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Abstract

Score-based diffusion models map noise into data using stochastic differential equations. While current practice
advocates for a large T to ensure closeness to steady state, a smaller value of T should be preferred for a better
approximation of the score-matching objective and computational efficiency. We conjecture, contrary to current
belief and corroborated by numerical evidence, that the optimal diffusion times are smaller than current practice.

1. Introduction
Diffusion-based models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2021c; Vahdat et al., 2021; Kingma
et al., 2021; Ho et al., 2020; Song et al., 2021a) generate samples from an unknown density pdata by reversing a diffusion
process which injects noise into the data. This diffusion process is a forward Stochastic Differential Equation (SDE)

dxt = f(xt, t)dt+ g(t)dwt with x0 ∼ pdata , (1)

where xt is a random variable at time t, f(·, t) is the drift term, g(·) is the diffusion term and wt is a Wiener process. We
denote the time-varying probability density by p(x, t), by definition p(x, 0) = pdata(x), and the conditional on the initial
condition x0 by p(x, t |x0). The forward SDE is usually considered for a sufficiently long diffusion time T as in principle,
when T → ∞, p(x, T ) converges to Gaussian noise. Given initial condition p(x, T ), the backward SDE (Anderson, 1982)

dxt =
[
−f(xt, t

′) + g2(t′)∇ log p(xt, t
′)
]
dt+ g(t′)dwt t′

def
= T − t, (2)

after a reverse diffusion time T will be distributed as pdata(x). The time varying density of Eq. (2) is denoted with q(x, t).

Practical considerations on diffusion time. In practice, diffusion models are challenging to work with (Song et al.,
2021c). First, a direct access to the true score function ∇ log p(xt, t) is required in the reverse diffusion is unavailable. This
can be solved by approximating it with a parametric function sθ(xt, t), which is trained using the following loss function,

L(θ) = T Et∼U(0,T )E∼(1)g
2(t)∥sθ(xt, t)−∇ log p(xt, t |x0)∥2 , (3)

where the notation E∼(1) means that the expectation is taken with respect to the random process xt in Eq. (1). Considering
affine drift, the term p(xt, t |x0) is analytically known and normally distributed for all t (expression in Särkkä & Solin,
2019). Intuitively, the estimation of the score is akin to a denoising objective, which operates in a challenging regime.
Second, the noise distribution p(x, T ) is analytically known only when the diffusion time is T → ∞. The common solution
is to replace p(x, T ) with a simple distribution pnoise(x) which, for the classes of SDEs we consider in this work, is a
Gaussian distribution. Indeed, in the infinite diffusion time regime, it is possible to derive p(x, T → ∞) = pnoise(x)
analytically.
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In the literature, the discrepancy between p(x, T ) and pnoise(x) has been
neglected, under the informal assumption of a sufficiently large diffusion
time. While this is a valid approach to simulate and generate samples, the
reverse diffusion process starts from a different initial condition q(x, 0)
and, as a consequence, it converges to a solution q(x, T ) that is different
from the true pdata(x). Later, we will expand on this error, but for
illustration purposes Fig. 1 shows quantitatively this behavior for a simple
1D toy example pdata(x) = πN (1, 0.12) + (1 − π)N (3, 0.52), with
π = 0.3: when T is small, the distribution pnoise(x) is very different from
p(x, T ) and samples from q(x, T ) exhibit very low likelihood of being
generated from pdata(x). Crucially, Fig. 1 (zoomed region) illustrates
an unknown behavior of diffusion models, unveiled in our analysis. In
practice, there exists an optimal diffusion time that strikes right the
balance between efficient score estimation, and sampling quality.
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Figure 1: Effect of T on a toy model.

Contribution. In this work we provide a new characterization of score-based diffusion models to obtain a formal
understanding of the impact of the diffusion time T . We consider a decomposition of the evidence lower bound (ELBO),
which emphasizes the roles of (i) the discrepancy between the “ending” distribution of the diffusion and the “starting”
distribution of the reverse diffusion, and of (ii) the score matching objective. This allows us to investigate the existence of an
optimal diffusion time < ∞, differently from current best practice for selecting T .

2. A new look to the variational interpretation of diffusion models
The dynamics of a diffusion model can be studied through the lens of variational inference, bounding the (log-)likelihood
using an evidence lower bound (ELBO) (Huang et al., 2021). Our interpretation emphasizes the two main factors affecting
the quality of sample generation: an imperfect score, and a mismatch, measured in terms of the Kullback-Leibler (KL)
divergence, between the noise distribution p(x, T ) of the forward process and the distribution pnoise used to initialize the
backward process.

By manipulating the LELBO derived in (Huang et al., 2021, Eq. (25)), we can write

Epdata(x) log q(x, T ) ≥ LELBO(sθ, T ) = E∼(1) log pnoise(xT )− I(sθ, T ) +R(T ), (4)

where

R(T ) =
1

2

∫ T

t=0

E∼(1)

[
g2(t)∥∇ log p(xt, t |x0)∥2 − 2f⊤(xt, t)∇ log p(xt, t |x0)

]
dt (5)

I(sθ, T ) =
1

2

∫ T

t=0

g2(t)E∼(1)

[
∥sθ(xt, t)−∇ log p(xt, t |x0)∥2

]
dt. (6)

Note that R(T ) depends neither on sθ nor on pnoise, while I(sθ, T ), or an equivalent reparameterization (Huang et al., 2021;
Song et al., 2021b, Eq. (1)), is used to learn the approximated score, by optimization of the parameters θ. It is then possible
to show that

I(sθ, T ) ≥ I(∇ log p, T )︸ ︷︷ ︸
def
=K(T )

=
1

2

∫ T

t=0

g2(t)E∼(1) [∥∇ log p(xt, t)−∇ log p(xt, t |x0)∥]2 dt. (7)

Consequently, we can rewrite I(sθ, T )) = K(T ) + G(sθ, T ), where G(sθ, T ) is a positive term that we call the gap term,
accounting for the practical case of an imperfect score, i.e. sθ(xt, t) ̸= ∇ log p(xt, t). It also holds that

E∼(1) log pnoise(xT ) =

∫ [
log pnoise(x)p(x, T )

p(x, T )

]
p(x, T )dx = E∼(1) log p(xT , T )− KL [log p(x, T ) ∥ pnoise(x)] . (8)

Therefore, we can rewrite the ELBO in Eq. (4) as

Epdata(x) log q(x, T ) ≥ −KL [p(x, T ) ∥ pnoise(x)] + E∼(1) log p(xT , T )−K(T ) +R(T )− G(sθ, T ). (9)

Before concluding our derivation it is necessary to introduce an important observation.
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Proposition 1. Given the stochastic dynamics defined in Eq. (1), it holds that

E∼(1) log p(xT , T )−K(T ) +R(T ) = Epdata(x) log pdata(x). (10)

Intuitively, when sθ = ∇ log p and consequently I(sθ, T ) = K(T ), Eq. (4) is attained with equality. Moreover when
pnoise(x) = p(x, T ), then q(x, T ) = pdata(x). The formal justification of Proposition 1 is obtained by manipulating
the results of Huang et al. (2021) and the equality between q(x, t′) and p(x, t) when the score estimation is exact and
q(x, 0) = p(x, T ). Finally, we can now bound the value of Epdata(x) log q(x, T ) as

Epdata(x) log q(x, T ) ≥ Epdata(x) log pdata(x)− G(sθ, T )− KL [p(x, T ) ∥ pnoise(x)]︸ ︷︷ ︸
LELBO(sθ,T )

. (11)

Eq. (11) clearly emphasizes the roles of an approximate score function, through the gap term G(·), and the discrepancy
between the noise distribution of the forward process, and the initial distribution of the reverse process, through the KL
term. In the ideal case of perfect score matching, the ELBO in Eq. (11) is attained with equality. If, in addition, the initial
conditions for the reverse process are ideal, i.e. q(x, 0) = p(x, T ), then the results of Anderson (1982) allow us to claim
that q(x, T ) = pdata(x).

3. Is there an optimal diffusion time?
While diffusion processes are generally studied for T → ∞, for practical reasons, diffusion times in score-based models
have been arbitrarily set to be “sufficiently large” in the literature. In principle, with an arbitrarily flexible model the gap
term could be brought arbitrary close to 0 for any diffusion time T . In practice, fixing the model capacity, we expect the
gap term to increase with T . Here we conjecture the existence of an optimal diffusion time, which strikes the right balance
between the increasing gap G(·) and the KL term of the ELBO in Eq. (11).
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Figure 2: Decomposition of the ELBO and likelihood for a 1D toy model, as a function of diffusion time T .

Empirically, we use Fig. 2 to illustrate the existence of this tradeoff for both variance exploding (VP) and variance preserving
(VE) SDEs. In this example, we use the same setup as in Fig. 1, where we have 8192 samples from a mixture of Gaussians
with two components as target pdata(x). The choice of a Gaussian mixture model allows us to write down explicitly the
time-varying density p(xt, t) and to compute the exact score ∇ log p(xt, t) (which is done via automatic differentiation, for
convenience). On the left we show the ELBO decomposition, while on the right we show the values of the ELBO and of
the likelihood as a function of T . We can observe that G(ŝθ, T ), the gap term obtained with the optimal set of parameters
θ for each T , is an increasing function of T , whereas the KL term is a decreasing function of T . Even in the simple case
of a toy example, the tension between small and large values of T is clear. We then verify the validity of our claims: the
ELBO is neither maximized by an infinite diffusion time, nor by a “sufficiently large” value. Instead, there exists an optimal
diffusion time (T ≈ 0.85 for VE, T ≈ 0.6 for VP) which is smaller than what is typically used in practical implementations,
i.e. T = 1.0.

A comment on score model capacity. We can also investigate
the role of the model capacity on the gap term G as a function of
T . With the same toy example as above, we compare three different
architectures for the score approximation network. This analysis is
possible in this case because, as discussed above, the true score is
known. Fig. 3 reports the results: as T grows, more complex models
are required to keep the gap term small (i.e. the ELBO higher) and
avoid training instabilities.

0.0 0.5 1.0 1.5 2.0

Diffusion time T

0

1

2

G(
s θ

,T
)

Effect of score model capacity
Small
Medium
Large

Figure 3: Analysis of the effect of the score model
capacity on the gap term for the toy example.
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Figure 4: Histograms of generated samples for the toy example with models optimized with different T ∈ {0.5, 0.8, 1.0, 2.0}

3.1. Experiments on image datasets

We now present numerical results on the toy example, MNIST and CIFAR10 datasets, in order to support our conjecture
on a more challenging benchmark. We follow a standard experimental setup (Song et al., 2021a,b; Huang et al., 2021;
Kingma et al., 2021): we use a standard U-Net architecture with time embeddings (Ho et al., 2020) and we report the
log-likelihood in terms of bit per dimension (BPD). Note that while the theoretical properties of the models we consider
are obtained through the lens of ELBO maximization, the log-likelihood measured in terms of BPD should be considered
with care (Theis et al., 2016). Finally, we also report the number of neural function evaluations (NFE) for computing the
relevant metrics. Training and evaluation is performed on a small cluster with 16 NVIDIA V100 GPUs. We considered
Variance Preserving (VP) SDE with default β0, β1 parameter settings. When experimenting on CIFAR10 we considered the
NCSN++ architecture as implemented in (Song et al., 2021c). Training of the score matching network has been carried out
with the default set of optimizers and schedulers of (Song et al., 2021c), independently of the selected T . For the MNIST
dataset we reduced the architecture by considering 64 features, ch mult = (1, 2) and attention resolutions equal to 8. The
optimizer has been selected as the one in the CIFAR10 experiment but the warmup has been reduced to 1000 and the total
number of iterations to 65000.
Exploring different diffusion times. We look for further empirical evi-
dence of the existence of an optimal time. The histograms of toy example
samples, depicted in Fig. 4, clearly indicates that it does not hold that the
larger the T , the better the quality. We shall focus on the baseline model
(Song et al., 2021c); results are reported in Table 1. For MNIST, we observe
how times T = 0.6 and T = 1.0 have comparable performance in terms
of BPD, implying that any T ≥ 0.6 is at best unnecessary and generally
detrimental. Similarly, for CIFAR10, it is possible to notice that the best
value of BPD is achieved for T = 0.6, outperforming all other values.

Table 1: Optimal T
Dataset Time T BPD (↓) NFE (↓)
MNIST 1.0 1.16 300

0.6 1.16 258
0.4 1.25 235
0.2 1.75 191

CIFAR10 1.0 3.09 221
0.6 3.07 200
0.4 3.09 187
0.2 3.38 176

Training and sampling efficiency Reducing T has the benefits of reducing training and sampling cost. For training,
smaller times T allows to use simpler parametric score models. Sampling speed benefits are evident from Table 1. Notice
that when considering the SDE version of the methods the number of sampling steps can decrease linearly with T , in
accordance with known theory (Kloeden & Platen, 1995). Consequently, if our conjecture holds, reducing the diffusion time
T can be beneficial for both log-likelihood performance and sampling/training efficiency.

4. Conclusion
Diffusion-based generative models emerged as competitive approaches. The standard understanding of diffusion-based
models is that smaller values of T are preferable for efficiency reasons, but sufficiently large T are required to reduce
approximation errors of the forward dynamics. Starting from a variational interpretation, we proposed to explore the key
idea of considering the diffusion time T as a free variable, which should be chosen appropriately. A first empirical validation
corroborates our conjecture indicating that reducing T to smaller than usual values can improve performance and efficiency.
Further theoretical analyses and thorough experimental validations are required to fully validate our discussion.
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