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Abstract—In this work, we explore the problem of multi-user
linearly-separable distributed computation, where 𝑁 servers help
compute the desired functions (jobs) of 𝐾 users, and where each
desired function can be written as a linear combination of up to
𝐿 (generally non-linear) subtasks (or sub-functions). Each server
computes some of the subtasks, communicates a function of its
computed outputs to some of the users, and then each user collects
its received data to recover its desired function. We explore the
computation and communication relationship between how many
servers compute each subtask vs. how much data each user
receives.

For a matrix F representing the linearly-separable form of the
set of requested functions, our problem becomes equivalent to
the open problem of sparse matrix factorization F = DE over
finite fields, where a sparse decoding matrix D and encoding
matrix E imply reduced communication and computation costs
respectively. This paper establishes a novel relationship between
our distributed computing problem, matrix factorization, syn-
drome decoding and covering codes. To reduce the computation
cost, the above D is drawn from covering codes or from a here-
introduced class of so-called ‘partial covering’ codes, whose study
here yields computation cost results that we present. To then
reduce the communication cost, these coding-theoretic properties
are explored in the regime of codes that have low-density parity
check matrices. The work reveals — first for the commonly
used one-shot scenario — that in the limit of large 𝑁 , the
optimal normalized computation cost 𝛾 ∈ (0, 1) is in the range
𝛾 ∈ (𝐻−1

𝑞 ( log𝑞 (𝐿)
𝑁

), 𝐻−1
𝑞 (𝐾/𝑁)) — where 𝐻𝑞 is the 𝑞-ary entropy

function — and that this can be achieved with normalized
communication cost that vanishes as

√︃
log𝑞 (𝑁)/𝑁 . The above

reveals an unbounded coding gain over the uncoded scenario, as
well as reveals the role of a certain functional rate log𝑞 (𝐿)/𝑁
and functional capacity 𝐻𝑞 (𝛾) of the system. In the end, we also
explore the multi-shot scenario, for which we derive bounds on
the computation cost.

Keywords—Distributed computing, Linearly separable func-
tions, Coding theory, Sparse matrix factorization, Covering codes,
Straggler mitigation, Distributed gradient coding.

I. INTRODUCTION

Distributed computing plays an ever-increasing role in
speeding up non-linear and computationally-hard computing
tasks. As the complexity of these tasks increases, research
seeks novel parallel processing techniques to efficiently offload
computations to groups of distributed servers, under various
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frameworks such as MapReduce [1] and Spark [2]. Distributed
computing naturally entails several challenges that involve ac-
curacy [3]–[5], scalability [6]–[10], privacy and security [11]–
[23], as well as latency and straggler mitigation [24]–[32].
For a detailed survey of related research works, the reader is
referred to [33], [34].

This aforementioned effort to efficiently distribute compu-
tation load across multiple servers, is intimately intertwined
with the concept of communication complexity which refers
to the amount of communication required to solve a com-
putation problem when the desired task is distributed among
two or more parties [37]. This celebrated computation-vs-
communication relationship has been studied in a variety of
different forms and scenarios [26], [38]–[49] for various types
of problems.

a) Preliminary description of setting: This same rela-
tionship between computation and communication costs, is
the topic of interest in our work here for the very broad
and practical setting of multi-user, multi-server computation of
linearly-separable functions. Such functions appear in several
classes of problems such as for example in training large-
scale machine learning algorithms and deep neural networks
with massive data [38], where indeed both computation and
communication costs are crucial [50], [51].

In particular, our setting here considers a master node
that manages 𝑁 server nodes that must contribute in a dis-
tributed manner to the computation of the desired functions
of 𝐾 different users. Under the linearly-separable assumption
(cf. [27]), we consider that user 𝑘 ∈ {1, 2, . . . , 𝐾} demands
a function 𝐹𝑘 (𝐷1, 𝐷2, . . . , 𝐷𝐿) that takes as input 𝐿 datasets
𝐷1, 𝐷2, . . . , 𝐷𝐿 , and that each such requested function takes
the basic form

𝐹𝑘 (𝐷1, . . . , 𝐷𝐿) =
𝐿∑︁
ℓ=1

𝑓𝑘,ℓ 𝑓ℓ (𝐷ℓ) =
𝐿∑︁
ℓ=1

𝑓𝑘,ℓ𝑊ℓ (1)

where in the above, 𝑊ℓ = 𝑓ℓ (𝐷ℓ) denotes the computed
output of a subfunction when the input is 𝐷ℓ , and where 𝑓𝑘,ℓ
are the combining coefficients which belong, together with
the entries of 𝑊ℓ , in some finite field1. Upon notification
of the users’ requests — where these requests are jointly
described by the 𝐾 × 𝐿 matrix F that contains the different
coefficients 𝑓𝑘,ℓ — the master instructs the servers to compute
some of the subfunctions 𝑓ℓ (𝐷ℓ). Each server may naturally

1The setting nicely includes the case where each 𝐹𝑘 itself is a linear combi-
nation of some linearly separable functions, i.e., where 𝐹𝑘 can itself be written
as 𝐹𝑘 (𝐷1, . . . , 𝐷𝐿) =

∑𝐿
ℓ=1

∑𝑀
𝑖=1 𝑓𝑘,ℓ,𝑖 𝑓ℓ,𝑖 (𝐷ℓ ) =

∑𝐿
ℓ=1

∑𝑀
𝑖=1 𝑓𝑘,ℓ,𝑖𝑊ℓ,𝑖 ,

corresponding to some set of basis subfunctions 𝑓ℓ,𝑖 (𝐷ℓ ) . For simplicity we
will henceforth refer to the model in (1).
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compute a different number of functions. Upon completing its
computations, each server communicates linear combinations
of its locally computed outputs (files) to carefully selected
subsets of users. Each user can then only linearly combine
what it receives from the servers that have transmitted to it,
and the goal is for each user to recover its desired function. The
problem is completed when every user 𝑘 retrieves its desired
𝐹𝑘 (𝐷1, . . . , 𝐷𝐿).

We note that there is a clear differentiation between the
server nodes that are asked to compute hard (generally non-
linear) component functions (subfunctions), and the users that
can only linearly combine their received outputs. Generating
the so-called output files 𝑊ℓ = 𝑓ℓ (𝐷ℓ), ℓ ∈ {1, 2, . . . , 𝐿}, can
be the result of a computationally intensive task that may for
example relate to training a deep learning model on a dataset,
or it can relate to the distributed gradient coding problem
[24], [52]–[54], the distributed linear-transform computation
problem [40], [55], or even the distributed matrix multiplica-
tion and the distributed multivariate polynomial computation
problems [25], [28]–[30], [44], [56]–[60].

b) Brief summary of the basic ingredients of the problem:
Our setting brings to the fore the following crucial questions.

• How many and which servers must compute each sub-
function 𝑓ℓ (𝐷ℓ)?

– This decision defines the computation cost: the more
the servers that compute a subfunction, the higher the
computation cost. The extreme centralized scenario
where each active server would compute all 𝐿 sub-
functions, would imply a maximal computation cost,
but a minimal communication cost, equal to (as we
can see) one transmission received per user. The
other extreme scenario (for the case of 𝐿 = 𝑁) would
imply a minimal computation cost of 1 subfunction
per server, but a maximal communication cost of 𝑁
shots received per user.

• What linear combinations of its computed outputs must
each server generate?

– These linear combination coefficients in question,
define an 𝑁×𝐿 matrix E that describes which servers
compute each subfunction, and how each server
combines its computed outputs in order to transmit
them. This matrix must be designed in consideration
of the requested functions, which are themselves
described by the aforementioned 𝐾 × 𝐿 matrix F.

– The number of non-zero elements in E reflects the
computation cost on the collective of servers.

• What fraction of the servers must each user get data from,
and from which servers?

– This defines the communication cost. The more data
each user gets, the higher the cost.

• How must each user combine (linearly decode) the com-
puted outputs arriving from the servers?

– This step is determined by a 𝐾×𝑁 decoding matrix D
that must be carefully designed. The number of non-
zero elements of D reflects our communication cost.
Having a non-sparse D, implies the need to activate

a substantial fraction of the existing communication
links.

• How sparse can D and E be so that each user recovers
their desired function?

– This defines the overall costs in computation and
communication. As one might expect, the larger the
number 𝐿 of possible subtasks/datasets, the higher
the worst-case costs. Having a larger 𝐿 allows the
computing service to provide more refined computa-
tions, conceivably though at a higher cost.

To answer these questions, we take a novel approach that
employs coding theory. The general idea behind our approach
is described as follows.

c) Brief summary of the new connection to sparse matrix
factorization and covering codes:

• Connection to the problem of matrix factorization into
sparse components: First, when exploring our distributed
computing problem, one can see that the feasibility con-
ditions that ensure that each user recovers its desired
function, constitute in fact a (preferably sparse) matrix
factorization problem of the form

DE = F (2)

where the problem is over some 𝑞-sized finite field F,
and where any potential sparsity of D and E translates to
savings in communication and computation costs respec-
tively.

• Connection to coding theory and syndrome decoding: To
then resolve this problem in a manner that yields non-
trivial sparse factors, we notice that — if for example,
we were to fix the above matrix D, and associate this to
the parity-check matrix of some linear code — then for
each column Eℓ of E and associated column Fℓ of F,
the corresponding equation D · Eℓ = Fℓ would tells us
that the desired sparse Eℓ can be the lowest-weight coset
leader whose syndrome is equal to Fℓ . Hence, under this
analogy, the columns of E are associated to error vectors,
the columns of F to the corresponding syndromes, and D
is assigned the role of a parity check matrix, and the
question is of which code?

• Connection to covering codes and the new class of partial
covering codes: The above connection with syndromes,
in turn brings about the concept of covering codes that
refer to codes with good covering properties, which in
turn entail low weight Eℓ , which is what we need. In
(error-control) coding theory though — which generally
considers that any error vector is possible — such cover-
ing codes consider a full space of possible syndromes, i.e.,
consider the case where any appropriately-dimensioned
vector can indeed be a syndrome. To account for the
fact that F corresponds to a restricted set of syndromes
(only those that correspond to the columns of our F), we
here consider a new class of partial covering codes, the
analysis of which is part of this work.

• Connection with codes having low-density parity-check
matrices: The above effort yields a sparse E. Our effort
is concluded when the aforementioned exploration of
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covering codes and partial covering codes (which yielded
a sparse E), is extended to involve analysis of codes with
a sparse D as well.

• Extending the one-shot scenario: Our framework allows
us to address but also extend the one-shot scenario
which is the scenario of choice in various works (see
for example [27]) and which, in our case, asks that each
server can send only one linear combination to one set of
users. We extend this model to the practical and realistic
scenario where, for a fixed subset of subfunctions/files
{ 𝑓 (𝐷ℓ)} computed locally at each server, the server can
communicate linear combinations to various sets of users.
d) Highlights of contributions: Our focus is on establish-

ing the normalized computation2 cost 𝛾 = 1
𝑁

max
𝑙∈{1,...,𝐿 }

𝜔(E(:
, 𝑙)), and the normalized communication cost 𝛿 = 𝜔(D)/𝐾𝑁 .
In our setting, 𝛾 ∈ (0, 1] represents the maximum fraction
of all servers that must compute any one subfunction, while
𝛿 ∈ (0, 1] represents the average fraction of servers that each
user gets data from, which in turn simply implies an average
number of Δ = 𝛿𝑁 ‘symbols’ received by each user.

We first consider the one-shot case. We proceed to highlight
some of the derived results, whose exact statement can be
found in the following sections.

• Theorem 1 makes the connection between coding theory
and our distributed computing problem, by showing that
a (𝛾, 𝛿)-feasible distributed computing scheme exists if
and only if the decoding matrix D has degree of sparsity
𝛿 and is the parity check matrix of an 𝑁-length code
C ⊂ F𝑁 over a field F where this code has minimum
normalized distance from each vector {x ∈ F𝑁 |Dx =

F(:, ℓ), ℓ ∈ {1, . . . , 𝐿}} that is at most 𝛾𝑁 . This brings
to the fore the concept of covering and partial covering
codes, where covering codes are codes that guarantee a
minimum distance to each vector of the entire vector
space, while partial covering codes must guarantee a
minimum distance to only a specific subset of the entire
space. Establishing the properties of such codes is key to
our problem.

• Theorem 2 shows that in the limit of large 𝑁 , the
optimal computation cost per server is in the range
𝛾 ∈ (𝐻−1

𝑞 ( log𝑞 (𝐿)
𝑁

), 𝐻−1
𝑞 (𝐾/𝑁)), where 𝐻𝑞 is the entropy

function over our field of size 𝑞. This theorem reveals
the role of what one might refer to as the functional
rate 𝑅 𝑓 = log𝑞 (𝐿)/𝑁 . The higher this rate, the more
‘involved’ is the space of functions we can compute. In
this sense — given that, from the above, 𝑙𝑜𝑔𝑞 (𝐿)

𝑁
≤ 𝐻𝑞 (𝛾)

— the expression 𝐻𝑞 (𝛾) plays the role of an upper bound
on what one might call the functional capacity of the
system.

• Extending the famous covering codes theorem of Bli-
novskii from [61], we established our bounds on partial
covering codes to the setting of codes with low den-
sity parity check matrices, revealing that any aforemen-
tioned achievable computation cost 𝛾, can be achieved

2Both communication and computation costs will be defined in more detail
later on. Also, in the following, 𝜔 ( ·) represents the well known Hamming
weight of the argument vector or matrix.

with normalized communication cost that vanishes3 as
𝛿 �

√︃
log𝑞 (𝑁)/𝑁 . This latter cost will be unboundedly

lower than in the uncoded approach of resource-sharing
between the two extreme regimes discussed previously
in the introduction (See Figure 4 in Section IV-D). As a
consequence, we can talk of an unbounded coding gain
in our distributed computing problem.

• We also consider the multi-shot scenario where, for the
same fixed subset of subtasks/files { 𝑓ℓ (𝐷ℓ)} computed
locally at each server, now the server can communicate
different linear combinations to different sets of users.
This ability offers a certain degree of refinement that
the single-shot scenario may lack. This is exploited, and
Theorem 4 reveals a range of parameters for which the
multi-shot approach provides computation savings over
the single-shot scenario. Interestingly, these computa-
tional savings are shown to be unbounded.

A. Paper Organization

The rest of the paper is organized as follows. Section II
introduces the model for multi-user distributed computing of
linearly separable functions. Section III formulates our prob-
lem, focusing on the single-shot scenario, for which Section IV
presents the main results. This latter section first makes the
connection to coding theory, and then presents the converse
and achievability for the computation cost, as well as the
achievable bound on the communication cost. Section IV-D
offers some insights including a discussion on the gains due to
coding. Subsequently, in Section V, we present our proposed
achievable multi-shot scheme and the corresponding results,
and finally we conclude in Section VI. The appendices are in
the subsequent sections.
Notations: We define [𝑛] ≜ {1, 2, . . . , 𝑛}. For matrices A
and B, [A,B] indicates the horizontal concatenation of the
two matrices. For any matrix X ∈ F𝑚×𝑛, then X(𝑖, 𝑗), 𝑖 ∈
[𝑚], 𝑗 ∈ [𝑛], represents the entry in the 𝑖th row and 𝑗 th
column, while X(𝑖, :), 𝑖 ∈ [𝑚], represents the 𝑖th row, and
X(:, 𝑗), 𝑗 ∈ [𝑛] represents the 𝑗 th column of X. For two
index sets I ⊂ [𝑚],J ∈ [𝑛], then X(I,J) represents the
sub-matrix comprised of the rows in I and columns in J . We
will use 𝜔(X) to represent the number of nonzero elements of
some matrix (or vector) X. We denote the finite field GF(𝑞)
as F. For any code C ⊆ F𝑛 and any vector x ∈ F𝑛, we use
𝑑 (x, C) to represent the Hamming distance of x to the nearest
codeword in C. We will dedicate the use of the letter 𝜌 when
referring to normalized covering radii, and we will often use
𝜌(C) to indicate that this is the normalized covering radius
of a specific code C ⊂ F𝑛. We will often use the notation
CH to refer to a code whose parity check matrix is H, and
similarly, we will use HC to refer to a matrix that serves as
the parity-check matrix of a specific linear code C. For some
𝑘 ≤ 𝑛, 𝑘, 𝑛 ∈ N, we will also often use the notation C(𝑘, 𝑛)
to emphasise that a linear code has message length 𝑘 and
codeword length 𝑛. For any two codes C1 and C2, we will
use [C1, C2] to represent the code resulting from their direct

3We will henceforth use � to denote asymptotic optimality. This will be
clarified later on.
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product. For some vector x ∈ F𝑛, we will use C2 =< x, C1 > to
represents a code whose basis is the union of x with the basis
of C1. Furthermore 𝑉𝑞 (𝑛, 𝜌) will represent the volume of a
Hamming ball in F𝑛 of radius 𝜌𝑛. For 0 ≤ 𝑥 ≤ 1− 1

𝑞
, 𝑥 ∈ R, we

will use 𝐻𝑞 (𝑥) ≜ 𝑥 log𝑞 (𝑞−1) −𝑥 log𝑞 (𝑥) − (1−𝑥) log𝑞 (1−𝑥)
to represent the 𝑞-ary entropy function, while when 𝑞 = 2 we
will use the simplified notation 𝐻 (𝑥). We will use sup(x⊺)
to represent the support of some vector x⊺ ∈ F𝑛, describing
the set of indices of non-zero elements. We will also use the
notation 𝜖 (𝑛) to represent an expression which, in the limit of
large 𝑛, vanishes to zero.

II. SYSTEM MODEL

We consider the multi-user linearly-separable distributed
computation setting (cf. Fig. 1), which consists of 𝐾

users/clients, 𝑁 active (non-idle) servers, and a master node
that coordinates servers and users. A main characteristics of
this setting is that the tasks performed at the servers, substan-
tially outweigh in computation cost the linear operations per-
formed at the different users. Another defining characteristic is
that the cost of having the servers communicate to the users is
indeed non-trivial. We consider the setting where each server
can use 𝑇 consecutive time slots to communicate different
messages to different subsets of users, where in particular,
during time-slot (shot) 𝑡 ∈ [𝑇], server 𝑛 communicates to
some arbitrary user-set T𝑛,𝑡 ⊂ [𝐾], via a dedicated broadcast
channel.

In our setting, each user asks for a (generally non-linear)
function from a space of linearly separable functions, where
each such function takes several datasets as input. Each
desired function can be decomposed into a different linear
combination of individual (again generally non-linear, and
computationally hard) sub-functions 𝑓ℓ (𝐷ℓ) that each take
a single dataset 𝐷ℓ as input. Consequently the demanded
function 𝐹𝑘 (𝐷1, . . . , 𝐷𝐿) of each user 𝑘 ∈ [𝐾], is a function
of 𝐿 independent datasets 𝐷ℓ , ℓ ∈ [𝐿], and it takes the general
linearly-separable form

𝐹𝑘 (𝐷1, 𝐷2, . . . , 𝐷𝐿) ≜ 𝑓𝑘,1 𝑓1 (𝐷1) + 𝑓𝑘,2 𝑓2 (𝐷2) (3)
+ . . . + 𝑓𝑘,𝐿 𝑓𝐿 (𝐷ℓ), 𝑘 ∈ [𝐾] (4)
= 𝑓𝑘,1𝑊1 + 𝑓𝑘,2𝑊2 + . . . (5)
+ 𝑓𝑘,𝐿𝑊𝐿 , 𝑘 ∈ [𝐾] (6)

where, as previously discussed, 𝑊ℓ = 𝑓ℓ (𝐷ℓ) ∈ F, ℓ ∈ [𝐿] is
a so-called ‘file’ output, and 𝑓𝑘,ℓ ∈ F, 𝑘 ∈ [𝐾], ℓ ∈ [𝐿] are the
linear combination coefficients. As also mentioned before, 𝐹𝑘
itself can be a linear combination of some linearly separable
functions.

A. Phases

The model involves three phases, with the first being the
demand phase, then the assignment and computation phase
and then the transmission and decoding phase. In the demand
phase, each user 𝑘 ∈ [𝐾] sends the information of its desired
function 𝐹𝑘 (.) to the master node, who then deduces the
linearly-separable decomposition of this function according
to (6). Then based on these 𝐾 desired functions, during the

assignment and computation phase, the master assigns some of
the subfunctions to each server, who then proceeds to compute
these and produce the corresponding files 𝑊ℓ = 𝑓ℓ (𝐷ℓ).
In particular, each subfunction 𝑓ℓ (𝐷ℓ) will be assigned to
the servers belonging to some carefully chosen server-set
Wℓ ⊂ [𝑁].

During the transmission phase, each server 𝑛 ∈ [𝑁]
broadcasts during time slots 𝑡 = 1, 2, . . . , 𝑇 , different linear
combinations of the locally computed output files, to different
subsets of users T𝑛,𝑡 . In particular, during time slot 𝑡, each
server 𝑛 transmits

𝑧𝑛,𝑡 ≜
∑︁
ℓ∈[𝐿 ]

𝑒𝑛,ℓ,𝑡𝑊ℓ , 𝑛 ∈ [𝑁], 𝑡 ∈ [𝑇] (7)

where the so-called encoding coefficients 𝑒𝑛,ℓ,𝑡 ∈ F are
determined by the master. Finally during the decoding part,
each user 𝑘 linearly combines the received signals as follows

𝐹 ′
𝑘 ≜

∑︁
𝑛∈[𝑁 ],𝑡 ∈[𝑇 ]

𝑑𝑘,𝑛,𝑡 𝑧𝑛,𝑡 (8)

for some decoding coefficients 𝑑𝑘,𝑛,𝑡 ∈ F, 𝑛 ∈ [𝑁], 𝑡 ∈ [𝑇],
determined again by the master node. Naturally 𝑑𝑘,𝑛,𝑡 =

0,∀𝑘 ∉ T𝑛,𝑡 . Decoding is successful when 𝐹 ′
𝑘
= 𝐹𝑘 for all

𝑘 ∈ [𝐾].

B. Computation and Communication Costs

Remembering that |Wℓ | indicates the number of servers that
compute a subfunction 𝑊ℓ = 𝑓ℓ (𝐷ℓ), ℓ ∈ [𝐿], our normalized
computation cost metric takes the form

𝛾 ≜

max
ℓ∈[𝐿 ]

|Wℓ |

𝑁
(9)

and represents the maximum fraction of all servers that must
compute any subfunction.

We also formally define the normalized communication cost
as

𝛿 ≜

∑𝑇
𝑡=1

∑𝑁
𝑛=1 |T𝑛,𝑡 |
𝐾𝑁

(10)

to represent the average fraction of servers that each user gets
data from4,5. Hence in our setting,

Δ ≜ 𝛿𝑁 (11)

represents the average number of transmitted ‘symbols’ re-
ceived by each user. We wish to provide schemes that cor-
rectly compute the desired functions, at reduced computation
and communication costs.

4We here clarify that our setting implies that any link can be exploited,
and our metric simply captures how many of these links are engaged when
communicating. Reducing the communication cost implies activating fewer
of these links, leaving the rest to be used for other responsibilities of the
computing network.

5The observant reader may notice the computational cost being a worst-
case cost, unlike the communication cost which refers to the average case.
This choice is essential in making the connection to coding theory. This same
choice though has an advantage; it allows us to better capture the effect of
having some subfunctions that are much harder to compute than others.
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Server Nodes

...

Users ...

Master Node

...

Fig. 1. The figure represents the 𝐾-user, 𝑁 -server, linearly separable computation setting. In this problem after each user informs the master of its desired
function 𝐹𝑘 (.) , each component subfunction output 𝑊ℓ = 𝑓ℓ (𝐷ℓ ) is computed at each server in Wℓ ⊂ [𝑁 ]. During slot 𝑡 , each server 𝑛 broadcasts a linear
combination 𝑧𝑛,𝑡 (of the locally available computed files) to all users in T𝑛,𝑡 . This combination is defined by the coefficients 𝑒𝑛,ℓ,𝑡 . Finally, to decode, each
user 𝑘 ∈ [𝐾 ] linearly combines (based on decoding vectors d𝑘) all the received signals from all the slots and servers it has received from. Decoding must
produce for each user its desired function 𝐹𝑘 (𝐷1, . . . , 𝐷𝐿) .

III. PROBLEM FORMULATION: ONE-SHOT SETTING

In this single-shot setting of 𝑇 = 1, we will remove the use
of the index 𝑡. Thus the transmitted value from (7) will take
the form

𝑧𝑛 =
∑︁
ℓ∈[𝐿 ]

𝑒𝑛,ℓ𝑊ℓ , 𝑛 ∈ [𝑁] (12)

where 𝑒𝑛,ℓ ∈ F will denote the corresponding encoding
coefficients, and where each such transmitted value at server
𝑛 will now be destined for the users in set T𝑛. Similarly,
the decoding value at each user 𝑘 (cf. (8)) will take the
form 𝐹 ′

𝑘
≜

∑
𝑛∈[𝑁 ] 𝑑𝑘,𝑛𝑧𝑛, where now 𝑑𝑘,𝑛, 𝑛 ∈ [𝑁], are the

decoding coefficients. The desired functions 𝐹𝑘 (.) (cf. (6)),
their linear decomposition coefficients 𝑓𝑘,ℓ (cf. (6)), and the
decoded functions 𝐹 ′

𝑘
(.) in (8), remain as previously described.

With the above in place, we will use

f ≜ [𝐹1, 𝐹2, . . . , 𝐹𝐾 ]⊺ (13)
f𝑘 ≜ [ 𝑓𝑘,1, 𝑓𝑘,2, . . . , 𝑓𝑘,𝐿]⊺, 𝑘 ∈ [𝐾] (14)
w ≜ [𝑊1,𝑊2, . . . ,𝑊𝐿]⊺ (15)

where f represents the vector of the output demanded functions
(cf. (6)), f𝑘 the vector of function coefficients for user 𝑘

(cf. (6)), and w the vector of output files. We also have

e𝑛 ≜ [𝑒𝑛,1, 𝑒𝑛,2, . . . , 𝑒𝑛,𝐿]⊺, 𝑛 ∈ [𝑁] (16)
z ≜ [𝑧1, 𝑧2, . . . , 𝑧𝑁 ]⊺ (17)

respectively representing the encoding vector at server 𝑛, and
the overall transmitted vector across all the servers (cf. (12)).
Furthermore, we have

d𝑘 ≜ [𝑑𝑘,1, 𝑑𝑘,2, . . . , 𝑑𝑘,𝑁 ]⊺, 𝑘 ∈ [𝐾] (18)
f ′ ≜ [𝐹 ′

1, 𝐹
′
2, . . . , 𝐹

′
𝐾 ]⊺ (19)

respectively representing the decoding vector at user 𝑘 , and
the vector of the decoded functions across all the users. In
addition, we have

F ≜ [f1, f2, . . . , f𝐾 ]⊺ ∈ F𝐾×𝐿 (20)

E ≜ [e1, e2, . . . , e𝑁 ]⊺ ∈ F𝑁×𝐿 (21)

D ≜ [d1, d2, . . . , d𝐾 ]⊺ ∈ F𝐾×𝑁 (22)

where F represents the 𝐾×𝐿 matrix of all function coefficients
across all the users, where E represents the 𝑁 × 𝐿 encoding
matrix across all the servers, and where D represents the 𝐾×𝑁
decoding matrix across all the users.

Directly from (6), we have that

f = [f1, f2, . . . , f𝐾 ]⊺w (23)

and from (7) we have the overall transmitted vector taking the
form

z = [e1, e2, . . . , e𝑁 ]⊺w = Ew. (24)

Furthermore, directly from (8) we have that

𝐹 ′
𝑘 = d𝑇𝑘 z (25)

and thus we have

f ′ = [d1, d2, . . . , d𝐾 ]⊺z = Dz. (26)
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Recall that we must guarantee that

f ′ = f. (27)

After substituting (23), (24) and (26) into (27), we see that
the above feasibility condition in (27) is satisfied iff

DEw = Fw. (28)

For this to hold for any w, we must thus guarantee

DE = F. (29)

At this point, since Wℓ = sup(E(:, {ℓ})⊺), and since |Wℓ | =
𝜔(E(:, {ℓ})), we have that

max
ℓ∈[𝐿 ]

𝜔(E(:, ℓ)) = max
ℓ∈[𝐿 ]

|Wℓ | (30)

which simply tells us that our computation cost 𝛾 from (9)
takes the form

𝛾 =
1
𝑁

max
ℓ∈[𝐿 ]

𝜔(E(:, ℓ)). (31)

Similarly, directly from (8) and (11), we see that

𝛿 =
𝜔(D)
𝐾𝑁

(32)

which simply says (cf. (11)) that

Δ =
𝜔(D)
𝐾

. (33)

It is now clear that decomposing F into the product of two
relatively sparse matrices D and E, implies reduced commu-
nication and computation costs respectively.

We here provide a simple example to help clarify the setting
and the notation.

A. Simple Example

As illustrated in Figure 2, we consider the example of a
system with a master node, 𝑁 = 8 servers, 𝐾 = 4 users, 𝐿 = 6
subfunctions/datasets, and a field of size 𝑞 = 7.

Let us assume that the users ask for the following functions:

𝐹1 = 2 𝑓1 (𝐷1) + 4 𝑓2 (𝐷2) + 4 𝑓3 (𝐷3) + 5 𝑓4 (𝐷4) + 5 𝑓5 (𝐷5)
= f⊺1 w,

𝐹2 = 3 𝑓1 (𝐷1) + 4 𝑓2 (𝐷2) + 5 𝑓3 (𝐷3) + 2 𝑓4 (𝐷4) + 6 𝑓5 (𝐷5)
+ 6 𝑓6 (𝐷6) = f⊺2 w,

𝐹3 = 2 𝑓1 (𝐷1) + 4 𝑓2 (𝐷2) + 6 𝑓3 (𝐷3) + 5 𝑓4 (𝐷4) + 2 𝑓5 (𝐷5)
= f⊺3 w,

𝐹4 = 3 𝑓1 (𝐷1) + 5 𝑓2 (𝐷2) + 2 𝑓4 (𝐷4) + 3 𝑓5 (𝐷5) + 𝑓6 (𝐷6)
= f⊺4 w

where 𝐹𝑘 , f𝑘 , 𝑘 ∈ [4], and w, are respectively defined in (6),
(15) and (14). Consequently from (20), our function matrix
takes the form

F =


2 4 4 5 5 0
3 4 5 2 6 6
2 4 6 5 2 0
3 5 0 2 3 1

 .

In the assignment phase, the master allocates the computa-
tion of 𝑓1 (𝐷1), 𝑓2 (𝐷2), . . . , 𝑓6 (𝐷6) to the 8 servers according
to

W1 = {1, 2, 3, 5, 8}, W2 = {1, 2, 3, 4, 6, 7},
W3 = {1, 2, 3}, W4 = {1, 4, 5, 7}
W5 = {1, 2, 4, 5, 6, 8}, W6 = {3, 4, 5, 6, 7, 8}

so that for example subfunction 𝑓3 (𝐷3) is assigned to servers
{1, 2, 3}, while we can also see that for example server 2
has to compute 𝑊1 = 𝑓 (𝐷1),𝑊2 = 𝑓 (𝐷2),𝑊3 = 𝑓 (𝐷3), and
𝑊5 = 𝑓 (𝐷5). A quick inspection shows that the normalized
computation cost (cf. (9)) is equal to

𝛾 =

max
ℓ∈[6]

|Wℓ |

8
= 6/8. (34)

After computing their designated output files, each server 𝑛
transmits 𝑧𝑛 as follows

𝑧1 = 2𝑊1 + 6𝑊2 + 3𝑊3 +𝑊4 + 2𝑊5,

𝑧2 = 4𝑊1 + 5𝑊2 + 2𝑊3 + 3𝑊5,

𝑧3 = 𝑊1 + 2𝑊2 +𝑊3 + 2𝑊6,

𝑧4 = 𝑊2 + 2𝑊4 + 4𝑊5 +𝑊6,

𝑧5 = 2𝑊1 +𝑊4 + 3𝑊5 + 2𝑊6,

𝑧6 = 2𝑊2 + 5𝑊5 + 3𝑊6

𝑧7 = 𝑊2 + 2𝑊4 + 4𝑊6,

𝑧8 = 2𝑊1 + 4𝑊5 + 5𝑊6

corresponding to an encoding matrix (cf. (24)) of the form

E =



2 6 3 1 2 0
4 5 2 0 3 0
1 2 1 0 0 2
0 1 0 2 4 1
2 0 0 1 3 2
0 2 0 0 5 3
0 1 0 2 0 4
2 0 0 0 4 5


.

We can quickly verify (cf. (34)) that indeed max
ℓ∈[6]

𝜔(E(:
, ℓ))/8 = 6/8 = 𝛾.

Subsequently, the master asks each server 𝑛 to send its
generated 𝑧𝑛 to its designated receiving users, where for each
server, these user-sets are:

T1 = {2, 4}, T2 = {1, 3}, T3 = {3, 4}, T4 = {1, 2, 3, 4},
T5 = {1, 2, 3, 4}, T6 = {1, 2},T7 = {1, 4},T8 = {4}

so now, for example, server 2 will broadcast 𝑧2 to users
1 and 3. A quick inspection also shows that users 1 and
4 will receive 5 different symbols, whereas users 2 and 3
will receive 4 symbols each. The above corresponds to a
normalized communication cost (cf. (11)) equal to

𝛿 =

∑8
𝑛=1 |T𝑛 |
4 · 8

= (5 + 4 + 4 + 6)/32 = 19/32

corresponding to an average of Δ = 19
4 symbols received per

user.
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Server Nodes

Users

...

Master Node

Fig. 2. Multi-user distributed computing setting with 8 servers, 4 users, and 6 datasets/subfunctions.

To decode, each user 𝑘 ∈ [4] computes the linear combina-
tion 𝐹 ′

𝑘
as

𝐹 ′
1 = 2𝑧2 + 3𝑧4 + 4𝑧5 + 2𝑧6 + 𝑧7,
𝐹 ′

2 = 4𝑧1 + 2𝑧4 + 𝑧5 + 3𝑧6,
𝐹 ′

3 = 4𝑧2 + 5𝑧3 + 2𝑧4 + 𝑧5,
𝐹 ′

4 = 4𝑧1 + 2𝑧3 + 𝑧4 + 2𝑧5 + 4𝑧7 + 5𝑧8

adhering to a decoding matrix of the form

D =


0 2 0 3 4 2 1 0
4 0 0 2 1 3 0 0
0 4 5 2 1 0 0 0
4 0 2 1 2 0 4 5

 .
A quick verification6 reveals the correctness of decoding, and
that indeed 𝐹 ′

𝑘
= 𝐹𝑘 for all 𝑘 = 1, 2, 3, 4. For example, for

the first user, we see that 𝐹 ′
1 = 2𝑧2 + 3𝑧4 + 4𝑧5 + 2𝑧6 + 𝑧7 =

2(4𝑊1 +5𝑊2 +2𝑊3 +3𝑊5) +3(𝑊2 +2𝑊4 +4𝑊5 +𝑊6) +4(2𝑊1 +
𝑊4 + 3𝑊5 + 2𝑊6) + 2(2𝑊2 + 5𝑊5 + 3𝑊6) + (𝑊2 + 2𝑊4 + 4𝑊6) =
2𝑊1 + 4𝑊2 + 4𝑊3 + 5𝑊4 + 5𝑊5 + 0𝑊6 which indeed matches
𝐹1. In this example, each user recovers their desired function,
with a corresponding normalized computation cost 𝛾 = 3/4
and a normalized communication cost 𝛿 = 19/32. This has
just been an example to illustrate the setting. The effort to
find a solution with reduced computation and communication
costs, follows in the subsequent section.

IV. COMPUTATION AND COMMUNICATION COSTS FOR THE
SINGLE-SHOT SETTING

In this section we present the results for the one-shot setting.
We first rigorously establish the bridge between our problem,

6Let us recall that each decoded symbol takes the form 𝐹′
𝑘
= d⊺

𝑘
z where

d⊺
𝑘

is the 𝑘th row of D, and where z = [𝑧1 𝑧2 · · · 𝑧𝑁 ]𝑇 .

coding theory, covering and partial covering codes. The main
results — focusing first on the computational aspects — are
presented in Section IV-B which derives bounds on the optimal
computation cost in the large 𝑁 setting. With these results in
place, the subsequent Section IV-C extends our consideration
to the communication cost as well. Finally, Section IV-D offers
some intuition on the results of this current section.

We briefly recall (cf. [62]) that an 𝑛-length code C ⊂ F𝑛 is
called a 𝜌-covering code if it satisfies

𝑑 (x, C) ≤ 𝜌𝑛, ∀x ∈ F𝑛 (35)

for some 𝜌 ∈ (0, 1) which is referred to as the normalized
covering radius.

A. Establishing a Relationship to Covering Codes and Partial
Covering Codes

We will first seek to decompose F into F = DE under a
constrained computation cost 𝛾 which will generally imply
a sparsity constraint on E. For Eℓ ≜ E(:, ℓ) and Fℓ ≜ F(:
, ℓ) denoting the ℓth column of E and F respectively, we can
rewrite our decomposition as

DEℓ = Fℓ , ∀ℓ ∈ [𝐿] . (36)

As suggested before, if we viewed D ∈ F𝐾×𝑁 as a parity
check matrix HC = D of a code C ⊂ F𝑁 , then we could
view Eℓ ∈ F𝑁 as an arbitrary error pattern, and Fℓ ∈ F𝐾 as
the corresponding syndrome. Since we wish to sparsify Eℓ ,
we are interested in having Eℓ be the minimum-weight coset
leader whose syndrome is Fℓ . This is simply the output of the
minimum-distance syndrome decoder7. To get a first handle

7Naturally our viewing D as a parity check matrix, does not limit the scope
of options in choosing D. Similarly, associating Eℓ the role of an error pattern,
or a minimum-weight coset leader, is again not a limiting association.
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on the weights of Eℓ , we can refer to the theory of covering
codes which bounds the weights of coset leaders, where these
weights are bounded by the code’s covering radius 𝜌(C)𝑁 ,
for some normalized radius 𝜌(C) ∈ (0, 1). Since the covering
radius 𝜌𝑁 upper bounds the weights of the coset leaders8,
it upper bounds our computation cost. A covering radius 𝛾𝑁
would reflect our computation constraint 𝛾.

To capture some of the coding-theoretic properties, we will
transition to the traditional coding-theoretic notation which
speaks of an 𝑛-length code C ⊂ F𝑛 of rate 𝑘/𝑛, where for us
𝑛 = 𝑁 and 𝑘 = 𝑁 −𝐾 . The parity check matrix HC ∈ F(𝑛−𝑘)×𝑛
will generally be associated to our decoding matrix D ∈ F𝐾×𝑁 ,
the received (or error) vectors x ∈ F𝑛 will be associated to the
encoding vectors Eℓ ∈ F𝑁 , and its syndrome sx ∈ F𝑛−𝑘 (or just
s, depending on the occasion) will be associated to Fℓ ∈ F𝐾 .
Please recall that when we write CD (or CH), we will refer to
the code whose parity check matrix is D (or H).

As a first step, we extend the concept of covering codes to
the following class.

Definition 1. For some 𝜌 ∈ (0, 1], we say that a set X ⊆ F𝑛
is 𝜌-covered by a code C ⊆ F𝑛 iff

𝑑 (x, C) ≤ 𝜌𝑛, ∀x ∈ X (37)

in which case we say that C is a (𝜌,X)-partial covering code.

Naturally when X = F𝑛, such a (𝜌,X)-partial covering code
is simply the traditional covering code. We are now able to link
partial covering codes to our distributed computing problem.

Theorem 1. For the setting of distributed computing with
𝐾 users, 𝑁 servers and 𝐿 subfunctions, a solution to the
linearly separable function computation problem DE = F with
normalized computation cost 𝛾 exists if and only if D is the
parity check matrix to a (𝛾,X)-partial covering code CD for
some existing set

X ⊃ XF,D ≜ {x ∈ F𝑁 |Dx = F(:, ℓ), for some ℓ ∈ [𝐿]}. (38)

With such D in place, each E(:, ℓ) is the output of the
minimum-distance syndrome decoder of CD for syndrome
F(:, ℓ)9

Proof. To first prove that the computation constraint 𝛾 = 𝜌

indeed requires D to correspond to a partial covering code that
covers X, let us assume that D does not have this property and
that there exists an x ∈ X such that 𝑑 (x, CD) > 𝜌𝑛. Let cmin
be the closest codeword to x in the sense that 𝑑 (x, cmin) =

𝑑 (x, CD). Now let emin = x − cmin, and note, directly from
the above assumption, that 𝜔(emin) > 𝜌𝑛. Naturally Dx =

D(emin+c𝑚𝑖𝑛) = Demin by virtue of the fact that D is the parity
check matrix of CD. Since x ∈ X, we know that ∃ℓ ∈ [𝐿] such
that Dx = F(:, ℓ), which directly means that ∃ ℓ ∈ [𝐿] such
that Demin = F(:, ℓ). This emin is the coset leader associated
to syndrome F(:, ℓ).

Since though DE = F, we also have that DE(:, ℓ) = F(:, ℓ).
Since E(:, ℓ) and emin are in the same coset (of the same

8Let us recall (cf. [63]) that the preferred coset leaders are the minimum-
weight vectors in each row of the standard array.

9 XF,D simply means that x ∈ XF,D ⇐⇒ ∃ℓ ∈ [𝐿 ] : Dx = F(:, ℓ) .

syndrome F(:, ℓ)), and since emin is the minimum-weight coset
leader, we can conclude that 𝜔(E(:, ℓ)) ≥ emin. Thus the
assumption that 𝜔(emin) > 𝜌𝑛 implies that 𝜔(E(:, ℓ)) >

𝜌𝑛 which contradicts the computation-cost requirement that
𝜔(E(:, ℓ)) ≤ 𝜌𝑛 from (31). Thus if D does not correspond
to a partial covering code (with 𝜌 = 𝛾) that covers XF,D, the
complexity constraint is violated.

On the other hand, recalling that CD is a partial covering
code for X, we get that for any x ∈ X then 𝑑 (x, CD) ≤ 𝜌𝑛.
For the same x ∈ X, let cmin be again its closest codeword,
and let emin = x−cmin, where again by definition of the partial
covering code, 𝜔(emin) ≤ 𝜌𝑛. Since, like before, Demin = F(:
, ℓ) for some ℓ ∈ [𝐿], then we simply set E(:, ℓ) = emin whose
weight is indeed sufficiently low to guarantee the computation
constraint. We recall that for each F(:, ℓ), this coset leader
E(:, ℓ) = emin can be found by using the minimum-distance
syndrome decoder. □

Intuitively, a smaller X could potentially — depending on
X and the code — be covered in the presence of a smaller
covering radius. Now that we have established the connection
with partial covering codes, we proceed to present computation
bounds. The following result, as well as all subsequent results,
assumes a large 𝑁 .

B. Bounds on the Optimal Computation Cost

The following theorem bounds the optimal computation cost
of the multi-user linearly-separable computation setting.

Theorem 2. For the setting of distributed-computing of
linearly-separable functions, with 𝐾 users, 𝑁 servers and any
number of 𝐿 subfunctions, in the limit of large 𝑁 (with
𝐾/𝑁 and log𝑞 (𝐿)/𝑁 fixed) the optimal computation cost is
bounded as

𝛾 ∈ (𝐻−1
𝑞 (

log𝑞 (𝐿)
𝑁

), 𝐻−1
𝑞 (𝐾

𝑁
)). (39)

Proof. The proof of the converse (lower bound in (39))
employs sphere-covering arguments and can be found in
Appendix A. The proof of achievability follows from covering-
and partial covering-code arguments, and can be found in
Appendix B. □

Remark 1. The two bounds meet when 𝐿 = 𝑞𝐾 .

Remark 2. An observant reader may notice that while the
communication cost has an average-case interpretation, the
computational cost metric retains a worst-case nature. This is
out of necessity, as the coding-theoretic bound that supports
the bound on 𝛾 is based on a worst-case analysis of the
Hamming weight of each column of E while on the other
hand, for bounding the communication cost, we are forced to
consider an average metric simply because again the coding-
theoretic bound that we have derived, now draws from a bound
on the Hamming weight of the entire matrix D.

Theorem 2 suggests a range of computation costs. In the
next corollary, we will describe the conditions under which
a reduced normalized computation cost, strictly inside this
range, can be achieved. This reduced cost will relate to (our
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ability to choose) a set X ⊂ F𝑁 . As we will see, a smaller X
will imply a smaller 𝛾. To understand the connection between
our problem and this set X, and thus to better understand
the following theorem whose proof will be presented in
Appendix C, we provide the following sketch of some crucial
elements in the proof of Theorem 2. In particular, we will here
sketch an algorithm that iterates in order to converge to the
aforementioned X, and then to the corresponding decoding
matrix D, that will eventually provide reduced normalized
complexity 𝛾. Before describing the algorithm, it is worth
noting that a crucial ingredient can be found in Lemma 1 (see
Appendix D), which modifies the approach in [64] in order
for us to design — for any set X′ ∈ F𝑁 — a (𝜌,X′)-partial
covering code for some 𝜌 = 𝐻−1

𝑞 ( 𝐾
𝑁
− (1 − log𝑞 ( |X′ |)

𝑁
).

With this in place, the algorithm starts by picking an initial
set X0 ∈ F𝑁 , |X0 | = 𝐿𝑞𝑁−𝐾 , and then applies Lemma
1 to construct a (𝜌0,X0)-partial covering code, C0, where
𝜌0 = 𝐻−1

𝑞 ( 𝐾
𝑁
− (1− log𝑞 ( |X0 |)

𝑁
). With this code C0 in place, we

create — as a function of C0 — the set XF,D,0 as defined in (38)
where D = HC0 , and then we check if X0 ⊇ XF,D,0. If so,
then the algorithm terminates, else it goes to the next iteration
which starts by picking a new larger set X1 ∈ F𝑁 , |X1 | =

𝐿𝑞𝑁−𝐾 + 1, then uses Lemma 1 to create a new (𝜌1,X1)-
partial covering code for 𝜌1 = 𝐻−1

𝑞 ( 𝐾
𝑁

− (1 − log𝑞 ( |X1 |)
𝑁

), and
then compares if X1 ⊇ XF,D,1. This procedure terminates
during some round 𝑚 where this terminating round is the
first round for which the chosen set X𝑚 (now of cardinality
|X𝑚 | = 𝐿𝑞𝑁−𝐾 + 𝑚) and the corresponding (𝜌𝑚,X𝑚)-partial
covering code with 𝜌𝑚 = 𝐻−1

𝑞 ( 𝐾
𝑁

− (1 − log𝑞 ( |X𝑚 |)
𝑁

), yield
X𝑚 ⊇ XF,D,𝑚.

In the following corollary, the mentioned X refers to the
terminating10 X𝑚, and the decoding matrix D will be the
parity-check matrix of the aforementioned (𝜌𝑚,X𝑚)-partial
covering code that covers the terminating X = X𝑚, while the
normalized computation cost in the theorem will take the form
𝛾 = 𝜌 = 𝜌𝑚.

With the above in place, the following speaks of a set X that
is 𝜌𝑁-covered by a code CD that generates — as described
in (38) — its set XF,D.

Corollary 1. In the multi-user linearly separable computing
problem DE = F, if there exists a set

X ⊃ XF,D ≜ {x ∈ F𝑁 |Dx = F(:, ℓ), for some ℓ ∈ [𝐿]}

that is 𝜌𝑁-covered by a code CD for 𝜌 = 𝐻−1
𝑞 ( 𝐾

𝑁
− (1 −

log𝑞 ( |X |)
𝑁

)), then the computation cost

𝛾 = 𝐻−1
𝑞 (𝐾

𝑁
− (1 −

log𝑞 ( |X|)
𝑁

))

is achievable. If X = XF,D, then 𝛾 = 𝐻−1
𝑞 ( log𝑞 (𝐿)

𝑁
) is achievable

and optimal.

Proof. The proof can be found in Appendix C. □

10Note that in the worst case this termination will happen when X𝑚 = F𝑁 ,
in which case the output code will be a covering code.

As suggested before, the above reflects that covering a
smaller X could entail a smaller covering radius and thus a
smaller computation cost.

C. Jointly Considering Computation and Communication
Costs

The following theorem combines computation and com-
munication considerations. Theorem 3 builds on Theorem 1,
where now we recall that any chosen decoding matrix D
will automatically yield a normalized communication cost
𝛿 =

𝜔 (D)
𝐾𝑁

corresponding to Δ = 𝛿𝑁 =
𝜔 (D)
𝐾

. The following
bounds this communication cost.

Theorem 3. For the setting of distributed-computing of
linearly-separable functions, with 𝐾 users, 𝑁 servers and
𝐿 subfunctions, in the limit of large 𝑁 (with 𝐾/𝑁 and
log𝑞 (𝐿)/𝑁 fixed) the optimal computation cost is bounded as

𝛾 ∈ (𝐻−1
𝑞 (

log𝑞 (𝐿)
𝑁

), 𝐻−1
𝑞 (𝐾

𝑁
))

and for any achievable computation cost 𝛾 ≤ min{
√

5−1
2 , 1− 1

𝑞
},

then the corresponding achievable communication cost takes
the form

𝛿 �

√︃
log𝑞 (𝑁)

𝑁
. (40)

Proof. The proof can be found in Appendix E. □

We here offer a quick sketch of the proof of the above
theorem. The proof first employs a modified version of the
famous result by Blinovskii in [61] which proved that, as 𝑛
goes to infinity, almost all random linear codes C(𝑘, 𝑛) are
covering codes, as long as the normalized covering radius
satisfies 𝜌 ≥ 𝐻−1

𝑞 ( 𝑛−𝑘
𝑛
). This modification of Blinovskii’s

theorem is presented in Theorem 5, whose proof is found in
Appendix E. With this modification in place, we prove that
almost all (𝑘, 𝑛) random linear codes with

𝜌 = 𝐻−1
𝑞 (

log𝑞 ( |X|) − 𝑘
𝑛

) (41)

are (𝜌,X)-partial covering codes, each for their own set X ∈
F𝑛. This is again in Theorem 5. With this theorem in place, we
then employ a concatenation argument (which can be found
in the proof of Theorem 3 in Appendix E), to build a sparse
parity-check matrix H of a partial covering code, which — by
virtue of the connection made in Theorem 1 — allows us to
complete the proof of Theorem 3.

To show that sparse parity check codes can indeed offer
reduced computation costs, we had to show that sparse codes
can indeed offer good partial covering properties. To do that,
we followed some of the steps described below. In particular,
we designed an algorithm that begins with constructing a
sparse parity check code that can cover, for a given radius 𝜌0,
a minimum necessary cardinality set X0, where this minimum
cardinality of |X0 | = 𝐿𝑞𝑁−𝐾 is imposed on us by F. The
parity-check matrix of this first code is H0. Then following
the steps in the proof of Theorem 1, we set D = H0 and check
if X0 ⊇ XF,D holds. If it indeed holds, the algorithm outputs
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D and X0, and the corresponding cost is 𝛾 = 𝜌0, where this
𝜌 value is derived from (41) by setting X = X0. Otherwise
the algorithm constructs another sparse partial covering code
with a new parity check matrix H1, now covering a set X1
with cardinality |X1 | = 𝐿𝑞𝑁−𝐾 + 1, and then checks again the
same inclusion condition as above. The procedure continues
until it terminates, with some covered set X𝑚 of cardinality
|X𝑚 | = 𝐿𝑞𝑁−𝐾 + 𝑚. As before, reaching X𝑚 = F𝑁 will
terminate the algorithm (if it has not terminated before that).
In the proposition below, the set X is exactly our terminating
set X𝑚 we referred to above.

Proposition 1. After adopting the achievable scheme pro-
posed in Theorem 3 together with adopting the correspond-
ing conditions on 𝜌, 𝛿 and its corresponding D that was
designed as a function of F, then if there exists a subset
X ⊇ XF,D,X ⊆ F𝑁 , that is 𝜌𝑁-covered by CD for some
𝜌 = 𝐻−1

𝑞 ( 𝐾
𝑁

− (1 − log𝑞 ( |X |)
𝑁

)), we can conclude that the

computation cost 𝛾 = 𝐻−1
𝑞 ( 𝐾

𝑁
−(1− log𝑞 ( |X |)

𝑁
)) is achievable. If

X = XF,D, then the computation cost converges to the optimal
𝐻−1
𝑞 ( log𝑞 (𝐿)

𝑁
). The above remains in place for any D which

yields communication cost no less than Δ = 𝑂 (
√︃

log𝑞 (𝑁)).

Proof. The proof can be found in Appendix G. □

D. Discussing the Results of the Current Section
Theorem 3 reveals that the optimal computation cost lies

in the region 𝛾 ∈ (𝐻−1
𝑞 ( log𝑞 (𝐿)

𝑁
), 𝐻−1

𝑞 ( 𝐾
𝑁
)), and that this cost

can be achieved with a communication cost that vanishes as
𝛿 �

√︃
log𝑞 (𝑁)/𝑁 . To get a better sense of the improvements

that come from our coded approach, let us compare this to the
uncoded case. Looking at Figure 3, this uncoded performance
is described by (the line connecting) point 1 and point 2. Point
1, located at point (𝛾 = 1/𝑁, 𝛿 = 1), corresponds to the fully
decentralized scenario where each server must compute just
one subfunction11, but which in turn implies that each server
must communicate to all 𝐾 users. This scenario corresponds
to the decomposition DI = F where we maximally12 sparsify
E by setting it equal to E = I𝑁×𝑁 .

On the other hand, point 2, located at (𝛾 = 1, 𝛿 = 1/𝑁),
corresponds to the fully centralized scenario where each of the
𝐾 activated servers13 is asked to compute all 𝐿 subfunctions,
but where now each server need only transmit to a single user.

To clarify, a scheme achieves a certain (𝛿, 𝛾) when all the
elements in XF,D are 𝛾-covered by CD independently of F,
and that the above holds for a D that has only a fraction 𝛿

of non-zero elements. In particular, from Theorem 3 we now
know that point 3 at (𝛾 = 𝐻−1

𝑞 ( 𝐾
𝑁
), 𝛿 �

√︃
log𝑞 (𝑁))/𝑁) is

always achievable irrespective of F. So is any point inside the
triangle defined by points 1, 2, 3.

11Due to the single-shot assumption, this corresponds to having 𝑁 (𝑞−1) =
𝐿. This matches the converse — in our large 𝑁 setting — because after
writing 𝐿 = 𝑁 (𝑞 − 1) =

(𝑁
1
)
(𝑞 − 1) ≃ 𝑞𝑁𝐻𝑞 (1/𝑁 )

= 𝑞
𝑁𝐻𝑞 (𝛾) , we see that

𝐻−1
𝑞 ( log𝑞 (𝐿)

𝑁
) = 𝛾 = 1

𝑁
.

12Note that the stated 𝛿 = 1 accounts for the worst-case scenario where F
contains no zero elements.

13This number of activated servers is again a consequence of the single-shot
assumption.

To go beyond point 3, assuming that CD is a (𝛾, X)-partial
covering code, then we achieve 𝛾 if X ⊇ XF,D, where this
reduced 𝛾 derived in Proposition 1. Note that the satisfaction
of such a condition is dependent on F. Also, note that the result
of Theorem 5 allows us to construct a Low-Density Parity
Check partial-covering code CD that satisfies X ⊇ XF,D, in an
algorithmic procedure described in the proof of Theorem 3.
The algorithmic procedure offers a way to give instances
of some conditional achievable schemes dependent on the
choice of F, which though may not be optimal for all F. If
the suggested procedure terminates at the first round of the
procedure then point 4 is achieved (see Appendix E).

With the above in mind, we see that any point inside the
region defined by points 1, 4, 2, 3, can be achieved under some
conditions over F. The converse also tells us that no point to
the left of point 5, i.e., no point with 𝛾 < 𝐻−1

𝑞 ( log𝑞 (𝐿)
𝑁

), can be
achieved. Therefore point 5 is simply a converse point. Finally,
the achievability of the points inside the triangle defined by
points 5, 2, 4 remains an open problem.

V. DISTRIBUTED COMPUTING OF LINEARLY-SEPARABLE
FUNCTIONS WITH MULTI-SHOT COMMUNICATIONS (𝑇 > 1)

In this section we present our results for the multi-shot
setting where each server is able to broadcast 𝑇 consecutive
transmissions to 𝑇 potentially different subsets of users. This
is mainly motivated by the fact that having 𝑇 > 1, naturally
allows us to employ fewer servers, but it is also motivated — as
we will discuss later on — by an additional coding flexibility
and refinement that multiple transmissions can provide. We
briefly note that we assume as before that 𝐾 and 𝑁 are
sufficiently large.

A. Problem Formulation

The notation of the parameters that characterize the system
will now generally follow directly from Section III, sometimes
after clarifying the corresponding time-slot 𝑡 of interest. For
example, as before we will have

f ≜ [𝐹1, 𝐹2, . . . , 𝐹𝐾 ]⊺, (42)
f𝑘 ≜ [ 𝑓𝑘,1, 𝑓𝑘,2, . . . , 𝑓𝑘,𝐿]⊺, 𝑘 ∈ [𝐾], (43)
w ≜ [𝑊1,𝑊2, . . . ,𝑊𝐿]⊺, (44)
f ′ ≜ [𝐹 ′

1, 𝐹
′
2, . . . , 𝐹

′
𝐾 ]⊺, (45)

F ≜ [f1, f2, . . . , f𝐾 ]⊺ . (46)

On the other hand, the notation for the encoding coefficients
and the corresponding transmitted symbols during slot 𝑡, will
now take the slightly modified form

e𝑛,𝑡 ≜ [𝑒𝑛,1,𝑡 , 𝑒𝑛,2,𝑡 , . . . , 𝑒𝑛,𝐿,𝑡 ]⊺, 𝑛 ∈ [𝑁], 𝑡 ∈ [𝑇], (47)
z𝑡 ≜ [𝑧1,𝑡 , 𝑧2,𝑡 , . . . , 𝑧𝑁,𝑡 ]⊺, 𝑡 ∈ [𝑇], (48)
z ≜ [z⊺1 , z

⊺
2 , . . . , z

⊺
𝑇
]⊺ (49)

with the corresponding modified

E𝑡 ≜ [e1,𝑡 , e2,𝑡 , . . . , e𝑁,𝑡 ]⊺, 𝑡 ∈ [𝑇] (50)
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Server Nodes

...

Users ...

Master Node

...

Server Nodes

Users

...

Master Node

...

...
...

Fig. 3. (Left. Fully decentralized): Uncoded scheme for point 1 corresponding to (𝛾 = 1/𝑁, 𝛿 = 1). Each of the 𝑁 (𝑞 − 1) = 𝐿 servers, computes one
subfunction, but must send to all 𝐾 users. (Right. Fully centralized): Uncoded scheme for point 2 corresponding to (𝛾 = 1, 𝛿 = 1/𝐾). 𝐾 activated servers,
each computing 𝐿 subfunctions, and each transmitting to a single user.

Unbounded
by

Fig. 4. The figure summarizes the results of Theorem 3. Recall that while 𝑁 is asymptotically large, both 𝐾/𝑁 and log𝑞 (𝐿)/𝑁 are fixed.
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while the corresponding decoding coefficients will now take
the form

d𝑘,𝑡 ≜ [𝑑𝑘,1,𝑡 , 𝑑𝑘,2,𝑡 , . . . , 𝑑𝑘,𝑁 ,𝑡 ]⊺, 𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇], (51)
d𝑘 ≜ [d⊺

𝑘,1, d
⊺
𝑘,2, . . . , d

⊺
𝑘,𝑇

]⊺, 𝑘 ∈ [𝐾] . (52)

We note that the decoding coefficients are decided as a
function of all received signals throughout all 𝑇 transmissions.

As before, (cf. (6)), we have that

f = [f1, f2, . . . , f𝐾 ]⊺w (53)

and now we use

z𝑡 = E𝑡w = [e1,𝑡 , e2,𝑡 , . . . , e𝑁,𝑡 ]⊺w (54)

to denote the 𝑡-th slot transmission vector across all servers.
The set of all transmissions now takes the form

z = Ew (55)

where now the encoding matrix takes the form

E ≜ [E⊺1 ,E
⊺
2 , . . . ,E

⊺
𝑇
]⊺ ∈ F𝑁𝑇×𝐿 . (56)

Upon decoding, each user 𝑘 generates

𝐹 ′
𝑘 = d𝑇𝑘 z (57)

and the cumulative set of all decoded elements across the users
takes the form

f ′ = [d1, d2, . . . , d𝐾 ]⊺z. (58)

Now we note that our decoding matrix

D ≜ [d1, d2, . . . , d𝐾 ]⊺ ∈ F𝐾×𝑁𝑇 (59)

is of dimension 𝐾 × 𝑁𝑇 . Naturally, correct decoding requires

f = f ′ (60)

and after substituting (53), (54), (58) into (60), we can
conclude as before that computing succeeds if and only if

DE = F. (61)

The problem remains similar to the one in the single-shot
scenario, except that now our decoding matrix D ∈ F𝐾×𝑁𝑇

and encoding matrix E ∈ F𝑁𝑇×𝐿 are bigger14 and can have a
certain restrictive structure.

Again similar to before, each server 𝑛 ∈ [𝑁] is asked to
compute all the subfunctions in ∪𝑇

𝑡=1 sup(e𝑛,𝑡 ), and thus equiv-
alently the set of servers Wℓ that must compute subfunction
𝑓ℓ (𝐷ℓ), takes the form

Wℓ = ∪𝑇𝑡=1 sup(E( [(𝑡 − 1)𝑁 + 1 : 𝑡𝑁], {ℓ})⊺),
∀ℓ ∈ [𝐿], ∀𝑡 ∈ [𝑇] . (62)

The following theorem provides an achievable upper bound
on the computation cost 𝛾 of our distributed computing setting
for the multi-shot scenario.

Theorem 4. For the setting of distributed-computing of
linearly-separable functions, with 𝐾 users, 𝑁 servers, 𝐿 sub-
functions and 𝑇 shots, in the limit of large 𝑁 (with 𝐾/𝑁𝑇

14The size of F ∈ F𝐾×𝐿 remains the same, and thus again we have 𝐿 ≤ 𝑞𝐾 .

and 𝑇 fixed) the optimal computation cost 𝛾 is upper bounded
by

𝛾 ≤ 𝑇𝐻−1
𝑞 ( 𝐾

𝑁𝑇
). (63)

Proof. We first note that, directly from (62) and the union
bound, we have that

max
ℓ∈[𝐿 ]

𝜔(E(:, ℓ)) ≥ max
ℓ∈[𝐿 ]

|Wℓ | (64)

and thus our normalized computation cost will be upper
bounded as

𝛾 ≤ max
ℓ∈[𝐿 ]

𝜔(E(:, ℓ))/𝑁.

To bound max
ℓ∈[𝐿 ]

𝜔(E(:, ℓ)), we apply covering code arguments

as in the single-shot case, after though accounting for the di-
mensionality change from having larger matrices. In particular,
this means that now the corresponding covering code C(𝑛, 𝑘)
will have 𝑛 = 𝑁𝑇 and again 𝐾 = 𝑛 − 𝑘 (now we only ask that
𝑁𝑇 ≥ 𝐾). To account for this increase in 𝑛, we note that while
the computation cost must still be normalized by the same
number of servers 𝑁 , when considering our covering code15,
we must consider a radius 𝛾

𝑇
𝑛 =

𝛾

𝑇
𝑁𝑇 = 𝛾𝑁 to guarantee

our computation constraint. In other words, the 𝜌-covering
codes that will guarantee the computation constraint, will be
for 𝜌 = 𝛾/𝑇 . Consequently, combined with the aforementioned
union bound, we now see that 𝜌𝑇 serves as an achievable upper
bound on 𝛾. The rest follows directly from the proof of the
corresponding theorem in the single-shot scenario. □

The following two propositions help us make sense of the
computational effect of having 𝑇 > 1.

Proposition 2. In the distributed computing setting of interest
in the limit of large 𝑇 , the normalized computation cost 𝛾
vanishes to zero.

Proof. The proof is direct once we prove that for any fixed 𝑐,
then

lim
𝑇→∞

𝑇𝐻−1
𝑞 (𝑐/𝑇) = 0. (65)

This property will be proved in Appendix I-A. □

In a system with an unchanged number of users and servers,
the above reveals the notable (unbounded) computational ad-
vantage of allowing a large number 𝑇 of distinct transmissions
per server. This advantage of the multi-shot approach must be
seen in light of the fact that in the single-shot approach, the
computation cost 𝛾 was always bounded below by a fixed
𝛾 ≥ 𝐻−1

𝑞 ( log𝑞 (𝐿)
𝑁

), irrespective of the communication cost.
Consequently we can deduce that the computational gains that
we see in the regime of larger 𝑇 , are — at least partly — a
result of the increased refinement in transmission that a larger
𝑇 allows, and it should not be solely attributed to an increased
communication cost.

15Let us quickly recall that in the previous single-shot scenario, a covering
code with covering radius 𝜌𝑛 = 𝜌𝑁 implied a computation cost of 𝛾𝑁 = 𝜌𝑁

and thus a normalized computation cost of 𝛾 = 𝜌.
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The following proposition discusses the non-asymptotic
computational effect of increasing 𝑇 beyond 1. Recall that
our results hold for sufficiently large 𝐾 and 𝑁 .

Proposition 3. For 𝑞 = 2, then 𝛾 monotonically decreases in
𝑇 , while for 𝑞 > 2 then 𝛾 monotonically decreases in 𝑇 after
any 𝑇 ≥ ⌈ 𝐾

𝑁𝐻−1
𝑞 (1/𝑞) ⌉.

Proof. The proof is based on the fact that the derivative of
𝑓 = 𝑇𝐻−1

𝑞 (𝑐/𝑇), 0 ≤ 𝑐/𝑇 ≤ 1−1/𝑞, with respect to 𝑇 , satisfies

𝜕 𝑓

𝜕𝑇
=

𝐻𝑞 ( 𝑓 /𝑇)

log𝑞
(
𝑓 /𝑇

1− 𝑓 /𝑇 (𝑞 − 1)
) + 𝑓 /𝑇. (66)

This is proved in Appendix I-B. From the above, and after
observing that 𝜕 𝑓

𝜕𝑇
≤ 0 where 0 ≤ 𝐻−1

𝑞 (𝐾/𝑁𝑇) = 𝑓 /𝑇 ≤ 1/𝑞,
we can conclude that since 0 ≤ 𝐻−1

𝑞 (𝐾/𝑁𝑇) = 𝑓 /𝑇 ≤ 1/2 =

1 − 1/𝑞, then for 𝑞 = 2, increasing 𝑇 always strictly reduces
𝛾. On the other hand, when 𝑞 > 2, this reduction happens —
as we see above — when 𝑇 ≥ ⌈𝑇0⌉ for some real 𝑇0 for which
𝐻𝑞 (𝐾/𝑁𝑇0) = 1/𝑞. □

VI. CONCLUSIONS

In this work we have introduced a new multi-user
distributed-computation setting for computing from the broad
class of linearly-separable functions.

Our work revealed the link between distributed computing
and the problem of factorizing a ‘functions’ matrix F into
a product of two preferably sparse matrices, these being the
encoding matrix E and the decoding matrix D. The work
then made the new connection to the area of covering codes,
revealing for the first time the importance of these codes in
distributed computing problems, as well as in sparse matrix
factorization over finite fields. Furthermore, this work here
brought to the fore the concept of partial covering codes,
and the need for codes that cover well smaller subsets of
the ambient vector space. For this new class of codes —
which constitute a generalization of covering codes — we have
provided some extensions and generalizations of well-studied
results in the literature.

Our two metrics — 𝛾, representing the maximum fraction
of all servers that must compute any subfunction, and 𝛿,
representing the average fraction of servers that each user
gets data from — capture the computation and communication
costs, which are often at the very core of distributed computing
problems. The observant reader might notice that the creation
of E entails a complexity equal to that of syndrome decoding.
Our results hold unchanged when we consider — as suggested
before — that the computational cost of evaluating the various
subfunctions, far exceeds all other costs. What the results
reveal is that in the large 𝑁 regime, the optimal compu-
tation cost lies in the region 𝛾 ∈ (𝐻−1

𝑞 ( log𝑞 (𝐿)
𝑁

), 𝐻−1
𝑞 ( 𝐾

𝑁
)),

and that this entails the use of a vanishingly small fraction
𝛿 �

√︃
log𝑞 (𝑁)/𝑁 of all communication resources. What we

show is that our coded approach yields unbounded gains over
the uncoded scenario, in the sense that the ratio 𝛿𝑢𝑛 (𝛾)

𝛿 (𝛾) between
the uncoded and coded communication costs, is unbounded.

We have also studied the multi-shot setting, where we have
explored the gains over the single-shot approach. What we
now know is that the gains from increasing 𝑇 , are unbounded
(and strictly increasing) in the regime of large 𝑇 , whereas in
the regime of finite 𝑇 , the gains are strictly increasing after
some threshold value of 𝑇 . We are thus able to conclude, as
suggested before, that computation reductions due to larger 𝑇 ,
are — at least partly — a result of the increased refinement in a
transmission that a larger 𝑇 allows, and that these gains should
not be interpreted as being purely the result of an increased
communication load.

Our work naturally relates partly to the recent results in [27]
that considered the single-user linearly-separable distributed
computing scenario, where a single user may request multiple
linearly-separable functions. In this setting in [27], as well as
in the extended works in [65] and [66], a key ingredient is the
presence of straggling servers, while another key ingredient
is that the subfunction-assignment is fixed and oblivious of
the actual functions requested by the user. In this context,
the coefficients of the functions are assumed to be distributed
uniformly and i.i.d, and the decodability is probabilistic. There
is also an interesting connection (cf. [67], [68]) between com-
pressed sensing and coding theory. Naturally this connection
entails no link to covering codes, as the problem of compressed
sensing relates to decodability and is very different from the
existence problem that we are faced with.

As suggested above, our setting can apply to a broad range
of ‘well-behaved’ functions, and thus can enjoy several use
cases, some of which are suggested in our introduction (see
also [27] for additional motivation of the linearly separable
function computation problem). When considering problems
over the real numbers, we may consider a very large 𝑞. An
additional new scenario that our work can extend is the so-
called hierarchical or tree-like scenario introduced in [45],
[69] whose purpose is to ameliorate bandwidth limitations and
straggler effects in distributed gradient coding [25]. In this
hierarchical setting, each user16 is connected to a group of
servers in a hierarchical manner17 that allows for a hierarchical
aggregation of the sub-gradients. Our approach can extend the
hierarchical model by allowing the users to connect to any
subset of servers, as well as by allowing them to deviate from
the single-shot assumption.

Additional considerations that involve stragglers, channel
unevenness or computational heterogeneity, are all interesting
research directions.

16In [45], these users are referred to as master nodes.
17In particular, each user computes a linearly separable function based on

its locally available data, and then sends this to the ‘Aggregator’ that finally
computes the gradient.
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APPENDIX A
PROOF OF CONVERSE IN THEOREM 2

To prove the converse in (39), we modify the sphere-
covering bound for the case of partial covering codes. We
wish to show that for a set X that satisfies X ⊆ F𝑛𝑞 , |X| =
𝑞𝑘𝐿, 𝑘 ∈ N, a (𝜌,X)-partial covering code C(𝑘, 𝑛) has to
satisfy

log𝑞 (𝐿) ≤ log𝑞 (𝑉𝑞 (𝑛, 𝜌)). (67)

This is easy to show because having 𝑞𝑘 codewords directly
means that the maximum number of points they can jointly
𝜌𝑛-cover is equal to 𝑞𝑘𝑉𝑞 (𝑛, 𝜌). This in turn implies that

𝐿𝑞𝑘 ≤ 𝑉𝑞 (𝑛, 𝜌)𝑞𝑘 (68)

which yields (67) after taking the logarithm on both sides of
the inequality.

Now letting the above X be the X found in Theorem 1,
we note that if |X| = 𝐿𝑞𝑘 then X = X𝐹 . Then by substituting
𝑁 = 𝑛, 𝐾 = 𝑛−𝑘 , we see that log𝑞 (𝐿) ≤ log𝑞 (𝑉𝑞 (𝑁, 𝜌)). Since
𝑞𝑁𝐻𝑞 (𝜌)−𝑜 (𝑁 ) ≤ 𝑉𝑞 (𝑁, 𝜌) ≤ 𝑞𝑁𝐻𝑞 (𝜌) , we can conclude that
log𝑞 (𝐿) ≤ 𝑁𝐻𝑞 (𝜌) and thus that 𝐻−1

𝑞 ( log𝑞 (𝐿)
𝑁

) ≤ 𝜌, which
concludes the proof. □

APPENDIX B
PROOF OF ACHIEVABILITY IN THEOREM 2

Directly from [64], we know that there exists at least one
𝜌-covering code CX (𝑘, 𝑛) that satisfies

𝑛 − 𝑘 ≥ log𝑞 (𝑉𝑞 (𝑛, 𝜌)) − 2 log2 (𝑛) + log𝑞 (𝑛) −𝑂 (1). (69)

Then applying Theorem 1 with D = HC , 𝑁 = 𝑛, 𝐾 = 𝑛 − 𝑘
and X = F𝑛, allows us to conclude that there exists a
feasible scheme for the distributed computing problem, with
computation cost 𝛾 = 𝜌, that satisfies

𝐾/𝑁 ≥ log𝑞 (𝑉𝑞 (𝑁, 𝜌))/𝑁
− 2 log2 (𝑁)/𝑁 + log𝑞 (𝑁)/𝑁 −𝑂 (1)/𝑁.

Combining this with the fact that 𝑞𝑁𝐻𝑞 (𝜌)−𝑜 (𝑁 ) ≤ 𝑉𝑞 (𝑁, 𝜌) ≤
𝑞𝑁𝐻𝑞 (𝜌) , yields

𝐾/𝑁 ≥ 𝐻𝑞 (𝜌) − 𝜖 (𝑁) (70)

which tells us that 𝜌 ≤ 𝐻−1
𝑞 (𝐾/𝑁+𝜖 (𝑁)), which in turn proves

the result in the limit of large 𝑁 . □

APPENDIX C
PROOF OF COROLLARY 1

We first start with the following lemma which proves the
existence of a (𝜌,X)-partial covering linear code C, for a
properly-sized set X ⊆ F𝑛 that encloses B𝑞 (0, 𝜌). Before
proceeding with the lemma, we note that the lemma is an
outcome of involving a linear greedy algorithm. Let us also
briefly recall from Theorem 2 and its proof in Appendix A,
that log𝑞 (𝐿) ≤ log𝑞 (𝑉𝑞 (𝑛, 𝜌)).

Lemma 1. Let X ⊆ F𝑛𝑞 be a set of size |X| = 𝐿 ′𝑞𝑘 that
satisfies X ⊇ B𝑞 (0, 𝜌). Then as long as

log𝑞 (𝐿 ′) ≥ log𝑞 (𝑉𝑞 (𝑛, 𝜌)) (71)

− 2 log2 (𝑛) + log𝑞 (𝑛) −𝑂 (1) (72)

there exists a (𝜌,X)-partial covering code.

Proof. The proof is found in Appendix D. □

With this lemma in place, let us define A𝑚 ≜ {X ⊆
F𝑛 | |X| = 𝑚,X ⊇ B𝑞 (0, 𝜌)} to be the family of all subsets
of F𝑛 which have cardinality 𝑚 and which enclose B𝑞 (0, 𝜌).
Consider the following algorithm.

1) Assign 𝑚 = 𝐿𝑞𝑁−𝐾 .
2) For each X in A𝑚, find a (𝜌,X)-partial covering code

CX via (the algorithm corresponding to) Lemma 1.
3) For each X in A𝑚, set D = HCX , and create XF,D = {x ∈
F𝑁 |Dx = F(:, ℓ), for some ℓ ∈ [𝐿]}.

4) If there exists an X in A𝑚, for which X ⊆ XF,D, then
output this X and its corresponding D = HCX from the
above step.

5) If there exists no X in A𝑚 for which X ⊆ XF,D, then
increase 𝑚 by one and go back to step 2.

Let us continue now by supposing that the scheme termi-
nates, outputting D and X at the fourth step, before 𝑚 reaches
𝑚 = 𝑞𝑁 . Lemma 1, which guarantees (cf. (72)) that

log𝑞 ( |X|𝑞−𝑘) ≥ log𝑞 (𝑉𝑞 (𝑛, 𝜌)) (73)

− 2 log2 (𝑛) + log𝑞 (𝑛) −𝑂 (1) (74)

also guarantees that
log𝑞 ( |X|)−(𝑁 − 𝐾)

𝑁
≥ log𝑞 (𝑉𝑞 (𝑁, 𝜌))/𝑁 (75)

− 2 log2 (𝑁)/𝑁 (76)
+ log𝑞 (𝑁)/𝑁 −𝑂 (1)/𝑁 (77)

where this last inequality holds after setting 𝑁 = 𝑛, 𝐾 = 𝑛− 𝑘 ,
and after we divide both sides of (73) by 𝑁 , and then apply
Theorem 1 after recalling that X is indeed 𝜌𝑛-covered by CD.
Applying that 𝑞𝑁𝐻𝑞 (𝜌)−𝑜 (𝑁 ) ≤ 𝑉𝑞 (𝑁, 𝜌) ≤ 𝑞𝑁𝐻𝑞 (𝜌) into (75),
gives

(𝐾
𝑁

− 1 +
log𝑞 ( |X|)

𝑁
) ≥ 𝐻𝑞 (𝜌) − 𝜖 (𝑁) (78)

telling us that the algorithm yields a scheme with computation
cost18

𝛾 = 𝜌 ≤ 𝐻−1
𝑞 (𝐾/𝑁 − 1 + log𝑞 ( |X|/𝑁) + 𝜖 (𝑁)) (79)

18Here it is worth elaborating on a fine point regarding our metric. As
the reader may recall, 𝛾 describes the fraction of active (non-idle) servers
that compute any subfunction. Then the observant reader may wonder if our
proposed scheme indeed activates all existing servers. This corresponds to
having a scheme with an E matrix that has no all-zero rows. In the (rare)
degenerate scenario where a row of E may contain only zeros, then our derived
computation cost 𝛾 would — by definition — have to be recalculated (to
account for having idle servers) and would be higher than stated here. To
account for this degenerate case, we add a small step in our algorithm which
reduces the recorded computation cost by guaranteeing that all servers are
active. This step simply says that if a row in E contains only zeros, then this
row is substituted by an arbitrary non-zero row (let’s say, the first row) of
E, except that, if that (first) row contains a non-zero element in the position
ℓmax = arg max 𝜔 (E(:, ℓ)) , then this element is substituted by a zero. Then
the two servers (the first server and the previously idle server) will split their
communication load, except that the server corresponding to the originally all-
zero row, will not send any linear combination that involves 𝑤ℓmax . This small
modification guarantees that whatever 𝛾 we declare here as being achievable,
is indeed achievable even in degenerate scenarios. Finally, this degenerate
scenario does not affect the algebraic converse.
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which matches the stated result in the regime of large 𝑁 . Note
that when X = XF,D, then naturally |X| = 𝐿𝑞𝑁−𝐾 which,
directly from (79), yields 𝛾 = 𝜌 = 𝐻−1

𝑞 (log𝑞 (𝐿)/𝑁 + 𝜖 (𝑁)).
At the other extreme, when the algorithm terminates at the
very end when X = F𝑁 , then the corresponding code will
be the standard 𝜌-covering code (see Appendix B), and the
computation cost will correspond to 𝛾 = 𝐻−1

𝑞 (𝐾/𝑁). □

APPENDIX D
PROOF OF LEMMA 1

We here start by employing the recursive construction
approach of Cohen and Frankl in [64]. This recursive approach
builds an (𝑛, 𝑗 + 1) code C𝑗+1 from a previous (𝑛, 𝑗) code
C𝑗 , by carefully adding a vector x on the basis of C𝑗 , so
that now the new basis span is bigger. Our aim will be to
recursively construct ever bigger codes that cover an ever
increasing portion of our set X.

Let us start by setting C0 = {0}. Let us then make the
assumption that the aforementioned integer 𝐿 ′ in Lemma 1,
takes the form

𝐿 ′ = 𝑞𝑛−𝑘
′

(80)

for some real 𝑘 ′ ≥ 𝑘 . Let 𝑄(C) denote the set of points in X
that are not 𝜌𝑛-covered by C, and let

𝑞(C) ≜ |𝑄(C)|
𝑞𝑛+𝑘−𝑘′

(81)

where naturally

|𝑄(C0) | = 𝑞𝑛+𝑘−𝑘
′ −𝑉𝑞 (𝑛, 𝜌) (82)

and

𝑞(C0) = 1 −𝑉𝑞 (𝑛, 𝜌)𝑞−(𝑛+𝑘−𝑘
′) . (83)

To proceed, we need the following lemma from [64].

Lemma 2 ( [64]). Let Y ⊆ F𝑛,Z ⊂ F𝑛, and consider Y+x =

{y + x : y ∈ Y} for some x ∈ F. Then

E( | (Y + x) ∩ Z|) = 𝑞−𝑛 |Y||Z| (84)

where the average is taken, with uniform probability, over all
x ∈ F𝑛.

Now, we develop the proof in two parts.
1) Binary Case: The proof for 𝑞 = 2 where 𝑘 = 𝑘 ′

(corresponding to the singular case of maximal 𝐿 = 2𝐾 )
has been presented in [70] and [64] in two different ways.
We will modify the latter approach to establish our claim
for any 𝑘 ′ ≥ 𝑘 (which will allow us to also handle 𝐿

values that are smaller than 2𝐾 ). First let us easily deduce
from Lemma 2 that there exists an x ∈ F𝑛 for which
| (Y + x) ∩Z| ≤ |Y | |Z |

𝑞𝑛
. Now let us set Y = Z = 𝑄(C𝑗 ),

and let us append a vector x to the generator matrix of C𝑗
to create C𝑗+1, where x is chosen to minimize |Q(C𝑗+1) |.
Now we can directly verify that

|Q(C𝑗+1) | = |Q(C𝑗 ) ∩ Q(C𝑗 + x) | (85)
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= |Q(C𝑗 ) ∩ (Q(C𝑗 ) + x) | (86)

≤ |Q(C𝑗 ) |2/2𝑛 (87)

which implies that

𝑞(C𝑗+1) ≤ 𝑞(C𝑗 )22𝑘−𝑘
′ ≤ 𝑞(C𝑗 )2 (88)

where the latter inequality holds because 𝑘 ′ ≥ 𝑘 . Com-
bining (83) and (88), gives

𝑞(C𝑘) ≤ 𝑞(C0)2𝑘 ≤ (1 −𝑉𝑞 (𝑛, 𝜌)2−(𝑛−𝑘
′+𝑘) )2𝑘 (89)

where the latter inequality again holds due to the fact that
𝑘 ′ ≥ 𝑘 . Now let us continue this recursion until 𝑘 is such
that

2𝑘 = ⌈(𝑛 − 𝑘 ′ + 𝑘)2(𝑛−𝑘′+𝑘) ln(2)/𝑉2 (𝑛, 𝜌)⌉ (90)

in which case — given that (1 − 1
𝑥
)𝑥 ≤ 𝑒−1, ∀𝑥 ≥ 1 —

we get that

𝑞(C𝑘) < 2−(𝑛+𝑘−𝑘
′) (91)

which automatically yields that 𝑄(C𝑘) = 0. This, again
with the choice of 𝑘 in (90), tells us that for a set X
that satisfies B𝑞 (0, 𝜌) ⊆ X ⊆ F𝑛𝑞 , |X| = 𝐿𝑞𝑘 , then
indeed there exists a (𝜌,X)-partial covering code C(𝑛, 𝑘)
satisfying

0 ≤ log𝑞 (𝐿/𝑉𝑞 (𝑛, 𝜌)) + 2 log2 (log𝑞 ( |X|)) (92)

− log𝑞 (log𝑞 ( |X|)) +𝑂 (1). (93)

This conclusion can be considered as a tighter version of
Lemma 1. After a few very basic algebraic manipulations
we get the proof of Lemma 1, for the binary case of 𝑞 = 2.

2) Non-Binary Case: Considering first an arbitrary Z ⊂ F𝑛,
we have that

E(1 − (𝑞−𝑛+𝑘′−𝑘 | (Z + x) ∪ Z|)) (94)

= E(1 − 𝑞−𝑛+𝑘′−𝑘 (( | (Z + x) | + |Z|) (95)
− |(Z + x) ∩ Z|)) (96)

= E(1 − 2𝑞−𝑛+𝑘
′−𝑘 |Z| + 𝑞−𝑛+𝑘′−𝑘 | (Z + x) ∩ Z|) (97)

(𝑎)
= 1 − 2𝑞−𝑛+𝑘

′−𝑘 |Z| + 𝑞−2𝑛+𝑘′−𝑘 |Z|2 (98)
(𝑏)
≤ 1 − 2𝑞−(𝑛−𝑘

′+𝑘) |Z| + 𝑞−2(𝑛−𝑘′+𝑘) |Z|2 (99)

= (1 − |Z|
𝑞 (𝑛−𝑘′+𝑘)

)2 (100)

where (a) is directly from Lemma 2, and where (b) holds
since 𝑘 ′ ≥ 𝑘 . Similarly to the binary case, we begin with
C0 = {0}, and again recursively extend as

C𝑗+1 =< C𝑗 ; x > (101)

where x is chosen so that |Z| is maximized. We do so,
after again setting Z = 𝑄(C𝑗 ).
At this point, from (100) we have that

𝑞(C𝑗+1) ≤ 𝑞(C𝑗 )2. (102)

We now consider the following lemma from [64].
Lemma 3. ( [64, Lemma 2]) For any fixed Z ⊆ X ⊂ F𝑛
where |Z|𝑞−(𝑛−𝑘′+𝑘) = 𝜖 < (𝑞(𝑛 − 𝑘 ′ + 𝑘))−1, then

Ex∈F𝑛 (1 − 𝑞−(𝑛−𝑘′+𝑘) | ∪𝛼∈F𝑞 Z + 𝛼x|) ≤ (103)

(1 − 𝜖)𝑞 (1−(2(𝑛−𝑘′+𝑘))−1) . (104)

Continuing from Z = X ∩ (∪c∈C𝑗B𝑞 (c, 𝜌)), where

|Z| < 1
𝑛
𝑞 (𝑛−𝑘

′+𝑘−1) , 𝑞(C𝑗+1) ≤ 𝑞(C𝑗 )𝑞 (1−(2(𝑛−𝑘
′+𝑘)−1))

we have that

𝑞(C𝑗+1) (105)

≤ (1 − 𝑞𝑛−𝑘′+𝑘𝑉𝑞 (𝑛, 𝜌)) (𝑞 (1−(2(𝑛−𝑘
′+𝑘))−1)) 𝑗 (106)

≤ (1 − 𝑞𝑛+𝑘−𝑘′𝑉𝑞 (𝑛, 𝜌))𝑒
−0.5𝑞 𝑗 (107)

since (1 − (2(𝑛 − 𝑘 ′ + 𝑘))−1) ≥ (1 − (2(𝑛 − 𝑘 ′ +
𝑘))−1)𝑛−𝑘′+𝑘−1 ≥ 𝑒−0.5. For

𝑗1 ≜ arg min
𝑗
{𝑞(C𝑗 ) ≤ 1 − (𝑞(𝑛 + 𝑘 − 𝑘 ′))−1} (108)

we see that

𝑗1 ≤ 𝑛 − log𝑞 (𝑞𝑘
′−𝑘𝑉𝑞 (𝑛, 𝜌)) (109)

− log𝑞 (𝑛 + 𝑘 − 𝑘 ′) +𝑂 (1) (110)

where the inequality holds by first observing that
Lemma 3 yields

1 − (𝑞(𝑛 − 𝑘 ′ + 𝑘))−1 (111)
≤ 𝑞(C𝑗 ) (112)

≤ (1 − 𝑞 (𝑛−𝑘′+𝑘)𝑉𝑞 (𝑛,𝜌) )𝑞 𝑗1−1𝑒−1/2
(113)

and then by comparing the upper and lower bounds
in (113).
We now have an (𝑛, 𝑗1) code C and we have (102). We are
now looking for the minimum number 𝑗2 of generators x
that have to be appended to the generator of C in order
to get a (𝑛, 𝑗1 + 𝑗2) code with 𝑞(C𝑗1+ 𝑗2 ) ≤ 𝑞−(𝑛−𝑘

′+𝑘) . We
note that 𝑞(C𝑗1 ) ≤ 1 − (𝑞(𝑛 − 𝑘 ′ + 𝑘))−1, so by (113)
we only need to ensure that (1 − (𝑞(𝑛 − 𝑘 ′ + 𝑘))−1)2 𝑗2 ≤
𝑞−(𝑛−𝑘

′+𝑘) , which can be achieved by using

𝑗2 = 2 log2 (𝑛 − 𝑘 ′ + 𝑘) +𝑂 (1). (114)

Hence for 𝑘 = 𝑗1 + 𝑗2, there indeed exist (𝑛, 𝑘) codes
with normalized covering radius no bigger than 𝜌. Ap-
plying (109), (114), (80), and the fact that |X| = 𝐿𝑞𝑘 ,
proves (72) and thus proves Lemma 1.

□

APPENDIX E
PROOF OF THEOREM 3

We quickly note that the converse (lower bound on 𝛾) holds
directly from the converse arguments in Theorem 2.

Let us start with the following definition.

Definition 2. Let 𝜌 ∈ (0, 1 − 1
𝑞
], and let 𝜏 ∈ (0, 1]. A code

C ⊆ F𝑛 is said to be a (𝜌, 𝜏)-partial covering code if there
exists a set X ⊆ F𝑛, with 1

𝑛
log𝑞 ( |X|) = 1 − 𝜏, that is 𝜌-

covered by C.

We now present a theorem that extends the famous Theorem
of Blinovskii in [61], which proved that almost all linear codes
satisfy the sphere-covering bound. We recall that C𝑘,𝑛 denotes
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the ensemble of all linear codes generated by all possible 𝑘×𝑛
matrices in F𝑘×𝑛.

Theorem 5. Let 𝜌 ∈ (0, 1 − 1
𝑞
]. Then there exists an infinite

sequence 𝑘𝑛 that satisfies

𝑘𝑛

𝑛
≤ 1 − 𝜏 − 𝐻𝑞 (𝜌) +𝑂 (𝑛−1 log𝑞 (𝑛)) (115)

for 𝜏 ∈ [0, 1 − 𝐻𝑞 (𝜌) − 𝑘
𝑛
] so that the fraction of codes C𝑛 ∈

C𝑘𝑛 ,𝑛 that are (𝜌, 𝜏)-partial covering, tends to 1 as 𝑛 grows
to infinity. Thus in the limit of large 𝑛, almost all codes of rate
less than 1 − 𝜏 − 𝐻 (𝜌) will be (𝜌, 𝜏)-partial covering.

Proof. The proof can be found in Appendix F. □

Now let us design such covering codes. In the following we
will consider the set of codes in C𝑘𝑛 ,𝑛 that are (𝜌, 𝜏)-partial
covering, for the claimed sequence 𝑘𝑛 of Theorem 5, and for
some real 𝜏. We will also consider 𝑔(𝑛) to be the fraction of
such (𝜌, 𝜏)-partial covering codes among all codes in C𝑘𝑛 ,𝑛.
The scheme design is defined by the following steps.

1) Assign 𝑚 = 𝐿.
2) Set 𝜏 =

𝐾−log𝑞 (𝑚)
𝑁

.
3) Noticing that the value

𝑚𝑛 ≜ 𝑔(𝑛)𝑞𝑘𝑛𝑛 (116)

serves as a lower bound on the number of (𝜌, 𝜏)-partial
covering codes in the ensemble C𝑘𝑛 ,𝑛, we now create B ≜
{C1, C2, . . . , C𝑚𝑛 } to be the set of the first 𝑚𝑛 such codes.
Now let

D𝑛 ≜


HC1

HC2
. . .

HC𝑚𝑛


(117)

and accordingly set 𝐾 = 𝑚𝑛 (𝑛 − 𝑘𝑛), and 𝑁 = 𝑚𝑛𝑛.
Now design CW𝑛

= [C1, C2, . . . , C𝑚𝑛 ], and then create
the set

XF,D ≜ {x ∈ F𝑁 |Dx = F(:, ℓ), for some ℓ ∈ [𝐿]}. (118)

Then create the set

X ≜ {x = [x1, x2, . . . , x𝑚𝑛 ] | x𝑖 ∈ X𝑖} (119)

where X𝑖 , 𝑖 ∈ [𝑚𝑛], is the set of all 𝑛-length vectors that
are 𝜌𝑛-covered by C𝑖 . Then note that

|X𝑖 | ≥ 𝑞𝑛(1−𝜏) ,∀𝑖 ∈ [𝑚𝑛] (120)

because of Definition 2. We now note that for any x ∈ X,
it is the case that

d(x, C)/𝑁 =

𝑚𝑛∑︁
𝑖=1

d(x𝑖 , C𝑖)/𝑁 ≤
𝑚𝑛∑︁
𝑖=1

𝜌𝑛

𝑚𝑛𝑛
(121)

=

𝑚𝑛∑︁
𝑖=1

𝜌
1
𝑚𝑛

= 𝜌 (122)

which means that CD𝑛 is also a (𝜌,X)-partial covering
code. Now if X ⊉ XF,D, then 𝑚 has to be increased by
one, and the procedure starts again from Step 2.

4) Let us define 𝑘 ′𝑛 ≜ 𝑛 − 𝑘𝑛. From (115), we know that

𝑘 ′𝑛
𝑛

≥ 𝜏 + 𝐻𝑞 (𝜌) −𝑂 (𝑛−1 log𝑞 (𝑛)). (123)

We now see that 𝑅 ≜ 𝐾
𝑁

=
𝑘′𝑛
𝑛

since 𝐾 = 𝑘 ′𝑛𝑚𝑛, 𝑁 = 𝑛𝑚𝑛.
Thus, directly from the above, we have that

𝐾/𝑁 = 𝑅 = 𝐻𝑞 (𝜌) + 𝜏 − 𝜖 (𝑁). (124)

We note that as 𝑛 (and thus 𝑁) goes to infinity, the term
𝑂 (𝑛−1 log𝑞 (𝑛)) vanishes, and thus from the above we
have that

𝜌 = 𝐻−1
𝑞 (

log𝑞 (𝑚)
𝑁

+ 𝜖 (𝑁)). (125)

We also have that
𝜔(D𝑛)
𝐾

(𝑎)
≤ 𝑚𝑛𝑛𝑘

′
𝑛

𝑚𝑛𝑘
′
𝑛

= 𝑛 (126)

where (a) holds since 𝜔(D𝑛) = 𝑚𝑛𝑘𝑛𝑛 is the maximum
number of nonzero elements that D can have, due to the
block-diagonal design.
After taking the logarithm on both sides of the above,
and since 𝑁 = 𝑚𝑛𝑛 and 𝑘𝑛 = (1 − 𝑅)𝑛, and after
considering (116), we have that

log𝑞 (𝑛) + 𝑛2 (1 − 𝑅) + log𝑞 (𝑔(𝑛)) = log𝑞 (𝑁) (127)

and thus we have that 𝑛2 (1 − 𝑅) ≤ log𝑞 (𝑁) and 𝑛 ≤√︃
log𝑞 (𝑁 )
(1−𝑅) . Combining this with (126) and Theorem 1, we

have that

Δ ≤

√︄
log𝑞 (𝑁)
(1 − 𝑅) (128)

where, as mentioned before, 𝑅 is constant.
We can also see that the above design terminates, since
reaching 𝑚 = 𝑞𝐾 implies that 𝜏 = 0. Then we will have
X𝑖 = F𝑛 since |X𝑖 | = 𝑞𝑛 from Definition 2. Therefore
from (119), we will have that X = F𝑁 = F𝑚𝑛𝑛, which
means that CD𝑛 (𝑁, 𝑁 − 𝐾) is a 𝜌-covering code, and that
X ⊇ XF,D, and thus the scheme would terminate at Step 4 with
𝛾 = 𝜌 = 𝐻−1

𝑞 ( 𝐾
𝑁
+ 𝜖 (𝑁)) from (125), and with communication

cost as shown in (128). □

APPENDIX F
PROOF OF THEOREM 5

Before offering the formal proof, we provide a quick sketch
of the proof to help the reader place the different steps in
context.

First we consider the ensemble19 of codes C𝑘∗ ,𝑛, and we
prove that with a consistent enumeration of codewords, each
nonzero point in F𝑛 has the same chance to be a codeword of
a certain index, as we move across the code ensemble.

Second, we pick a code C ∈ C𝑘∗ ,𝑛 at random, and fix it.
Then, based on this code, and for a specific choice of 𝜏 (to be
described later on), we introduce a random so-called ‘covered
set’ XC of size 2𝑛(1−𝜏) that includes code C.

19The details about the choice of 𝑘∗ will be described later on.
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Then we will see that every point in F𝑛\B(0, 𝜌) has an equal
probability — as we go through the choices of C ∈ C𝑘∗ ,𝑛 — of
belonging to this subset. To analyze the 𝜌-coverage of points
inside XC , we derive P(c𝑖 = x|x ∈ XC), where c𝑖 describes the
codeword indexed by a fixed 𝑖, as we move across the codes
(and the corresponding generator matrices) in the ensemble.

Toward showing that XC is covered by C, we first note that
B(0, 𝜌) is covered since 0 ∈ C. To prove that the remaining
part, XC\B(0, 𝜌), is also covered by C, we prove that if codes
in the ensemble are sufficiently large, then there is, for almost
all codes C, a large number (polynomial in 𝑛) of codewords
that covers each specific point in x ∈ XC . With this in place,
we will be able to conclude that almost all codes come close
to being (𝜌, 𝜏)-partial covering.

Finally, we utilize a linear greedy algorithm and successive
appending of a very small number of ⌊log𝑞 𝑛(1 − 𝜏)⌋ carefully
selected vectors (cf. Lemma 2) to each of these almost (𝜌, 𝜏)-
partial covering codes, to render them fully (𝜌, 𝜏)-partial
covering codes.

We proceed with the formal proof.
Let 𝑘∗ ≜ 𝑘 − ⌈log𝑞 (𝑛(1 − 𝜏))⌉, 𝑘, 𝑛 ∈ N, 0 ≤ 𝜏 ≤ 1

and let C𝑘∗ ,𝑛 be the ensemble of codes generated by 𝑘∗ × 𝑛
generator matrices whose elements are chosen randomly and
independently with probability 1

𝑞
from F𝑞 . Naturally, any fixed

non-zero linear combination of rows of the generator matrix,
will generate — as we move across the ensemble of generator
matrices — all possible 𝑞𝑛 vectors in F𝑛. The zero codeword
corresponds to the void linear combination of rows, and is
present in all generated codes. Also let us assume a consistent
enumeration of the codewords, in the sense that a word’s
index is defined by the linear combination of rows of the
generator matrix, that generate that codeword, in each code.
For example, the word indexed by 5, will vary in value across
the different codes, but it will always be defined as the output
of a specific (the fifth) linear combination of the corresponding
generator matrix. The first codeword in all codes will be the
zero word. We proceed with the following lemma.

Lemma 4. For any fixed 𝑖 ∈ [2 : 2𝑘∗ ], and for any fixed
x ∈ F𝑛, then

P(c𝑖 = x) = 𝑞−𝑛 (129)

where the probability is over all codes C ∈ C𝑘∗ ,𝑛.

Proof. The proof is presented in Appendix H-A. □

Let us set 𝜏 ∈ [0, 1 − 𝐻𝑞 (𝜌) − 𝑘∗/𝑛], and let us note that
for sufficiently20 large 𝑛, we can guarantee that

𝑞𝑛(1−𝜏) ≥ 𝑉𝑞 (𝑛, 𝜌) + 𝑞𝑘
∗
. (130)

Let us now go over the ensemble of codes C ∈ C𝑘∗ ,𝑛, and
for each code, let us create the covered set XC such that

|XC | = 𝑞𝑛(1−𝜏) (131)
C ∪ B(0, 𝜌) ⊆ X𝐶 ⊆ F𝑛. (132)

We can see that (130) is a necessary condition for the
above to happen. The procedure for designing XC , simply

20We quickly remind the reader that our results here will hold for suffi-
ciently large 𝑛.

starts by taking the union C ∪ B(0, 𝜌), and then proceeds
by appending on this union, a sufficiently large number of
vectors, chosen uniformly and independently at random from
F𝑛\C ∪ B(0, 𝜌). The following lemma simply says that every
point x ∈ F𝑛\B(0, 𝜌) has an equal probability — as we go
through the choices of C ∈ C𝑘∗ ,𝑛 — of belonging to this subset
XC .

Lemma 5. For any fixed x ∈ F𝑛, then

P(x ∈ XC) =
{

1 𝜔(x) ≤ 𝜌𝑛
𝑞𝑛(1−𝜏)−𝑉 (𝜌,𝑛)
𝑞𝑛−𝑉 (𝜌,𝑛) 𝜔(x) > 𝜌𝑛.

(133)

Proof. The proof is presented in Appendix H-B. □

With the above lemma in place, we will now calculate the
following conditional probability. The following asks us to first
pick and fix a vector x ∈ F𝑛, and then pick an index 𝑖 ∈ [1 :
2𝑘∗ ]. Recall — from the above discussion on the consistent
enumeration of codewords — that this index will define a
codeword c𝑖 , which changes as we go across all the codes C
in the ensemble C𝑘∗ ,𝑛. The following conditional probability
is again calculated over the code ensemble.

Lemma 6. Pick any vector x ∈ F𝑛 and any index 𝑖 ∈ [1 : 2𝑘∗ ].
Then

P(c𝑖 = x|x ∈ XC) (134)

=


0 𝑖 = 1, x ≠ 0
1 𝑖 = 1, x = 0
𝑞−(𝑛) 𝑖 ∈ [2 : 𝐾∗], x ≠ 0, 𝜔(x) ≤ 𝜌𝑛

𝑞−𝑛(1−𝜏) Z (𝑛) 𝑖 ∈ [2 : 𝐾∗] and 𝜔(x) > 𝜌𝑛

(135)

where the term Z (𝑛) converges to 1 as 𝑛 approaches to infinity.

Proof. The proof is presented in Appendix H-C. □

Let us now discuss the coverage of any vector x ∈ XC , as we
go along the ensemble C ∈ C𝑘∗ ,𝑛. First of all, it is clear that any
x ∈ B(0, 𝜌) is both 𝜌-covered by the code C (because 0 ∈ C)
as well as is included in XC (because x ∈ B(0, 𝜌) ⊂ XC).
Thus for each code C ∈ C𝑘∗ ,𝑛, for the purposes of the current
proof, we can focus on the set

X′
C ≜ XC\B(0, 𝜌). (136)

For every x ∈ X′
C , let us define the random variable [x,𝑖

which takes the value 1 if c𝑖 𝜌𝑛-covers x, and which takes the
value 0 otherwise. Thus

[x ≜
2𝑘∗∑︁
𝑖=1

[x,𝑖 (137)

describes the number of codewords that cover x ∈ X′
C . For any

fixed x ∈ F𝑛, the following lemma describes the conditional
average [x, where again the average is taken over the code
ensemble.

Lemma 7. For any fixed x ∈ F𝑛, then

E([x |x ∈ X′
C) = |{0} ∩ B(x, 𝜌) | × 1 (138)

+ (𝑞𝑘∗ − 1) [| (B(0, 𝜌)\{0}) (139)
∩ B(x, 𝜌) |𝑞−𝑛 (140)
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+ |B(x, 𝜌)\B(0, 𝜌) |𝑞−𝑛(1−𝜏) Z (𝑛)] (141)

where again Z (𝑛) → 1 as 𝑛 increases.

Proof. The proof is in Appendix H-D, and it involves an
extension of Blinovskii’s Theorem [61], from evaluating E([x)
to evaluating the conditional E([x |x ∈ X′

C). □

Before proceeding, we need the following lemma which is
an extension of a related lemma found in [61]. The following
considers as before the set X′

C ≜ XC\B(0, 𝜌), and considers
again the variance and expectation, over the aforementioned
code ensemble.

Lemma 8. For any fixed x ∈ F𝑛, then

𝑉𝑎𝑟 ([x |x ∈ X′
C)

E([x |x ∈ X′
C)𝑞2 ≤ 1. (142)

Proof. The proof is presented in Appendix H-E. □

Combining (142) with Chebyshev’s inequality, gives

P( |[x − E([x |x ∈ X′
C) | (143)

> 𝑞 𝜖 +1
√︃
E([x |x ∈ X′

C)
���x ∈ X′

C) (144)

<
𝑉𝑎𝑟 ([x |x ∈ X′

C)
𝑞2𝜖 +2E([x |x ∈ X′

C)
≤ 𝑞−2𝜖 . (145)

Our aim is to show that, for any x ∈ X′
C , — under some

conditions on 𝑘∗ and 𝜖 — [x will be, with high probability,
bigger than 0 which in turn implies that any x ∈ X′

C will, with
high probability, be covered by C. To see this, we continue
from (145). We first see from (141) that E([x |x ∈ X′

C) > 0.
Hence whenever we have [x > E([x |x ∈ X′

C), we also have
that [x > 0. Let us now focus on the remaining scenario where
[x ≤ E([x |x ∈ X′

C). In this case, from (145), we have that

P
(
[x ≥ E([x |x ∈ X′

C) (146)

− 𝑞 𝜖 +1
√︃
E([x | x ∈ X′

C)
��x ∈ X′

C)) (147)

≥ 1 − 𝑞−2𝜖 . (148)

We also have that

P
(
[x > 0 | x ∈ X′

C
)

(149)
≥ P

(
[x ≥ E([x |x ∈ X′

C) (150)

− 𝑞 𝜖 +1
√︃
E([x | x ∈ X′

C) | x ∈ X′
C
)

(151)

under the assumption that

𝛽(𝜖) ≜ E([x |x ∈ X′
C) − 𝑞

𝜖 +1
√︃
E([x |x ∈ X′

C) > 0. (152)

This assumption will be guaranteed — as we will see later on
— by a proper choice of 𝑘∗ and 𝜖 .

Now combining (148) with (151), we will show that

P
(
[x ≥ E([x |x ∈ X′

C) (153)

− 𝑞 𝜖 +1
√︃
E([x | x ∈ X′

C) | x ∈ X′
C
)
→ 1 (154)

as 𝑛 grows to infinity.
To guarantee that 𝛽(𝜖) > 0, we must guarantee that

E([x |x ∈ X′
C) > 𝑞

2𝜖 +2. (155)

To do this, given Lemma 7, we must prove that

|{0} ∩ B(x, 𝜌) | × 1 (156)

+ (𝑞𝑘∗ − 1) [| (B(0, 𝜌)\{0}) ∩ B(x, 𝜌) |𝑞−𝑛 (157)

+ |B(x, 𝜌)\B(0, 𝜌) |𝑞−𝑛(1−𝜏) Z (𝑛)] > 𝑞2𝜖 +2 (158)

again for some properly chosen 𝑘∗ and 𝜖 . The following
applies toward this effort.

Lemma 9. For any C ∈ C𝑘∗ ,𝑛, any x ∈ X′
C , and any 𝜌 ∈

(0,min{1 − 1/𝑞,
√

5−1
2 }], then

|B(x, 𝜌)\B(0, 𝜌) | > 𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛) . (159)

Proof. The proof is in Appendix I. □

We now combine (141) and (159) to get

𝐸 ([x |x ∈ X′
C) > (𝑞𝑘∗ − 1)𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛)−𝑛(1−𝜏) Z (𝑛) (160)

and we also choose 𝑘∗, 𝜖 , to guarantee (cf. (155)) that the
inequality

(𝑞𝑘∗ − 1)𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛)−𝑛(1−𝜏) Z (𝑛) ≥ 𝑞2𝜖 +2 (161)

holds for large 𝑛. Thus with (160) and (161) in place —
something that will indeed be validated by the end of the proof
(cf. (185)) — we can guarantee (155). Thus we know that

P([x < 𝑛
𝛼
��x ∈ X′

C) < 𝑞
−2𝜖 . (162)

Following the approach in [61], we consider points in X′
C

that are called ‘partial-remote points’, which are the points
that are 𝜌𝑛-covered by fewer than 𝑛𝛼, 𝛼 > 1 codewords. Now
let 𝑄0 (X′

C) ⊂ X′
C be the set of partial remote points in X′

C ,
and let

𝑞0 (X′
C) ≜

|Q0 (X′
C) |

𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌)
. (163)

Now applying (162), gives∑︁
x∈X′

C

P([x < 𝑛
𝛼
��x ∈ X′

C) ≤ (𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌))𝑞−2𝜖 (164)

and thus we see that∑︁
x∈X′

C

P([x < 𝑛
𝛼
��x ∈ X′

C) (165)

(𝑎)
=

∑︁
x∈X′

C

E[1([x < 𝑛
𝛼
��x ∈ X′

C)] (166)

(𝑏)
= E[

∑︁
x∈X′

C

1([x < 𝑛
𝛼
��x ∈ X′

C)] (167)

(𝑐)
= E[|Q0 (X′

C) |] (168)

where now the expectation in (a) is over the codes in the
ensemble C𝑘∗ ,𝑛, where (b) results from interchanging the
expectation with the summation, and where (c) is by definition
of Q0.

Now combining (163), (164) and (168), we have

E(𝑞0) ≤ 𝑞−2𝜖 (169)
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which bounds the average (over the code ensemble) number of
partial-remote points in X′

C . Then Markov’s inequality directly
tells us that

P(𝑞0 > 𝑞
𝜖E(𝑞0)) < 𝑞−𝜖 (170)

which means that the expression 𝑞0 ≤ 𝑞 𝜖E(𝑞0) holds for a
proportion greater than 1 − 𝑞−𝜖 of all codes.

Now, in the footsteps of [62], we apply a procedure that
successively appends cosets to an initial code C′ ∈ C𝑘∗ ,𝑛 that
belongs in this above family of codes that indeed satisfies 𝑞0 ≤
𝑞 𝜖E(𝑞0). Let us quickly remember that the optimal successive
appending linear greedy method resulting from Lemma 2 and
enclosed in Appendix D, allowed us to prove (96)–(100) which
yielded

𝑞(C𝑗+1) ≤ 𝑞(C𝑗 )2 (171)

where C𝑗+1 =< C𝑗 ; x >, and where 𝑞(C𝑗 ) represented the
number of remote points of the code C𝑗 , normalized by
𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌).

With the above in mind, let us now set this first initializing
code C0 to be equal to C0 = C′, where C′ is one of the
aforementioned ‘good’ codes that satisfy

𝑞0 ≤ 𝑞 𝜖E(𝑞0). (172)

Then we will design C1 =< C0; x > where x is a guaranteed-
to-exist vector (cf. (171)) that increases the span of C0.

Now we calculate the same quantity we calculated in (163),
but we do so for X′

C1
. In other words, we calculate

𝑞1 (X′
C1
) ≜

|Q0 (X′
C1
) |

𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌)
(173)

where similar to before, now 𝑞1 represents the average normal-
ized remote points of the code C1 with respect to its associated
XC1 . We can now see that directly from (171), we have that

E(𝑞1) ≤ 𝑞2
0 (174)

where the above average is taken over all C1 codes, meaning
over all codes that can take the role of our aforementioned C1,
going over all possible initializing codes C0 = C′, and over
all possible base-expanding vectors x. Now we apply again
Markov’s inequality, this time over the expanded codes C1, to
get

P(𝑞1 > 𝑞
_E(𝑞1)) < 𝑞−_, _ ∈ R (175)

which tells us — as before — that the proportion of codes C1
that satisfy

𝑞1 ≤ 𝑞_−2𝜖 (176)

is at least 1−𝑞−_. This proportion of codes that achieve (176),
is over all generated C1 that were built over all ‘good’ C0 = C′

that already satisfied (172). Thus we now know (cf. (170)) that
the proportion of codes C1 — among all codes in the entire
ensemble C𝑘∗+1,𝑛 — that satisfy (176), is equal to (1−𝑞−𝜖 ) (1−
𝑞−_).

We now go from our step 1, to an arbitrary step 𝑖, and
following the same logic as before, we conclude that the

proportion of codes C𝑖 — where this proportion is among
all codes in the entire ensemble C𝑘∗+𝑖,𝑛 — that satisfy

𝑞𝑖 < 𝑞
−2𝑖 (𝜖−_)−_ (177)

is equal to (1 − 𝑞−𝜖 ) (1 − 𝑞−_)𝑖 .
Now let us go to some step 𝑚 which will allow us to

terminate. We explain when will this termination happen.
Consider, for this step 𝑖 = 𝑚, as before, the quantity

𝑞𝑚 (X′
C𝑚 ) ≜

|Q0 (X′
C𝑚 ) |

𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌)
(178)

where similar to before, now 𝑞𝑚 represents the average
normalized remote points of the code C𝑚 with respect to its
associated XC𝑚 . We want the corresponding Q𝑚 (cf. (163)) to
be empty. This will be guaranteed when 𝑚 is such that

𝑞𝑚 < 𝑞
−𝑛(1−𝜏) (179)

where the above guarantee can be provided given that the
cardinality of a set is a non-negative integer.

This will be achieved by setting 𝑚 = ⌈log2 (𝑛(1 − 𝜏))⌉ and
_ = 𝜖 − 1. This can be indeed verified by considering (177)
after setting 𝑖 = 𝑚, _ = 𝜖 − 1. In conclusion, the proportion
of ‘good’ codes (among the entire ensemble) designed at this
stage 𝑚, is no less than

(1 − 𝑞−𝜖 ) (1 − 𝑞−𝜖 +1) ⌈log2 𝑛(1−𝜏) ⌉ (180)

and for each such code C, every point x ∈ XC will be 𝜌𝑛-
covered by at least 𝑛𝛼 codewords of that same code.

With the above in place, let us return to (152) where we wish
to guarantee that 𝛽(𝜖) > 0. Toward this, let us consider (180)
and in this equation, let us set 𝜖 = 2 log𝑞 log2 (𝑛(1 − 𝜏)).

Let us now prove that there exists an 𝛼 > 1 such that

E([x |x ∈ X′
C) ≥ (𝑛(1 − 𝜏))𝛼 (181)

= (𝑞𝑘∗ − 1)𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛)𝑞−(𝑛−𝑛𝜏) . (182)

This can be readily shown (cf. (160)) by noting that, for large
𝑛, then the expression

∃ 𝛼 > 1 : (𝑛 − 𝑛𝜏)𝛼 = (𝑞𝑘∗ − 1)𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛)𝑞−(𝑛−𝑛𝜏) (183)

holds. With (181) in place, we take the logarithm on both sides
of the above, and after dividing by 𝑛, we get

𝑘∗

𝑛
= 1 − 𝜏 − 𝐻𝑞 (𝜌) +

𝛼 log𝑞 (𝑛 − 𝑛𝜏) + 𝑜(𝑛)
𝑛

. (184)

Let us now recall that we had conditionally accepted (161),
by saying that (161) holds for some properly chosen 𝜖 and
𝑘∗. We will use the aforementioned 𝜖 = 2 log𝑞 log2 (𝑛(1 − 𝜏))
and the 𝑘∗ from (184). Let us apply these values in the LHS
of (161), and note, after employing (183), that for these values
in place, it holds that

(𝑞𝑘∗ − 1)𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛)−𝑛(1−𝜏) Z (𝑛) = (𝑛 − 𝑛𝜏)𝛼Z (𝑛).

Let us now note that for sufficiently large 𝑛 then

(𝑛 − 𝑛𝜏)𝛼Z (𝑛) ≥ 𝑞2 log2 (𝑛(1 − 𝜏))4 (185)

simply because the RHS is logarithmic in 𝑛. At the same
time though, we also note that 𝑞2 log2 (𝑛(1 − 𝜏))4 =
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𝑞2(2 log𝑞 (log2 (𝑛(1−𝜏))))+2 and then, by applying the chosen 𝜖 ,
we get that 𝑞2 log2 (𝑛(1 − 𝜏))4 = 𝑞2𝜖 +2. Thus we now know
that (𝑛− 𝑛𝜏)𝛼Z (𝑛) ≥ 𝑞2𝜖 +2 which, after applying (185), gives
that

(𝑞𝑘∗ − 1)𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛)−𝑛(1−𝜏) Z (𝑛) ≥ 𝑞2𝜖 +2

which is exactly (161). Thus (161) is validated, and conse-
quently, directly, we can also guarantee (155), which in turn
guarantees 𝛽(𝜖) ≥ 0, which in turn proves that (151) indeed
holds.

Following the logic immediately before (151), and
with (151) now in place, we can conclude that for any x ∈ X′

C ,
— given our chosen 𝑘∗ and 𝜖 — [x will be, with high
probability, bigger than 0 which in turn implies that any
x ∈ X′

C will, with high probability, be covered by C. As it
can be seen, the proportion of partial-covering codes (180)
approaches 1, as 𝑛 increases.

The only thing that remains now to be verified is the rate
𝑘𝑛/𝑛 of these codes, which was declared in the theorem to be
as in (115). To verify that indeed this is our rate, we recall
that we have started with a code from C𝑘∗ ,𝑛 and that we have
performed the appending procedure 𝑚 times, where we chose
𝑚 = log2 (𝑛− 𝑛𝜏). This means that the current message length
becomes

𝑘𝑛 = 𝑘
∗ + log2 (𝑛(1 − 𝜏)).

Now directly adding 𝑚/𝑛 on both sides of the equation
in (184), we have that

𝑘𝑛

𝑛
=
𝑘∗ + log2 (𝑛 − 𝑛𝜏)

𝑛
(186)

= 1 − 𝜏 − 𝐻 (𝜌) +
(𝛼 + 1) log2 (𝑛 − 𝑛𝜏) + 𝑜(𝑛)

𝑛
(187)

which simply says that 𝑘𝑛
𝑛

≤ 1 − 𝜏 − 𝐻𝑞 (𝜌) +𝑂 (𝑛−1 log𝑞 (𝑛))
as in (115). This concludes the proof of the theorem. □

APPENDIX G
PROOF OF PROPOSITION 1

Referring to the proof of Theorem 3 in Appendix E, let us
suppose that 𝐿 ≤ 𝑚 < 𝑞𝐾 and that X ⊇ XF,D. From (119) we
see that

|X| (𝑎)= Π
𝑚𝑛
𝑖=1 |X𝑖 | (188)

(𝑏)
≥ 𝑞𝑛𝑚𝑛 (1−𝜏) (189)
(𝑐)
= 𝑞𝑁 (1−𝜏) (190)

where (a) comes from the definition of X (cf. (119)), where
(b) holds due to (120), and where (c) holds since 𝑁 = 𝑛𝑚𝑛.
Then from (124) and (190), we can conclude that

𝜌 = 𝐻−1
𝑞 (𝐾

𝑁
− 𝜏 + 𝜖 (𝑁)) (191)

≤ 𝐻−1
𝑞 (𝐾

𝑁
− (1 −

log𝑞 ( |X|)
𝑁

) + 𝜖 (𝑁)). (192)

Setting 𝑚 = 𝐿 gives 𝜌 = 𝐻−1
𝑞 ( log𝑞 (𝐿)

𝑁
+ 𝜖 (𝑁)) (cf. (125)). The

communication cost is as described in (128). □

APPENDIX H
VARIOUS PROOFS

A. Proof of Lemma 4

For a fixed index 𝑖 ≠ 0, there is a fixed information vector
d𝑖 ∈ F𝑘

∗\0 that generates — as we move across the generator
matrices G in the ensemble of codes C𝑘,𝑛 — the codewords
c𝑖 that take the form

c𝑖 = d𝑖G =

𝑛∑︁
𝑗=1

𝑑𝑖 ( 𝑗 , 1)G( 𝑗 , :). (193)

Given that the elements of G ∈ F𝑘∗×𝑛 are chosen uniformly
and independently at random from F, directly implies that
the same holds for the elements of c𝑖 , since in the above
linear combination, the elements of d𝑖 are fixed, and naturally
because the operations are over a finite field.

□

B. Proof of Lemma 5

We can first see that whenever 𝜔(x) ≤ 𝜌𝑛, then (133)
automatically holds simply because such x must belong in
B(0, 𝜌) which in turn is a subset of XC .

Let us now consider the case of 𝜔(x) > 𝜌𝑛, x ∈ F𝑛. Let us
also recall the element selection process21 that was described
right underneath equation (132). Let S ⊂ F𝑛 be the set of all
vectors x that are not codewords but are selected randomly in
the aforementioned process. At this point, we can see that

P(x ∈ XC) = P(x ∈ C) + P(x ∉ C)P(x ∈ S | x ∉ C) (194)

where C is the code that has been chosen uniformly at random
from C𝑘∗ ,𝑛. Consider a vector y ∈ F𝑛 with 𝜔(y) ≥ 𝜌𝑛. We
clearly see that P(x ∈ C) = P(y ∈ C), and we also see that
P(x ∈ S | x ∉ C) = P(y ∈ S | y ∉ C) as a direct outcome of
the aforementioned vector selection process, and of the fact
that 𝜔(x) > 𝜌𝑛, 𝜔(y) > 𝜌𝑛, which yields

P(x ∈ XC) = P(y ∈ XC). (195)

Now let us note that∑︁
y∈F𝑛\B(0,𝜌)

P(y ∈ XC) =
∑︁

y∈F𝑛\B(0,𝜌)
E[1(y ∈ XC)] (196)

(𝑎)
= E[

∑︁
y∈F𝑛\B(0,𝜌)

1(y ∈ XC)] (197)

(𝑏)
= E[𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌)] (198)

= 𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌) (199)

where the average is over the codes in the ensemble C𝑘∗ ,𝑛 and
over the randomness in constructing XC once C ∈ C𝑘∗ ,𝑛 is
picked. In the above, (a) follows by interchanging summation
and expectation, and (b) holds since for every occurrence of

21We recall that the procedure for designing XC , simply starts by taking
the union C ∪ B(0, 𝜌) , and then appending on this union, a sufficiently
large number of vectors, chosen uniformly and independently at random from
F𝑛\(C ∪ B(0, 𝜌)) .
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C ∈ C𝑘∗ ,𝑛, there exist 𝑞𝑛(1−𝜏)−𝑉𝑞 (𝑛, 𝜌) elements of F\B(0, 𝜌)
that are in XC . Finally, (195) and (199) jointly imply that

(𝑞𝑛 −𝑉𝑞 (𝑛, 𝜌))P(x ∈ XC) =
∑︁

y∈F𝑛\B(0,𝜌)
P(y ∈ XC) (200)

= 𝑞𝑛(1−𝜏) −𝑉𝑞 (𝑛, 𝜌) (201)

which completes the proof. □

C. Proof of Lemma 6

For any 𝑖 ≠ 1 and x ∈ F𝑛, x ≠ 0, then

P[c𝑖 = x|x ∈ XC]P[x ∈ XC] (202)
(𝑎)
= P[[c𝑖 = x] ∩ [x ∈ XC]] (203)
(𝑏)
= P[[c𝑖 = x] ∩ [c𝑖 ∈ XC]] (204)
(𝑐)
= P[c𝑖 = x] (205)
(𝑑)
= 𝑞−𝑛 (206)

where (a) is directly from the definition of conditional proba-
bility [71], (b) is true since the LHS requirement that x = c𝑖
is maintained in the RHS, (c) is true since C ⊂ XC , and (d)
is from (129) in Lemma 4.

Thus for 𝑖 ≠ 1 and x ≠ 0, we have that

P(c𝑖 = x|x ∈ XC) = 𝑞−𝑛(1−𝜏)
1 − 𝑞−𝑛𝑉 (𝜌, 𝑛)

1 − 𝑞−(𝑛−𝑛𝜏)𝑉 (𝜌, 𝑛)
= 𝑞−(𝑛−𝑛𝜏) Z (𝑛), 𝑖 ∈ [2 : 𝐾∗], 𝜔(x) > 𝜌𝑛

and the proof is concluded by noting that in the limit of
large 𝑛, the expression

Z (𝑛) ≜ 1 − 𝑞−𝑛𝑉 (𝜌, 𝑛)
1 − 𝑞−(𝑛−𝑛𝜏)𝑉 (𝜌, 𝑛)

converges to 1. □

D. Proof of Lemma 7

From the definition in (137), let us recall that

[x ≜

𝑞𝑘
∗∑︁

𝑖=1
[x,𝑖 (207)

describes the number of codewords that cover x ∈ X′
C .

Consider a Hamming ball of radius 𝜌 centered around x ∈ X′
C .

• Considering (135), we know that if |{0} ∩ B(x, 𝜌) | = 1,
then with probability one, 0 covers x. Hence now the
assumption that x ∈ X′

C , contradicts the above, and thus
we can conclude that |{0} ∩ B(x, 𝜌) | = 0.

• Now consider some vector x′ in (B(0, 𝜌)\{0}) ∩B(x, 𝜌),
i.e., some vector that covers our aforementioned x ∈ X′

C .
We are interested in the probability P(c𝑖 = x′ |x′ ∈ X′

C)
which is the probability that x′ is equal to c𝑖 , for our
fixed 𝑖, 𝑖 ≠ 1. From (135), we know that this probability
is equal to 𝑞−𝑛. Now going over all 𝑞𝑘

∗ −1 codewords of
interest, we can conclude that our current case of interest,
contributes to the sum [x, by an amount equal to (𝑞𝑘∗ −
1) [| (B(0, 𝜌)\{0}) ∩ B(x, 𝜌) |𝑞−𝑛.

• Now let us consider the dominant case where x′ in
B(x, 𝜌)\B(0, 𝜌). In this case, directly from (135), the
aforementioned probability P(c𝑖 = x′ |x′ ∈ X′

C) takes the
form 𝑞−𝑛(1−𝜏) Z (𝑛), and thus — similarly to above —
yields a contribution to the sum [x by an amount equal
to

(𝑞𝑘∗ − 1) [|B(x, 𝜌)\B(0, 𝜌) |𝑞−𝑛(1−𝜏) Z (𝑛).

□

E. Proof of Lemma 8

We prove the lemma in two steps.
In the first step, after defining [ ≜ E([x,𝑖 |x ∈ X′

C) and
[ (2) ≜ E([x,𝑖[x, 𝑗 |x ∈ X′

C) for any 𝑖, 𝑗 ∈ [𝑞𝑘∗ ], we can see that

𝑉𝑎𝑟 ([x |x ∈ XC) ≤ (𝑞𝑘∗ − 1) (𝑞 − 1)[(1 − 𝑞 − 2
𝑞 − 1

[) (208)

since

𝑉𝑎𝑟 ([x |x ∈ XC) = E((
𝑞𝑘

∗∑︁
𝑖=1

[x,𝑖)2 |x ∈ X′
C) (209)

− E2 (
𝑞𝑘

∗∑︁
𝑖=1

[x,𝑖 |x ∈ X′
C) (210)

= E(
𝑞𝑘

∗∑︁
𝑖=1

[2
x,𝑖 (211)

+
𝑞𝑘

∗∑︁
𝑝.𝑖=1,𝑖≠𝑝

[x,𝑖[x, 𝑝 |x ∈ X′
C) (212)

− E2 (
𝑞𝑘

∗∑︁
𝑖=1

[x,𝑖 |x ∈ X′
C) (213)

=

𝑞𝑘
∗∑︁

𝑖=1
E([x,𝑖 |x ∈ X′

C) (214)

+
𝑞𝑘

∗∑︁
𝑝,𝑖=1,𝑖≠𝑝

E([x,𝑖[x, 𝑝 |x ∈ X′
C) (215)

− E2 (
𝑞𝑘

∗∑︁
𝑖=1

[x,𝑖 |x ∈ X′
C) (216)

= 𝑞𝑘
∗
[ + 𝑞𝑘∗ (𝑞𝑘∗ − 1)[ (2) − 𝑞2𝑘∗[. (217)

Combining now the above with (208), allows us to modify the
main claim as

𝑞𝑘
∗
[ + 𝑞𝑘∗ (𝑞𝑘∗ − 1)[ (2) − 𝑞2𝑘∗[ (218)

− (𝑞𝑘∗ − 1) (𝑞 − 1)[(1 − 𝑞 − 2
𝑞 − 1

[) ≤ 0 (219)

so we now need to prove (219). To prove this, we focus on
the LHS and show that

𝑞𝑘
∗
[ + 𝑞𝑘∗ (𝑞𝑘∗ − 1)[ (2) (220)

− 𝑞2𝑘∗[ − (𝑞𝑘∗ − 1) (𝑞 − 1)[(1 − 𝑞 − 2
𝑞 − 1

[) (221)

(𝑎)
≤ 𝑞𝑘

∗
[ + 𝑞𝑘∗ (𝑞𝑘∗ − 1)[2 − 𝑞2𝑘∗[ (222)
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− (𝑞𝑘∗ − 1) (𝑞 − 1)[(1 − 𝑞 − 2
𝑞 − 1

)[ (223)

(𝑏)
≤ −(𝑞𝑘∗+1 − 2𝑞𝑘

∗ − 𝑞 + 1)[ (224)

+ (𝑞𝑘∗+1 − 3𝑞𝑘
∗ − 𝑞 + 2)[2 (225)

(𝑐)
≤ 0 (226)

where (a) holds because [ (2) ≤ [2, (b) follows after simple
rearranging of terms, and (c) holds because 0 ≤ [ ≤ 1 and
because 𝑞𝑘

∗+1 − 2𝑞𝑘∗ − 𝑞 + 1 > 𝑞𝑘
∗+1 − 3𝑞𝑘∗ − 𝑞 + 2 for any

𝑞𝑘
∗ ≥ 1.
In the second step, we will prove that

(𝑞𝑘∗ − 1) (𝑞 − 1)[(1 − 𝑞−2
𝑞−1[)

E([x |x ∈ X′
C)𝑞2 ≤ 1. (227)

To see this, we note that

(𝑞𝑘∗ − 1) (𝑞 − 1)[(1 − 𝑞−2
𝑞−1[)

E([x |x ∈ X′
C)𝑞2 (228)

(𝑎)
=

(𝑞𝑘∗ − 1) (𝑞 − 1) (1 − 𝑞−2
𝑞−1[)

𝑞𝑘
∗
𝑞2 (229)

(𝑏)
= ( 𝑞

𝑘∗ − 1
𝑞𝑘

∗ ) ( 𝑞 − 1
𝑞2 ) (1 − 𝑞 − 2

𝑞 − 1
[) (230)

(𝑐)
≤ 1 (231)

where (a) holds because E([x) =
∑𝑞𝑘

∗

𝑖=1 E([x,𝑖) = 𝑞𝑘
∗
[, where

(b) holds by rearranging terms, and where (c) holds because
each multiplicative element in the RHS of (b) is non-negative
and less than 1.

Now combining the two steps by bringing together (208)
with (227), yields the desired (142). □

APPENDIX I
PROOF OF LEMMA 9

Let us define

I(𝜔 (x) ,𝜌) ≜ |B(x, 𝜌) ∩ B(0, 𝜌) | (232)

and let us note that

𝜌𝑛 = arg max
𝜔 (x):x∈XC\B(0,𝜌)

|I(𝜔 (x) ,𝜌) | (233)

since the distance between x ∈ XC\B(0, 𝜌) and 0 is minimized
when 𝜔(x) = 𝜌𝑛. We also know that

|B(x, 𝜌)\B(0, 𝜌) | = 𝑉𝑜𝑙 (𝑛, 𝜌) − |I(𝜌, 𝜌) |. (234)

Let us focus on the case where 𝑞 = 2 and 0 ≤ 𝜌 ≤ 1
2 , where

from [72] we have that

|I(𝜌, 𝜌) | =
⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

𝑖∑︁
𝑗=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
(235)

+
𝑛𝜌∑︁

𝑖= ⌊ 𝑛𝜌2 ⌋+1

𝑛𝜌−𝑖∑︁
𝑗=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
. (236)

We know that 𝑛𝜌 ≤ 𝑛 − 𝑛𝜌 and that

𝑉𝑞 (𝑛, 𝜌) =
𝜌𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
=

⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

𝑛𝜌−𝑖∑︁
𝑗=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
(237)

+
𝑛𝜌∑︁

𝑖= ⌊ 𝑛𝜌2 ⌋+1

𝑛𝜌−𝑖∑︁
𝑗=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
(238)

and thus after substituting (236) and (238) into (234), we
conclude that

|B(x, 𝜌)\B(0, 𝜌) | =
⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

𝑛𝜌−𝑖∑︁
𝑗=𝑖+1

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
. (239)

Now considering that 0 < 𝜌 ≤ 1
2 , we have(

𝑛

𝑛𝜌

)
=

⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
+

𝑛𝜌∑︁
𝑖= ⌊ 𝑛𝜌2 ⌋+1

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
(240)

=

⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
(241)

+
𝑛𝜌∑︁

𝑖= ⌊ 𝑛𝜌2 ⌋+1

(
𝑛𝜌

𝑛𝜌 − 𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
(242)

=

⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
+
𝑛𝜌−⌊ 𝑛𝜌2 ⌋−1∑︁

𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖

)
. (243)

Now let us note that

|B(x, 𝜌)\B(0, 𝜌) | (𝑎)=
⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

𝑛𝜌−𝑖∑︁
𝑗=𝑖+1

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
(244)

(𝑏)
=

⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

𝑛𝜌−𝑖−1∑︁
𝑗=𝑖+2

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑗

)
(245)

+
⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
(𝑞 − 1)𝑛𝜌 (246)

+
⌊ 𝑛𝜌2 ⌋−1[ ⌊ 𝑛𝜌2 ⌋= 𝑛𝜌2 ]∑︁

𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖 + 1

)
(247)

(𝑐)
≥

⌊ 𝑛𝜌2 ⌋∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑛𝜌 − 𝑖

)
(248)

+
𝑛𝜌−⌊ 𝑛𝜌2 ⌋−1∑︁

𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖

)
(249)

(𝑑)
=

(
𝑛

𝑛𝜌

)
(𝑒)
≥ 2𝑛𝐻 (𝜌)−𝑜 (𝑛) (250)

where (a) holds from (239), (b) follows after expanding the
inner summation, (c) holds because the first summation of the
RHS in (b) is non-negative, the second summation is present
on the RHS of (c) after considering that 𝑞 = 2, and because
the third summation of the RHS in (b) is present on the RHS
of (c) after considering Lemma 11 found in Appendix I-D.
Furthermore (d) follows from (243), and (e) follows from the
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Stirling inequality that applies because 0 < 𝜌 ≤ 1
2 . The proof

is concluded for the binary case of 𝑞 = 2.
Let us now consider the more involved case of 𝑞 > 2. For

this we will need the following lemma, whose proof is found
in Appendix I-C.

Lemma 10. For I(𝜔 (x) ,𝜌) ≜ |B(x, 𝜌) ∩ B(0, 𝜌) | (cf. (232)),
then

|I(𝜌, 𝜌) | =
∑︁

𝑖+ 𝑗=𝜌𝑛, 𝑖≤ 𝑗

(
𝑛 − 𝜌𝑛
𝑖

) (
𝜌𝑛

𝑗

)
(𝑞 − 1)𝜌𝑛 + \ (𝑞) (251)

where we can guarantee that \ (𝑞) ≤ 𝑉𝑞 (𝑛, 𝜌 − 1/𝑛).

Proof. See Appendix I-C. □

With this lemma in place, we now note that

|B(x, 𝜌)\B(0, 𝜌) | (252)
(𝑎)
= 𝑉𝑞 (𝑛, 𝜌) − |I(𝜌, 𝜌) | (253)
(𝑏)
= 𝑉𝑞 (𝑛, 𝜌 − 1/𝑛) +

(
𝑛 − 𝜌𝑛
𝜌𝑛

)
(254)

−
∑︁

𝑖+ 𝑗=𝜌𝑛, 𝑖≤ 𝑗

(
𝑛 − 𝜌𝑛
𝑖

) (
𝜌𝑛

𝑗

)
(255)

× (𝑞 − 1)𝜌𝑛 (256)
− \ (𝑞) (257)
(𝑐)
≥

∑︁
𝑖+ 𝑗=𝜌𝑛, 𝑖> 𝑗

(
𝑛 − 𝜌𝑛
𝑖

) (
𝜌𝑛

𝑗

)
(𝑞 − 1)𝜌𝑛 (258)

(𝑑)
=

⌊ 𝜌𝑛2 ⌋−1∑︁
𝑗=min{0,2𝜌𝑛−𝑛}

(
𝑛 − 𝜌𝑛
𝜌𝑛 − 𝑗

) (
𝜌𝑛

𝑗

)
(𝑞 − 1)𝜌𝑛 (259)

where (a) follows from a basic set cardinality rule, (b) follows
from (251), (c) follows from Lemma (10) which tells us that
\ (𝑞) ≤ 𝑉𝑞 (𝑛, 𝜌 − 1/𝑛), and from the fact that

(𝑛−𝜌𝑛
𝜌𝑛

)
=∑

𝑖+ 𝑗=𝜌𝑛
(𝑛−𝜌𝑛
𝑖

) (𝜌𝑛
𝑗

)
(𝑞 − 1)𝜌𝑛, and (d) holds since 𝑗 ≥ 0 and

at the same time 𝑖 ≤ 𝑛 − 𝜌𝑛 which gives 𝑗 ≥ 2𝜌𝑛 − 𝑛.
Now from Stirling’s bound, we know that for any 𝑗 ∈

[min{0, 2𝜌𝑛 − 𝑛}, ⌊ 𝜌𝑛2 ⌋ − 1], the following holds(
𝑛 − 𝜌𝑛
𝜌𝑛 − 𝑗

) (
𝜌𝑛

𝑗

)
≥
√︂

𝑛 − 𝜌𝑛
8(𝜌𝑛 − 𝑗) (𝑛 − 2𝜌𝑛 + 𝑗) (260)

× 2𝑛𝐻 ( (𝜌𝑛− 𝑗)/(𝑛−𝜌𝑛)) (261)

×
√︂

𝜌𝑛

8( 𝑗) (𝜌𝑛 − 𝑗) 2𝑛𝐻 ( 𝑗/𝜌𝑛) (262)

= 2𝑛 [𝐻 ( (𝜌𝑛− 𝑗)/𝜌𝑛) ] (263)

× 2𝑛[𝐻 ( (𝜌𝑛− 𝑗)/(𝑛−𝜌𝑛)) ]−𝑜 (𝑛) . (264)

After defining

^ ≜
𝜌𝑛 − 𝑗

𝜌𝑛
(265)

the exponent in (264) takes the form

𝑛[𝐻 (^) + 𝐻 (^ 𝜌

1 − 𝜌 )] − 𝑜(𝑛). (266)

With this exponent in place, let us consider a large 𝑛 and let us
assume without loss of generality22 that 𝑛𝜌2 ∈ N. For the case
where 0 < 𝜌 ≤ 1

2 , let us set 𝑗 such that 𝑗 = 𝑛𝜌2 ≤ ⌊ 𝑛𝜌2 ⌋ − 1,
in which case we get ^ = 1 − 𝜌. On the other hand, for the
case where 1

2 < 𝜌 ≤ −1/2 +
√

5/2, let us set 𝑗 such that
2𝜌𝑛 − 𝑛 ≤ 𝑗 = 𝑛𝜌 (1 − 𝜌) ≤ ⌊ 𝑛𝜌2 ⌋ − 1, in which case ^ = 𝜌. In
each case, ^ is plugged in (266), and after utilizing (264), we
see that

⌊ 𝜌𝑛2 ⌋−1∑︁
𝑗=min{0,2𝜌𝑛−𝑛}

(
𝑛 − 𝜌𝑛
𝜌𝑛 − 𝑗

) (
𝜌𝑛

𝑗

)
(𝑞 − 1)𝜌𝑛 ≥ 𝑞𝑛𝐻𝑞 (𝜌)−𝑜 (𝑛) (267)

which holds for the range 0 < 𝜌 ≤ −1/2 +
√

5/2 which is the
union of the above two regions in 𝜌. □

A. Proof of Proposition 2
For ℎ(𝑥) ≜ −𝑥 log𝑞 (𝑥), we know that

ℎ(𝑥) ≤ 𝐻𝑞 (𝑥), 0 ≤ 𝑥 ≤ 1 − 1/𝑞 (268)

and thus that

𝐻−1
𝑞 (𝑥) ≤ ℎ−1 (𝑥). (269)

We also know that if 𝑦 = 𝑥 ln(𝑥), then 𝑥 = 𝑒𝑊 (𝑦) where
𝑊 (.) is the Lambert function. Also note that since ℎ(𝑥) =

− log𝑞 (𝑒)𝑥 ln(𝑥), we have that

ℎ−1 (𝑥) = 𝑒𝑊 (− ln(𝑞)𝑥) . (270)

Furthermore, for 𝑐 > 0 being a positive real number, we have
that

lim
𝑇→∞

𝑇𝑒𝑊 (−𝑐/𝑇) (𝑎)
= lim

𝑇→∞

𝑒𝑊 (−𝑐/𝑇)

1/𝑇 (271)

(𝑏)
= lim

𝑇→∞

𝑒𝑊 (−𝑐/𝑇) 1
−𝑐/𝑇+𝑒𝑊 (−𝑐/𝑇 ) 𝑐𝑇

−2

−𝑇−2 (272)

(𝑐)
= lim
𝑇→∞

𝑐𝑒𝑊 (−𝑐/𝑇)

𝑐/𝑇 − 𝑒𝑊 (−𝑐/𝑇) (273)

(𝑑)
= lim

𝑇→∞

𝑐𝑇𝑒𝑊 (−𝑐/𝑇)

𝑐 − 𝑇𝑒𝑊 (−𝑐/𝑇) (274)

(𝑒)
=

lim𝑇→∞ 𝑐𝑇𝑒𝑊 (−𝑐/𝑇)

lim𝑇→∞ 𝑐 − 𝑇𝑒𝑊 (−𝑐/𝑇) (275)

where (a), (c) and (d) follow by basic algebraic rearranging,
(b) follows from L’Hopital’s rule, and (e) follows from the
Algebraic Limit Theorem. The above implies that

lim
𝑇→∞

𝑇𝑒𝑊 (−𝑐/𝑇) = 0 (276)

which allows us to conclude that

lim
𝑇→∞

𝑇𝐻−1
𝑞 ((𝑐/𝑇)

(𝑎)
≤ lim

𝑇→∞
𝑇ℎ−1 (𝑐/𝑇) (277)

(𝑏)
≤ lim

𝑇→∞
𝑇𝑒𝑊 (− ln(𝑞)𝑐/𝑇) (278)

(𝑐)
= 0 (279)

where (a) follows from (269), (b) from (270), and (c)
from (276). Thus the proof is concluded. □

22This assumption, along with the assumption that 𝑛𝜌 is an integer, has
no impact on the result, because any non-integer residual will vanish in
importance as 𝑛 increases.
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B. Proof of Proposition 3

Starting from

𝑐/𝑇 = 𝐻𝑞 ( 𝑓 /𝑇) (280)

we take the derivative with respect to 𝑇 on both sides, to get

𝑐 = log𝑞 (
𝑓 /𝑇

1 − 𝑓 /𝑇 (𝑞 − 1)) ( 𝜕 𝑓
𝜕𝑇
𝑇 − 𝑓 ). (281)

After applying (280) into (281), and after some basic algebraic
rearranging, the proof is concluded. □

C. Proof of Lemma 10

Let us consider two vectors a, b ∈ F𝑛, where 𝜔(a) = 𝜌𝑛

and where b ∈ B(0, 𝜌) ∩ B(a, 𝜌). Let

B ≜ {b(𝑖), ∈ [𝑛] : a(𝑖) = 0 & b(𝑖) ≠ 0} (282)
C ≜ {b(𝑖), ∈ [𝑛] : a(𝑖) ≠ 0 & b(𝑖) = a(𝑖)} (283)

and let 𝑥 ≜ |B|, 𝑦 ≜ |C|. Let 𝑏 𝑗 , 𝑗 ∈ [𝑥] denote the 𝑗 th element
of B, and let 𝑐 𝑗 , 𝑗 ∈ [𝑦] denote the 𝑗 th element of C. Note
that ordering does not matter. Let 𝑎 𝑗 , 𝑗 ∈ [𝜌𝑛] be the non-zero
elements of a, and without loss of generality, let

a = [0, . . . , 0, 𝑎1, 𝑎2, . . . , 𝑎𝑦 , . . . , 𝑎𝜌𝑛] (284)

as well as let

b = [𝑏1, 𝑏2, . . . , 𝑏𝑥 , 0, 0, . . . , 0, (285)
𝑐1, 𝑐2, . . . , 𝑐𝑦 , 0, . . . , 0] . (286)

Since 𝜔(b) ≤ 𝜌𝑛 and 𝑑 (a, b) ≤ 𝜌𝑛, we have that

𝑥 + 𝑦 ≤ 𝜌𝑛 (287)
𝑥 ≤ 𝑦 (288)

and we have that for any fixed pair (𝑥, 𝑦) ∈ [𝜌𝑛]2, there are(𝑛−𝜌𝑛
𝑥

) (𝜌𝑛
𝑦

)
(𝑞−1)𝑥+𝑦 such points (that satisfy that given (𝑥, 𝑦))

in B(0, 𝜌) ∩ B(a, 𝜌). Therefore, accumulating over all (𝑥, 𝑦)
for which 𝑥 + 𝑦 = 𝜌𝑛, the overall intersection gains cardinality
|B(0, 𝜌) ∩ B(a, 𝜌) | = ∑

𝑖+ 𝑗=𝜌𝑛, 𝑖≤ 𝑗
(𝑛−𝜌𝑛
𝑖

) (𝜌𝑛
𝑗

)
(𝑞 − 1)𝜌𝑛, while

when 𝑥 + 𝑦 < 𝜌𝑛 — due to (288) — this same accumulated
intersection has at most 𝑉𝑞 (𝑛, 𝜌 − 1/𝑛) points. This concludes
the proof.

□

D. Statement and Proof of Lemma 11

Lemma 11. If 0 < 𝜌 ≤ 1/2 and 𝜌𝑛 ∈ N, then

⌊ 𝑛𝜌2 ⌋−1[ ⌊ 𝑛𝜌2 ⌋= 𝑛𝜌2 ]∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖 + 1

)
≥
𝑛𝜌−⌊ 𝑛𝜌2 ⌋−1∑︁

𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖

)
.

Proof. We solve the problem by considering the following
cases.

Case 1: (2 | 𝜌𝑛). We note that if 2|𝜌𝑛, then ⌊ 𝑛𝜌2 ⌋ =
𝑛𝜌

2 ,
which gives

𝑛𝜌

2 −1∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖 + 1

)
≥

𝑛𝜌

2 −1∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖

)
. (289)

Since 0 < 𝜌 ≤ 1
2 , we have that 𝑖 + 1 ≤ (𝑛 − 𝑛𝜌)/2, ∀𝑖 ∈ [0 :

𝑛𝜌/2 − 1], which gives(
𝑛 − 𝑛𝜌
𝑖 + 1

)
≥

(
𝑛 − 𝑛𝜌
𝑖

)
(290)

to conclude the proof for this case.
Case 2: (2 ∤ 𝜌𝑛). Here we note that having 2 ∤ 𝜌𝑛, implies

⌊ 𝑛𝜌2 ⌋ = 𝑛𝜌

2 − 0.5 which gives
𝑛𝜌

2 −0.5∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖 + 1

)
≥

𝑛𝜌

2 −0.5∑︁
𝑖=0

(
𝑛𝜌

𝑖

) (
𝑛 − 𝑛𝜌
𝑖

)
. (291)

For this case, we consider the following two subcases.
Case 2a: (𝑛 is odd). We first note that if 𝑛 is an odd number,

then 𝑛−𝑛𝜌 is an even number. Also since 𝜌𝑛 ∈ N, 0 < 𝜌 < 1/2
and 𝑛𝜌 ≤ 𝑛−1

2 , then 2( 𝑛𝜌2 + 0.5) ≤ 𝑛 − 𝑛𝜌. Thus as before we
can say that ∀𝑖 ∈ [0 : 𝑛𝜌/2 − 0.5], 𝑖 + 1 ≤ (𝑛 − 𝑛𝜌)/2, which
gives (

𝑛 − 𝑛𝜌
𝑖 + 1

)
≥

(
𝑛 − 𝑛𝜌
𝑖

)
(292)

which in turn concludes the proof for this case.
Case 2b: (𝑛 is even). If 𝑛 is even then 𝑛 − 𝑛𝜌 is odd, and

thus we can again say that having 0 < 𝜌 ≤ 1/2 gives 𝑖 + 1 ≤
(𝑛 − 𝑛𝜌 + 1)/2, ∀𝑖 ∈ [0 : 𝑛𝜌/2 − 0.5], which gives(

𝑛 − 𝑛𝜌
𝑖 + 1

)
≥

(
𝑛 − 𝑛𝜌
𝑖

)
(293)

which in turn completes the proof for this final case also. □
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