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Abstract—Improving the robustness of biometric systems to
external attacks is of the utmost importance for the research
community. In particular, Automatic Speaker Verification (ASV)
can be easily bypassed by launching either attack presentations
(i.e., physical access attacks) over the capture devices (i.e., micro-
phone) or exchanging the input sample in the channel between
the capture device and the signal processor (i.e., logical access
attacks). In order to address these security threats, ASVspoof
challenges have evaluated the generalisation ability of several
Presentation Attack Detection (PAD) approaches in the last
decade. Those algorithms have reported a remarkable detection
performance to detect physical and logical access attacks when
they are combined with the decision provided by the ASV
systems. They fundamentally depend upon the complementary
information of ASV systems for a reliable detection performance.
Therefore, they are not interoperable across different systems. In
this work, we propose an interoperable dual-stream PAD method
which leverages temporal information from image-based voice
spectrograms to enhance generalisation on PAD. The experimen-
tal results conducted over the publicly available ASVspoof 2019
and 2021 databases show the feasibility of our approach to detect
both physical and logical access attacks unknown in training.

Index Terms—Presentation Attack Detection, Automatic
Speaker Verification, Generalisation Capability, Temporal Con-
volutional Neural Network

I. INTRODUCTION

Biometric systems have considerably evolved in recent
years, mainly due to the breakthroughs achieved by Deep
Neural Networks (DNN). As a result, they have been widely
deployed in a variety of applications, such as bank accounts,
mobile phone unlocking, and call centres. In spite of their
advantages, these systems are still vulnerable to attack presen-
tations (APs) which can be easily launched over the biometric
captured device by a non-authorised subject to gain access to
the aforementioned applications. This non-authorised individ-
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ual could also manipulate the biometric characteristics to avoid
detection.

In order to address these security threats, ASVspoof chal-
lenges have significantly promoted the study and analysis
of several Presentation Attack Detection (PAD) approaches
to protect Automatic Speaker Verification (ASV) in the last
decade. The recent ASVspoof 2021 [1] showed that most
kinds of Presentation Attack Instruments (PAIs) can be suc-
cessfully detected by current PAD approaches. However, these
techniques fundamentally depend upon the complementary
information provided by the ASV systems in the ensemble
for a reliable detection performance. Therefore, they are not
interoperable across different ASV schemes.

To overcome these limitations, some studies have addressed
voice PAD through image representation of spectrograms.
Alegre et al. [2] proposed a PAD method based on the
combination of Local Binary Patterns (LBP) and one-class
classifiers. Following this idea, deep residual learning [3],
which has been successfully used in image processing tasks,
was adopted for voice PAD. The ResNet model is employed
in combination with image-like speech spectrograms (e.g.,
Mel spectrogram) for the detection of voice APs [4], [5].
Recently, Gonzalez-Soler et al. [6] explored the feasibility of
transforming 1D spectrograms to images through four different
techniques and analysed several well-known textural features
in combination with the Fisher Vector representation [7] to
improve the detection of unknown PAI species. In spite of
the efforts carried out, those methods still lack generalisation
beyond PAI species on which they are trained.

Motivated by that fact, we propose in this work a dual-
stream temporal convolutional network which leverages tem-
poral information of latent embeddings extracted from the
two best spectrogram-to-image representations as reported
in [6] (i.e., constant Q transform - CQT [8] and short-
time Fourier transform - STFT [9]) to enhance the gener-
alisation capabilities. This framework transforms the input
raw audio waveform to a 2D image which can feed to a
Convolutional Neural Network (CNN). In our experiments,
embeddings are obtained from three different traditional CNNs
(i.e., DenseNet [10], ResNet [11], and MobileNetv2 (i.e.,
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Fig. 1: General overview of our dual-stream temporal CNN approach.

version 2) [12]). The experimental evaluation conducted over
the well-known ASVspoof 2019 [13] and 2021 [5] databases
in compliance with the international metrics ISO/IEC 30107-
3 [14] for biometric PAD shows the soundness of our proposed
method to spot PAIs over challenging scenarios.

The remainder of this paper is organised as follows: Sect. II
describes our dual-stream temporal CNN for voice PAD. The
experimental protocol is explained in Sect. III. The results
benchmarking the performance of our proposed method with
the state-of-the-art systems are discussed in Sect IV. Conclu-
sions and future work directions are finally summarised in
Sect. V.

II. DUAL-STREAM TEMPORAL CONVOLUTIONAL NEURAL
NETWORK

Fig. 1 shows a general overview of our dual-stream temporal
CNN which takes advantage of the temporal latent representa-
tion of the input spectrograms for voice PAD. In essence, the
input 1D audio waveforms are firstly transformed to 2D images
using two different strategies (i.e., CQT [8] and STFT [9]).
This transformation will lead to an individual stream in our
approach. The new images are then split into several frames
and represented by an intermediate latent vector stemming
from a traditional CNN (e.g., DenseNet, declared as Backbone
in Fig. 1). In order to include voice temporal information in
the network optimisation, the per-frame latent representation
is further processed by a series of Long Short-Term Memory
(LSTM) layers, whose output layer is concatenated with
the one provided by the other stream. Finally, these final
concatenated features are fed to a fully connected (FC) layer,
which, in turn, inputs a single unit layer for the bona fide
presentation (BP) vs. AP decision.

To optimise the network, we use the Binary Cross Entropy
(BCE) loss, which is generally employed for binary classifi-
cation tasks [15]. BCE L(·) is computed as:

L(x) = y · log p(x) + (1− y) · log(1− p(x)), (1)

where p(x) is the predicted probability and y is the true label
for the input x. We assign y = 1 for BPs and y = 0 for APs.

A. 1D audio waveforms to 2D spectrograms

Visualisation of audio/voice signals is key to many audio
analysis tasks, often involving: i) time domain, ii) frequency
domain, or iii) time and frequency domain representations
known as spectrograms. These show the amplitude of the
signal over time at a set of discrete frequencies. Recently,
Gonzalez-Soler et al. [6] explored the feasibility of using
several spectrogram-to-image strategies for voice PAD. As a
result, the authors stated that image representations such as
CQT [8] and STFT [9] can successfully preserve the features
to distinguish a BP from an AP. Based on the above obser-
vations, we use those spectrogram-to-image representations in
the first step of our algorithm:

• The STFT is a time-frequency decomposition based on
the application of Fourier analysis to short-time segments
or windows of the audio signal. In essence, it is effec-
tively a filter bank where the bandwidth of each filter is
constant and is related to the window function.

• The CQT is a perceptually motivated approach to time-
frequency analysis. In this case, the bin frequencies of
the filterbank are geometrically distributed. Compared to
the STFT, the CQT has a greater frequency resolution for
lower frequencies and a greater temporal resolution for
higher frequencies.

B. Network architecture

As mentioned, our dual-stream temporal CNN comprises
two streams: one optimised for the CQT representation and
the other one for the STFT representation. The CQT is applied
with a maximum frequency of Fmax = FNYQ, where FNYQ

is the Nyquist frequency of 8kHz. The minimum frequency
is set to Fmin = Fmax/2

9 ' 15Hz (9 being the number
of octaves). The number of bins per octave is set to 96.
These parameters result in a time shift of 8.5ms. The STFT is
implemented on a 30ms window with a 15ms shift and a 1024-
point Fourier transform. For both STFT and CQT spectrogram-
to-image representations, we perform a min-max normalisation
and 8-bit quantisation on the log-magnitude spectrum. Based
on this fact, we first split the input spectrograms into 5



TABLE I: General architecture of our proposed method.

Layers CQT-stream STFT-stream

Input 5 × 64 × 128 5 × 64 × 128

Backbone latent space 5 × 512 5 × 512

LSTM (4 layers) 1 × 256 1 × 256

Concatenation 1 × 512

FC 1 × 256

Sigmoid 1 × 1

continuous frames, each of which has 64 ×128 pixels. A latent
representation of 512 features per frame is computed using
a given backbone (e.g., DenseNet, ResNet, or MobileNetv2).
To exploit temporal information of speech images, the above
latent representations are fed into 4 hidden LSTM layers each
consisting of 256 neurons. The LSTM outputs of each stream
are concatenated into a 512 vector, which in turn is further
processed by a 256 FC layer. Finally, a fully connected layer
of a single unit with sigmoid activation is added to produce
the binary classification. A summary of the main architecture
is shown in Tab. I.

In our implementation, we trained the network from scratch
using the Adam optimiser [16]. A learning rate of 1 × 10−4

with a weight decay parameter of 1 × 10−6 was used. The
framework was implemented in PyTorch [17] and trained on
the Nvidia GPU Tesla M10 with 16 GB DRAM.

III. EXPERIMENTAL SETUP

The experimental evaluation has a threefold goal: i) evalu-
ate the detection performance of our proposed method over
challenging scenarios, ii) analyse the effect of unbalanced
data over the generalisation capabilities, and iii) establish a
benchmark with the state-of-the-art PAD techniques. To that
end, we focus on three different scenarios:

• Known-attacks includes an analysis of all PAI species. In
all cases, PAI species for testing are also included in the
training set, as described in [13].

• Unknown PAI species, in which the PAI species used for
testing are not incorporated in the training set.

• Cross-database evaluates databases which are different in
terms of PAI species, subjects, and capture devices from
those used for training. We follow the cross-database pro-
tocol in [1], where the logical access evaluation partition
in the ASVspoof 2021 is employed for testing.

A. Databases

The experimental evaluation is conducted over freely avail-
able databases ASVspoof 2019 [13] and 2021 [1] whose
characteristics are summarised in Tab. II:

• ASVspoof 2019 database consists of two assessment
scenarios: Logical Access (LgA) and Physical Access
(PhA)1. Both LgA and PhA databases are partitioned into

1To avoid confusion with PA (presentation attack), we have named the two
partitions of the ASVspoof 2019 database LgA and PhA

TABLE II: A summary of ASVspoof databases.

Partition Dataset #BP samples #AP samples

20
19

LgA
training 2580 22800
development 2548 22296
evaluation 7355 63882

PhA
training 5400 48600
development 5400 24300
evaluation 18090 116640

20
21 LgA evaluation 18452 163114

three disjoint datasets: training, development, and evalu-
ation. The development set comprises samples created
with the same set of PAI species as those in the training
set (known-attacks evaluation). In contrast, samples in the
evaluation set were generated with PAI species and cap-
ture conditions different to those in training (unknown-
attack evaluation). In particular, the text-to-speech syn-
thesis and voice conversion technologies used in the
creation of the LgA evaluation samples are different from
those used in the production of the training instances. In
addition, configuration parameters such as reverberation
levels, talker-to-ASV microphone distance, attacker-to-
talker recording distance and loudspeaker qualities for
the PhA evaluation samples are different from those used
in the generation of the training PAIs [13].

• ASVspoof 2021 database includes an extra assessment
scenario (i.e., DeepFake) along with the LgA and PhA
scenarios. Following the protocol in [1], we use the LgA
partition for the cross-database evaluation. In particular,
the proposed algorithm is trained with LgA partition from
the ASVspoof 2019 and evaluated over the same partition
in the ASVspoof 2021.

B. ISO Metrics for PAD

The experimental results are reported in compliance with
the international standard ISO/IEC 30107-3 [14] for biometric
PAD. We thus report the following metrics:

• Attack Presentation Classification Error Rate (APCER),
which is the proportion of APs misclassified as BPs.

• Bona Fide Presentation Classification Error Rate
(BPCER), which is the proportion of BPs misclassified
as APs.

Based on the above metrics, we also report i) the Detection
Error Trade-off (DET) curves between APCER and BPCER;
ii) the BPCERs noted at different security thresholds (i.e.,
APCERs) such as 10% (BPCER10), 5% (BPCER20), and 1%
(BPCER100), respectively; and iii) the Detection Equal Error
Rate (D-EER), which is defined as the error rate value at the
operating point where APCER = BPCER.

IV. RESULTS AND DISCUSSION

A. Analysis on Known Attacks

In the first set of experiments, we evaluate the detection
performance of our dual-stream temporal CNN for known
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Fig. 2: Detection performance per backbone for known attacks.

attacks using three different backbones which have reported
remarkable results in several pattern recognition tasks [18]:
DenseNet with 121 layers [10], ResNet with 34 layers [11],
and MobileNet version 2 [12]. As it can be seen in Tab. II,
the AP samples represent 90% of the whole dataset. Therefore,
we select randomly for this experiment the same number of
AP samples as BPs at 5 different iterations. Then, we train
our proposed method for each random subset and report the
D-EER for known-attack scenarios in Fig. 2. As it can be
observed, our approach achieves a mean D-EER lower than
0.10% and 4.04% for LgA and PhA, respectively. Whereas
ResNet attains the best mean D-EER of 0.03% ± 0.02 for
LgA, DenseNet reports the best mean D-EER of 2.51% ± 0.93
for PhA. However, we note that the minimum D-EER is
yielded by DenseNet for LgA (i.e., D-EER = 0.00%) and
PhA (i.e., D-EER = 1.30%). In addition, we observe that low
standard deviations ranging 0.02-0.16 and 0.60-1.34 for LgA
and PhA, respectively, indicate that the random selection of
APs does not considerably impact the algorithm’s detection
performance.

B. Analysis on Unknown Attacks

Now, we compute the detection performance of our ap-
proach combined with the three studied backbones (i.e.,
DenseNet, MobileNet, and ResNet) for the unknown-attack
scenarios in Fig. 3. We observe that the mean D-EER is
multiplied by a factor of 82 for DenseNet, 93 for MobileNet,
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Fig. 3: Detection performance per backbone for unknown
attacks.

and 457 for ResNet in comparison with the D-EERs reported
for the known-attack evaluation. Specifically, the best per-
forming backbone (i.e., DenseNet) achieves a mean D-EER
of 7.56% ± 1.89, resulting in a minimum D-EER of 5.79%.

In contrast to the results reported for LgA, the detection
performance per backbone for PhA is similar to those yielded
for the known attacks. Mean D-EERs ranging 2.88%-4.41%
confirm the observation done by [6] over the same experiment:
the features for unknown samples stemming from the PhA
partition follow a similar distribution as the ones for the
spectrograms in the training set. Hence, we strongly think that
algorithms for voice PAD should be able to achieve similar
results for known and unknown attacks over the PhA partition.

C. Impact of Unbalanced Dataset over Unknown attacks

We evaluate to what extent the detection performance of
our proposed method is affected when trained with the en-
tire database. To that end, we selected the best performing
backbone (i.e., DenseNet). In order to avoid bias in classifier
training, we optimise the BCE loss in our approach by setting
up weights per category (i.e., 0.90 for BPs and 0.10 for APs).
Fig. 4 shows a benchmark of our proposed algorithm when it
is trained with unbalanced (i.e., the entire dataset, red dashed
line) and balanced (i.e., a random selection of AP samples)
databases. We can see that the training with the entire database
yields similar results to those attained by the random selection
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Fig. 4: Benchmark of our proposed method trained with data
random selection and the entire data (dashed red line).

of samples (see (a) and (b), column 1). Even, it achieves a D-
EER of 0.00% for LgA (see a), column 1) which is lower than
the mean value reported by training with a balanced database.
This is because the features computed for the evaluation set
follow the same distribution as those of the training set.

In contrast to the results reported for known attacks, we can
observe that training with an unbalanced database considerably
increases the D-EER compared to training using the same
number of samples per category for unknown attacks. In
particular, a D-EER of 12.61%, which is approximately twice
higher than the one reported by the mean of the data random
selection (i.e., 7.559%), is achieved for LgA. Subsequently, we
can also note a decrease in the detection performance of our
proposed approach when trained with the unbalanced database:
a D-EER of 3.94% for an unbalanced database vs. a mean D-
EER of 3.11% for a balanced database confirms the impact
of training with an unbalanced database in the unknown-
attack detection. We think that future studies focused on the
PAD generalisation should consider the issues on unbalanced
databases.

D. Cross-database evaluation

We evaluate the ability of our proposed method to spot
PAIs across different databases. To that end, we follow the

Fig. 5: Cross-database evaluation for the best performing
backbone (i.e., DenseNet).

cross-database protocol defined in Sect. III and compute in
Fig. 5 the D-EER for the best performing backbone (i.e.,
DenseNet) over the models trained over the five random
sets mentioned in Sect. IV-A. We observe that the proposed
method achieves a mean D-EER of 35.61% with a standard
deviation of 2.58% which is higher than the one attained by the
baseline [6] (i.e., 27.14%). Depending on the selection of the
training set, a minimum D-EER of 32.33% is yielded, which
shows that the selection of training samples is a challenge
for PAD generalisation and should be taken into account in
future research. In addition, these results confirm the need of
enhancing the generalisation capability of neural networks. A
considerable improvement of our results for this challenging
scenario would be the combination of our dual-stream tem-
poral CNN with those backbones which are developed for
instance for domain adaptation [19]. Furthermore, the latest
CNN families of EfficientNet architectures [20] could enhance
the final decision of our framework.

E. Benchmark with the state-of-the-art

Finally, we benchmark in Fig. 6 the detection performance
of our algorithm with the state-of-the-art for LgA and PhA. To
that end, we select as a baseline the approach in [6] which re-
ported a remarkable generalisation capability for the unknown
attack detection. As it can be seen, our algorithm considerably
outperforms the baseline for LgA and PhA. In particular,
for the latter, a BPCER ≤ 1.78% and a BPCER ≤ 6.59%
at an APCER ≥ 1.0% for known and unknown attacks,
respectively confirm the soundness of our proposed method
for operating over this challenging scenario. For LgA, the
proposed techniques reports, for a high-security threshold (i.e.,
APCER ≥ 5.0%), a BPCER ≤ 0.07% and BPCER ≤ 7.74
for known and unknown attacks, respectively. Consistent with
the results shown in Fig. 5, the cross-database performance
computed by our framework for the best configuration in Fig. 5
(i.e., D-EER of 32.33%) suffers a decrease for high security
thresholds, thus indicating the need for further research on this
scenario.
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Fig. 6: Benchmark with the state-of-the-art for known and
unknown attacks and cross-database. Diagonal light-gray lines
represent the D-EER (%).

V. CONCLUSIONS

In this paper, a dual-stream temporal CNN framework for
the detection of AP attempts was proposed. The proposed
method takes advantage of the temporal information provided
by speech images which were previously obtained by trans-
forming the spectrograms through different strategies (i.e.,
CQT and STFT). Those speech images are represented by a
latent vector computed by any CNN. In our experiments, three
traditional CNNs such as DenseNet, ResNet, and MobileNetv2
were tested, thus being DenseNet with 121 layers the best per-
forming backbone for voice PAD. The experimental evaluation
was conducted over the publicly available ASVspoof 2019 and
2021 in compliance with the metric defined in the international
standard ISO/IEC 30107-3 for biometric PAD. The results
showed that i) the training with an unbalanced database led
to a detection performance decrease to spot unknown PAI
species, ii) the random selection of APs for training the
approach improved its generalisation capability, and iii) our

proposed scheme was capable of outperforming the speech-
image-based state-of-the-art methods for challenging scenarios
where PAI species remain unknown in the training set (i.e.,
BPCER ≤ 6.59% for an APCER ≥ 1.0% over PhA). The
decreasing detection performance of our algorithm for cross-
database evaluation confirms the need for further research in
the development of generalisable algorithms for this scenario.
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