
Edge-assisted Gossiping Learning: Leveraging V2V Communications
between Connected Vehicles

Giuseppe Di Giacomo†‡, Jérôme Härri†, Carla Fabiana Chiasserini‡

†EURECOM, Communication Systems, 06904 Sophia-Antipolis, France
E-mail: {Giuseppe.Di-Giacomo,Jerome.Haerri}@eurecom.fr
‡CARS@Polito, Politecnico di Torino, 10129 Torino, Italy.

E-mail: carla.chiasserini@polito.it

Abstract— Intelligent vehicles are quickly becoming mobile,
powerful computers, able to collect, exchange, and process
sensed data. They are therefore expected not just to consume
ITS services, but also to actively contribute to the implemen-
tation of relevant ITS applications. With an increasing role of
machine learning (ML) approaches, vehicles are called to put
into use their computing capabilities and sensed data for the
training of ML models. This can be enacted through distributed
learning approaches, which however may lead to significant
communication overhead or to learners converging to different
models. In this work, we envision a new distributed learning
scheme, named EAGLE, that, with the assistance of the network
edge, aims at exploiting the vehicles’ data and computing
capabilities, while enabling an efficient learning process. To this
end, EAGLE combines the advantages of two existing schemes,
namely, federated learning and gossiping learning, yielding a
distributed paradigm that ensures both scalability and model
consistency. Our results, obtained using two different real-world
data sets, show that EAGLE can improve learning accuracy by
20%, while reducing the communication overhead by 45%.

Index Terms— Connected vehicles, Distributed machine
learning, Deep learning

I. INTRODUCTION

Over the last years, vehicles have been equipped with
an increasing number of advanced driver assistance systems
(ADAS), like radars, lidars and cameras, which can sense the
vehicle surroundings. Indeed, one of the major challenges in
the automotive domain is to make vehicles able to detect and
autonomously react to external inputs such as obstacles and
other vehicles’ actions. Relevant examples include vehicles
that automatically break in front of obstacles, or control their
speed in order to keep a safe distance from the vehicle ahead.

Data collection through ADAS can be put to best use when
combined with Machine Learning (ML), and in particular
Deep Learning (DL), approaches [1]. Many tasks related
to Intelligent Transportation Systems (ITS) and autonomous
driving, requiring forecasting and decision making processes,
like travel time estimation, eco-driving, and traffic optimiza-
tion, can indeed benefit from it [2].

In spite of their good performance, however, DL-based
approaches pose several hurdles, among others the significant
amount of data to collect and process in order to correctly
train DL models, or privacy aspects of transmitting such data
to a central learning node.

Distributed DL implementation techniques have recently
emerged to mitigate these shortcomings and enable distribut-
ing the computational burden by leveraging the data collected
by a multitude of intelligent vehicles and letting such data
to be processed directly by them. This avoids transferring
data towards a centralized learning node, thus exploiting the
devices’ computational capability and protecting sensitive
information.

In this context, one of the most popular approaches is
Federated Learning (FL) [3], where a number of learning
nodes train the same model and send their parameters to a
central node, which combines such parameters and returns
the resulting model to the learning nodes. The process
is repeated till the required model accuracy is achieved.
However, it has been observed [4] that the communication
overhead entailed by FL may be significant. Alternatively,
Gossip Learning (GL) permits to save bandwidth by letting
vehicles exchange and merge models in a fully distributed
way. However, current GL strategies [5] have been limited
to random model passing strategy, ignoring local context
typically observed in vehicular scenarios.

In this work, motivated by the fact that vehicles can
generate suitable data sets by labelling the data themselves
[1] and could leverage local vehicular context for GL if
properly supervised, we introduce a novel technique, named
Edge Assisted Gossiping LEarning (EAGLE), which re-
groups reduced communication bandwidth of GL with effi-
cient context identification of FL. So doing, EAGLE achieves
the same learning performance as FL, but with substantially
fewer transmissions. Specifically, EAGLE efficiently clusters
vehicles into groups of similar contexts, within which each
member sequentially contributes to the training task. The
models collaboratively trained within each group are then
sent to a central coordinator, which aggregates them. We
validate EAGLE features through the easily tunable CIFAR-
10 dataset and evaluate EAGLE performance on a vehicular
trajectory prediction ADAS using the NGSIM US-101 high-
way dataset.

The rest of the paper is organized as follows. Section II
discusses related work and highlights the novelty of the
proposed solution. The EAGLE scheme is introduced in
Section IV, and evaluated against FL under a real-world



scenario in Section V. Finally, Section VI concludes the paper
and presents directions for future research.

II. RELATED WORK

Two main approaches to distributed learning are relevant
to our work: FL and gossip learning (GL). As depicted
in Fig. 1(left), the vanilla algorithm of FL [3] relies on
a coordinator that at each round selects C learning nodes
and sends them the latest version of the model. Then, upon
receiving the parameters of the models newly trained by the
C nodes, the coordinator combines them by computing a
weighted average.

Beside such vanilla algorithm, several others have been
proposed, in order to overcome the challenges posed by FL.
Indeed, one of the main issues in FL is the communication
overhead entailed by the exchange of model parameters
between the coordinator and the learners. Especially when
the number of involved client is very large, FL may be
affected by scalability issues [6]. To reduce the amount of
transferred data, [7] envisions two weights updates, with the
former using a smaller number of parameters to learn model
updates, and the latter applying compression on complete
updates. With a similar goal, [8] introduces a hierarchical
federated learning (HFL), which relies on a hierarchical
network structure where model aggregation is also performed
locally by intermediate nodes that are closer to the learning
ones. Such aggregations are very frequent, unlike the global
ones performed by the coordinator. In this context, [8]
leverages edge nodes, placed between the coordinator and
the learning nodes, for local aggregations: as they are closer
to the users, bandwidth can be saved.

Another relevant challenge in FL is represented by the
statistical data heterogeneity: non i.i.d. data and its unbal-
anced availability across the different learning nodes may
lead to severe degradation of learning performance. A fur-
ther body of work focus on the system heterogeneity, i.e.,
devices featuring different processing, communication and
energy capabilities, which has again negative effects on the
learning performance. Both issues have fostered studies on
the optimal selection of the learning nodes, based on both the
type and the amount of data they own, and their capabilities.

Finally, even if in FL only weights or gradient values are
shared, there are still concerns about data privacy, which
leads to integrating in the FL framework techniques such as
differential privacy or encryption.

Other works have focused on totally distributed architec-
tures, removing the central controller and letting the learning
nodes update the model parameters at each round via peer-
to-peer communications. GL, the second relevant method to
our work, applies this approach [5]. Again, data is locally
stored at the learning nodes and all nodes train the same
model. However, as depicted in Fig. 1(center), in GL each
learning node first initializes a local model; then, upon
receiving the model parameters from another node, it updates
its local ones, either simply overwriting them, or combining
them. Notice that, thanks to the lack of a coordinator, GL
exhibits high robustness and scalability; on the other hand, its

performance depends strongly on the network topology [9].
In particular, in non-fully connected networks, as it is often
the case for vehicular networks, groups of learning nodes that
are not in radio visibility may converge to different models.
However, it has been shown [10] that, when GL is used
for the training of neural networks for vehicles’ trajectory
prediction, good performance can be obtained whenever
vehicles collect an adequate amount of data, even if sample
distributions are unbalanced and non i.i.d.

A real-world scenario in which FL is applied in the
vehicular domain is presented in [11]. Therein, the authors
propose a method exploiting FL for power and resource
allocation, aiming to achieve ultra-reliable and low-latency
communication. Still in the vehicular context, [12] presents
a selective model aggregation technique for image classifi-
cation. According to this method, local models to be sent
to the coordinator are picked considering the quality of the
training images and the vehicles’ computation capability.

Novelty. As highlighted above, FL may lead to communi-
cation bottleneck and scalability issues. On the other hand,
GL is not the ideal choice for a vehicular scenario, as it
may lead to different local models. Thus, in this work we
envision a new scheme, named Edge Assisted Gossiping
LEarning (EAGLE), which, as highlighted in Fig. 1 and
better detailed in the following, makes the most out of FL
and GL. As demonstrated by the results shown in Section V,
EAGLE copes with scalability issues better than FL by
leveraging Vehicle-to-Vehicle (V2V) communications and
allowing part of the training stage within the vehicular
network, without involving the central coordinator. Also, it
entails a low communication overhead, while making sure
that all involved learning nodes ultimately get the same
trained model. Moreover, even though EAGLE may seem
similar to HFL, the latter simply exploits for the aggregation
nodes that are closer to the users, but does not make use of
local V2V communications and direct interaction between
vehicles as EAGLE does.

III. CONNECTED VEHICLES NETWORK ARCHITECTURE
AND USE CASE

Without loss of generality, in this paper we focus on a
trajectory risk assessment application, which, considering
the vehicles’ current and recent positions, estimates their
future trajectories and assesses potential risks. Specifically,
an autonomous ego vehicle, upon reception of the position
from its neighboring vehicles, forecasts their trajectories and
detects whether it is on collision course with any of its
neighbors. A fundamental component of such application is
therefore the ML-driven trajectory forecast module, which is
typically implemented through a Long-Short Term Memory
(LSTM) model [13], [14].

We consider that the ML model is trained in a distributed
fashion, and that, in the case of FL and EAGLE, a co-
ordinator module, runs as an edge service at the network
infrastructure. The coordinator manages the model training,
as well as the exchange of the model parameters and their
averaging.



Fig. 1: Schematic representation of how FL (left), standard GL (center), and EAGLE (right) work. In EAGLE, the information
flow during a training round involves three steps: the coordinator transmits the latest version of the ML model to G vehicles
(step 1); each of them locally trains the model and transmits the updated parameters to a neighboring vehicle (step 2); the
last vehicles of each training-subtask send the model parameters back to the coordinator (step 3).

Fig. 2: Risk reasoning application: network architecture and
information flow.

The information necessary for the model training and
the trajectories forecast are obtained through V2V and
Infrastructure-to-Vehicle (I2V) communications. Specifically,
vehicles and road infrastructures are equipped with on-
board units (OBU) and road side units (RSUs), respectively.
Vehicles’ current and recent positions are assumed to be ex-
changed through periodic transmission of ETSI Cooperative
Awareness Messages (CAM) over Vehicle-to-Vehicle (V2V)
communications1. The coordinator, instead, collects the ML
model parameters and shares the updated ones with vehicles
over Vehicle-to-Infrastructure (V2I) communications2.

Fig. 2 illustrates such network architecture and the risk
reasoning application operational flow. Vehicles first down-
load a trained ML from the coordinator via V2I communi-
cation (step 1). Then, upon reception of CAMs from other
vehicles through V2V communications, they integrate their
neighbors’ current and recent positions into the trained ML
model to obtain future positions (step 2). Finally, the on-
board risk reasoning logic extract potential upcoming hazard
(step 3).

A relevant challenge is therefore to generate well-trained
ML models, and, accordingly, in this paper we focus on the
training of such models through FL and our proposed EA-

1Without loss of generality, it is assumed that CAM are transmitted either
on ITS-G5 or LTE/5G V2X technologies.

2Without loss of generality, it is assumed that ML models may be
exchanged either through 5G or ITS technologies.

GLE scheme. We remark that, while the vehicles’ positions
are exchanged over V2V in all schemes, FL exchanges the
model parameters over V2I only and GL over V2V only.
On the contrary, as depicted in Fig. 1, our proposed EAGLE
scheme exploits for the transmission of the model parameters
both V2I and V2V, which mitigates the communication
overhead entailed by FL, as well as the limited merging scope
and efficiency entailed by GL.

IV. EDGE-ASSISTED GOSSIPING LEARNING

In this section, we present the Edge Assisted Gossip
LEarning (EAGLE), designed to combine the strengths of
both FL and GL, while mitigating their shortcomings in
highly dynamic vehicular scenarios. Without loss of gener-
ality, we assume that the coordinator edge service acts as an
ML coordinator, which has a DL model to train. Algorithm 1
describes the different steps of EAGLE.

At each training round, the central controller picks G
vehicles in the target area (Line 3), based on a given criterion.
Several options are available, ranging from the quality of
the data that different types of vehicles may own, or the
number of vehicle’s neighbors. Then, the controller transmits
the latest available model to the G vehicles, which locally
train the model, each for a given number of epochs (Line 5).
After completing this task, each vehicle forwards the trained
model (i.e., the locally computed model parameters) to one
of its neighbors, instead of sending it back to the central
controller. In this way, G parallel GL-subtasks are started
(Line 6). In each GL-subtask, a target total number, N , of
vehicles sequentially train the model (Lines 12, 13 and 14),
again, each for a given number of epochs, and within such
subtask the next-learning vehicle is selected according to one
of the aforementioned criteria.

When either N vehicles have participated and completed
the GL-subtask, or a vehicle does not happen to have any
neighbor to further forward the model to, the updated model
parameters are sent back to the central controller (Line 17).
The latter aggregates all the received models by taking the
weighted average on the values obtained from all GL-subtask
(Line 7).



Algorithm 1 The EAGLE scheme

Require: ηi: initial learning rate, ng: number of samples
used in subtask g, nr: total number of samples owned
by the learning nodes selected in round r, d: decay
coefficient, tg: target number of vehicles for each GL-
subtask

1: Initialization of weights w0

2: for each round r = 1, 2 . . . do
3: selection of G vehicles
4: for each vehicle v in parallel do
5: wv ← client update(wr, r, 0)

6: w
(g)
r+1 ← GL subtask(wv, r)

7: wr+1 ←
∑G

g=1
ng

nr
w

(g)
r+1

8: procedure GL subtask(w, r)
9: n← 0

10: while n < N − 1 do
11: if n has neighbors then
12: k ← select neighbor(n)
13: transmit w to vehicle k
14: w ← client update(w, r, n+ 1)
15: n← n+ 1
16: else break
17: return w to coordinator
18: procedure client update(w, r, n)
19: i← (r − 1) · tg + n
20: η ← ηi · di
21: for each local epoch ` = 1, 2 . . . do
22: for each batch b = 1, 2 . . . do
23: w ← w − η∇l(w, b)
24: return w
25: procedure select neighbor(n)
26: k ← selected neighbors of n
27: return k

Note that the algorithm also implements a dual strategy for
the learning rate decay (Lines 19 and 20). Whereas the decay
is applied at each round in FL, EAGLE applies a decay to the
learning rate both whenever a new round is started and every
time a vehicle receives the model from a neighbor within the
GL-subtask.

The information flow in EAGLE is illustrated in
Fig. 1(right). At the beginning of every round, the coor-
dinator sends the latest available model to the chosen G
vehicles (step 1). As vehicles periodically broadcast CAMs
carrying the sender’s current and recent positions, each of the
G vehicles can leverage the collected information to locally
train the ML model. Such a node will then transfer the model
parameters to one of its neighboring vehicles (step 2). Step 2
is repeated until the sequential training within the vehicles’
group is completed and the last vehicle of the GL-subtask
sends the model parameters back to the coordinator (step 3).

At last, we remark that: (i) thanks to the aggregation
phase performed by the coordinator, EAGLE allows for the
convergence of all local instances of the same model, and

(ii) by exploiting direct communication between vehicles, it
substantially reduces the number of transmissions between
learning nodes and central controller, hence increasing the
scalability of the training task.

V. EXPERIMENTAL RESULTS

We now compare the performance of EAGLE against
standard FL via simulation, using two different real-world
datasets, namely, CIFAR-10 [15] and NGSIM US-101 [16].
CIFAR-10 has indeed been widely exploited for image
classification in prior art, and, hence, it allows testing the
proposed solution using a well-known dataset. NGSIM US-
101, instead, is specific to the vehicular domain, as it
provides a collection of vehicles trajectories, along with
other relevant information. This dataset can be exploited
to predict future vehicles’ trajectories, thus suiting well the
risk reasoning application we consider. Further details on
the datasets and on how we used them, as well as on the
simulation settings, are provided below.

A. Experimental settings

The CIFAR-10 dataset contains 60,000 RGB figures of
32×32 size, which belong to 10 different classes: 50,000
images are used for training, while the remaining for testing.

Two kinds of experiments are performed with this dataset:
first, data are divided in an i.i.d. manner among the clients;
then, samples are assigned to them in a non-i.i.d. way. In
both cases, we use as model a convolutional neural network,
whose architecture is publicly available in [17] and has
been developed using the PyTorch framework. In total, the
trainable model parameters are 122,570, corresponding to
0.5 MB data to be transmitted when using the 32-bit floating
point format. Furthermore, we use the cross entropy loss
and the Mini-batch gradient descent [18] algorithm for the
optimization.

Experiments with i.i.d data are performed dividing training
samples in an i.i.d. manner across 100 learners, out of which
only 10 are picked at each round. The learning rate is initially
set to 0.15; it is then decreased at each round for FL and,
according to the mechanism reported in Algorithm 1, for
EAGLE, using in both cases a decay factor of 0.99. Finally,
the data batch size is set to 50, and the number of local
epochs is equal 5.

For experiments with non-i.i.d. data, instead, samples are
assigned in such a way that each client has data belonging
only to a single class. The total number of clients is still
100, but, contrary to the previous case, at each round 50
of them are randomly selected. This allows us to create 5
GL-subtasks of 10 clients each and to pick clients within
each GL-subtask by using two different strategies, random e
class-based, as explained in Section V-B. The initial learning
rate is 0.005, while the decay factory is set to 0.999. The
batch size is now equal to 64 and the number of local epoch
is 1.

The NGSIM US-101 dataset contains the vehicles’ trajec-
tories collected on the US-101 highway. Thus, in this case
we use an LSTM model, which, when correctly trained, can



extract temporal patterns of past information to forecast the
future vehicles’ locations. Since the data has been collected
by cameras placed along the highway, it is necessary to
simulate samples that are recorded by vehicles instead of an
external system. To this end, we consider that each vehicle
can receive CAMs only from neighbors within a range of
15 m.

The learning model architecture is similar to the one used
in [13], and consists of one LSTM layer, followed by 3 fully
connected layers, with the last one providing the final output.
The hidden and output size of the LSTM is set to 256, while
the size of the dense layers are respectively 256, 128, and
2, which is the number of the output features. The number
of trainable parameters is 376,450, entailing an amount of
data to be transmitted of 1.5 MB when using the 32-bit
floating point format. The features used for model training
are: velocity, acceleration, lane ID, space headway and time
headway for the target neighboring vehicle. Input to the
LSTM is fed in sequences of 100 samples, corresponding
to a 10-second interval. As they overlap over a 9-second
interval, two successive windows have 90 values in common.
The network then uses the first 90 samples to predict the
future 10 vehicle’s positions.

Further, for the training we used the mean squared error
as loss function, and Mini-batch gradient descent optimizer
with starting learning rate of 10−4. The batch size is 32,
and we use the same settings as before for the decay factor.
After the pre-processing step, 90% of the vehicles are used
for training, and the remaining for testing. At every training
round, 50 clients are selected, for both FL and EAGLE; in the
latter, within the same GL-subtask, whose maximum size is
set to 10, a vehicle transmits the model to its closest neighbor.

B. Numerical results

CIFAR-10 We start by comparing the performance of our
EAGLE scheme against that of FL, when using the CIFAR-
10 dataset. In this case, we consider a classification task.

i.i.d. Data. We adopt the same simulation settings 3 as
in [3]. Further, at every round, 10 clients participate in the
learning task, and each group formed in EAGLE to perform
a GL-subtask includes either 2 or 5 vehicles.

Fig. 3(a) presents the value of loss function as the number
of rounds varies, for both EAGLE and FL. We observe
that, due to overfitting, both the curves referring to FL and
to EAGLE with 2-client groups show an increasing loss
after a descending phase. For EAGLE with 5-client groups,
instead, the loss function always decreases with the number
of rounds, since the learning rate is decreased whenever a
client receives the new model weights, either from the server
or from another vehicle. It follows that using 5-client groups
leads to a more substantial decay, thus preventing the loss
function from increasing.

Fig. 3(b) depicts the obtained accuracy level, which, as
expected, grows with the number of rounds. In particular,

3The FL accuracy achieved here is lower, as we do not pre-process the
data.

the accuracy achieved by EAGLE with 5-client groups in-
creases faster, while FL exhibits the slowest convergence.
Also, while FL and EAGLE with 2-client groups have final
comparable performance, EAGLE with 5-client groups yields
higher accuracy. The reason for such an improvement is
that, at each round, the coordinator receives fewer models,
but each of them is the result of the training performed
sequentially by more clients. This entails that more data has
been used for the training of each received model, and, since
the number of epochs computed at each node is always the
same, the overall number of computation epochs, performed
before sending the model weights back to the coordinator, is
larger in the case of EAGLE with 5-client groups.

This is confirmed by the results in Fig. 3(c), which shows
the achieved accuracy as a function of the total number
of performed epochs. All investigated cases have a similar
behavior, with EAGLE with 5-client groups exhibiting a
lower accuracy level in the early stage, but a larger value
in the end.

Interestingly, the behavior in terms of communication
overhead instead differs quite significantly across the con-
sidered schemes and configurations. As shown in Fig. 3(d),
EAGLE achieves the same, or even higher, accuracy level
than FL, in a substantially lower number of transmissions.
Again, a higher number clients within each EAGLE GL-
subtask leads to better performance. We underline that the
obtained overhead reduction is due to the fact that at every
round in FL every node contributing to the learning task
sends its model weight to the coordinator, and the coordinator
sends an update to each node. Denoting the number of nodes
by C, this results in 2C transmissions per round. On the
contrary, under EAGLE with N−client groups, each of the
C nodes transmits the model either to another vehicle or to
the server, which sends the updated version of the model
only to one vehicle per group, thus resulting in C + C/N
transmissions.

Non-i.i.d. data. Results of CIFAR-10 with non-i.i.d. data
are shown in Fig. 4. In particular, Fig. 4(a) depicts the loss
function value versus the number of rounds for both EAGLE
and FL, while Fig. 4(b), (c) and (d) present the accuracy level
versus the number of rounds, epochs and required transmis-
sions, respectively. As far as EAGLE is concerned, two cases
are considered. First, GL-subtasks learners are randomly
picked; even with this straightforward strategy, EAGLE does
not only show a faster performance improvement in terms
of rounds and transmissions as in the previous case, but it
also yields a much higher accuracy than FL. Second, a class-
based criterion is employed for the GL-subtasks so that every
client has data of a unique class and, since the total number
of classes is 10, each of the 10 clients in every GL-subtask
is representative of a class. This implies that, at every round,
the server receives for each GL-subtask a model that has been
trained using data of all classes. For this reason, when groups
are formed according to the class-based criterion, EAGLE
exhibits better performance than when the random selection
strategy is applied.

NGSIM US-101. We now turn to the NGSIM US-101



0 25 50 75 100 125 150 175 200
Number of rounds

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Lo

ss
 fu

nc
tio

n 
va

lu
e

FL - 10 clients
EAGLE - 10 clients, groups of 2
EAGLE - 10 clients, groups of 5

(a)

0 25 50 75 100 125 150 175 200
Number of rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 le
ve

l

FL - 10 clients
EAGLE - 10 clients, groups of 2
EAGLE - 10 clients, groups

(b)

0 200 400 600 800 1000
Number of epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 le
ve

l

FL - 10 clients
EAGLE - 10 clients, groups of 2
EAGLE - 10 clients, groups of 5

(c)

0 500 1000 1500 2000 2500 3000 3500 4000
Number of transmissions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 le
ve

l

FL - 10 clients
EAGLE - 10 clients, groups of 2
EAGLE - 10 clients, groups of 5

 of 5

(d)

Fig. 3: CIFAR-10: comparison between FL and EAGLE with i.i.d. data.

dataset and the LSTM task for trajectory prediction, and
present the obtained performance in Table I. In particular, the
table includes the test lateral (x) and longitudinal (y) Mean
Absolute Error (MAE) computed with respect to ground-
truth after 100 rounds, along with the required total number
of transmissions and number of transmissions performed by
the coordinator. Looking at these results, we notice that
the position errors are high for both EAGLE and FL, as
achieving good performance in trajectory position is out of
the scope of this work and, hence, the model we used has
not been optimized. What we are interested in, instead, is
the EAGLE’s performance relatively to FL. On this regard,
EAGLE provides noticeable better results than FL, both in
terms of prediction error and number of required transmis-
sions. In particular, as highlighted in the last row of the table,
EAGLE improves the prediction accuracy by about 11-28%,
and, even more remarkably, yields an overhead reduction of
45% in terms of total number of transmissions.

TABLE I: NGSIM US-101 results after 100 rounds

Scheme x MAE y MAE No. of Total no.
[m] [m] coord. transm. of transm.

FL 0.87 4.25 5 · 103 104

EAGLE 0.62 3.78 5 · 102 5.5 · 103

Gain 28.7% 11% 90% 45%

VI. CONCLUSIONS AND FUTURE WORK

The main goal of this paper is to present a new approach,
namely EAGLE, which combines FL and GL methods. We
illustrated the main points by means of simple experiments,
in order to highlight the potentiality of this novel method.

We addressed the problem of performing learning tasks at
the network edge, towards the efficient provision of mobile
services to vehicular users. With the aim to fully exploit
the vehicles’ data and computing/storage capabilities, we
investigated distributed learning approaches such as feder-
ated learning and gossiping learning. We then proposed a



0 1000 2000 3000 4000 5000
Number of rounds

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
Lo

ss
 fu

nc
tio

n 
va

lu
e

FL - 50 clients
EAGLE - 50 clients, random groups of 10
EAGLE - 50 clients, class-based groups of 10

(a)

0 1000 2000 3000 4000 5000
Number of rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 le
ve

l

FL - 50 clients
EAGLE - 50 clients, random groups of 10
EAGLE - 50 clients, class-based groups of 10

(b)

0 2000 4000 6000 8000 10000
Number of epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 le
ve

l

FL - 50 clients
EAGLE - 50 clients, random groups of 10
EAGLE - 50 clients, class-based groups of 10

(c)

0 1 2 3 4 5
Number of transmissions 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 le
ve

l

FL - 50 clients
EAGLE - 50 clients, random groups of 10
EAGLE - 50 clients, class-based groups of 10

(d)

Fig. 4: CIFAR-10: comparison between FL and EAGLE with non-i.i.d. data.

new scheme, called EAGLE, which makes the most out of
the two aforementioned approaches. Our results, obtained
using two different data sets, show indeed that EAGLE can
significantly outperform standard FL, providing both higher
learning accuracy and a substantially lower data transmission
overhead.

Future work will extend the performance evaluation of
EAGLE by varying the learning parameters and using fur-
ther data sets and models. Further, an interesting research
direction is represented by the design of group formation
strategies towards a robust execution of the gossiping learn-
ing sub-tasks, in spite of the highly dynamic environment.

Concerning the vehicular context, future work will con-
sider many other factors such as the channel impact on
communications, the mobility and the time required for the
training and for data transmission. Also, due to a complex
scenario such as the vehicular one, it will be important to
make EAGLE robust to missing reception at the edge side
of models, or to the reception of stale ones. Finally, it would

also be relevant to analyze computational complexity and to
study feasibility considering also nodes with low hardware
capability.

ACKNOWLEDGMENT

This work was supported by the EU Commission under
the RAINBOW project (Grant Agreement no. 871403), and
by NPRP-S 13th Cycle Grant No. NPRP13S-0205-200265
from the Qatar National Research Fund (a member of Qatar
Foundation). The views expressed are those of the authors
and do not necessarily represent the project. The Commission
is not liable for any use that may be made of any of the
information contained therein.

REFERENCES

[1] A. M. Elbir, B. Soner, and S. Coleri, “Federated learning in vehicular
networks,” 2020.

[2] D. C. Selvaraj, S. S. Hegde, N. Amati, C. F. Chiasserini, and F. P.
Deflorio, “A reinforcement learning approach for efficient, safe and
comfortable driving,” in 24th EURO Working Group on Transportation
Meeting (EWGT), 2021.



[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273–1282.

[4] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[5] I. Hegedüs, G. Danner, and M. Jelasity, “Gossip learning as a decen-
tralized alternative to federated learning,” in Distributed Applications
and Interoperable Systems, J. Pereira and L. Ricci, Eds. Cham:
Springer International Publishing, 2019, vol. 11534, pp. 74–90.

[6] M. Zhang, E. Wei, and R. Berry, “Faithful edge federated learning:
Scalability and privacy,” IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 12, pp. 3790–3804, 2021.

[7] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” 2017.

[8] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” 2019.

[9] L. Giaretta and S. Girdzijauskas, “Gossip learning: Off the beaten
path,” in IEEE International Conference on Big Data (Big Data), 2019,
pp. 1117–1124.

[10] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Poster: Mobile gossip learning for trajectory prediction,” in IEEE
Vehicular Networking Conference (VNC), 2020, pp. 1–2.

[11] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed
federated learning for ultra-reliable low-latency vehicular communi-
cations,” IEEE Transactions on Communications, vol. 68, no. 2, pp.
1146–1159, 2020.

[12] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE
Access, vol. 8, pp. 23 920–23 935, 2020.

[13] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), 2017, pp. 353–359.

[14] L. Xin, P. Wang, C.-Y. Chan, J. Chen, S. E. Li, and B. Cheng,
“Intention-aware long horizon trajectory prediction of surrounding
vehicles using dual LSTM networks,” in 21st IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2018, pp.
1441–1446.

[15] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.
pdf, May 2012.

[16] U.S. Federal Highway Administration. (2007) U.S. highway 101
dataset. [Online]. Available: https://www.fhwa.dot.gov/publications/
research/operations/07030/index.cfm

[17] “Convolutional neural network (CNN),” https://www.tensorflow.org/
tutorials/images/cnn.

[18] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.


