secure
cryptosystems resolved. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 270–300, Virtual
Event, August 2021. Springer, Heidelberg.

Wik05. Douglas Wikström. A sender verifiable mix-net and a new proof of a shuffle.
In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages
273–292. Springer, Heidelberg, December 2005.

Wik09. Douglas Wikström. A commitment-consistent proof of a shuffle. In Colin
Boyd and Juan Manuel González Nieto, editors, ACISP 09, volume 5594 of
LNCS, pages 407–421. Springer, Heidelberg, July 2009.

Wik10. Douglas Wikström. Verificatum, 2010. https://www.verificatum.com.

34

https://www.verificatum.com

	Mix-Nets from Re-Randomizable and Replayable CCA-secure Public-Key Encryption

