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Rapporteur Edwin V. BONILLA CSIRO’s Data61 and
Australian National University, Australia
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Abstract

Dot product kernels, such as polynomial and exponential (softmax) kernels, are
among the most widely used kernels in machine learning, as they enable modeling
the interactions between input features, which is crucial in applications like com-
puter vision, natural language processing, and recommender systems. However, a
fundamental drawback of kernel-based statistical models is their limited scalability
to a large number of inputs, which requires resorting to approximations.

In this thesis, we study techniques to linearize kernel-based methods by means
of random feature approximations and we focus on the approximation of poly-
nomial kernels and more general dot product kernels to make these kernels more
useful in large scale learning.

We begin by analyzing a class of random feature approximations for polynomial
kernels from the literature that we refer to as Product-Sketches. In particular, we
focus on a variance analysis as a main tool to study and improve the statistical effi-
ciency of such sketches. We thus develop structured and complex generalizations of
Product-Sketches, and elucidate conditions under which they can yield significant
variance improvements. These generalizations allow us to construct a structured
Complex-to-Real (CtR) TensorSRHT sketch that achieves state-of-the-art kernel
approximation errors as well as regression and classification performance, while
being faster than comparable sketches in the literature.

Moreover, we combine the Product-Sketches discussed in our thesis to approxi-
mate more general dot product kernels and Gaussian kernels. The aforementioned
variance analysis hereby becomes the foundation to develop a data-driven opti-
mization approach to allocate the number of random features between Product-
Sketches of different degrees. We describe the improvements brought by these
contributions with extensive experiments on a variety of tasks and data sets.

Lastly, we show that an optical hardware (the Optical Processing Unit - OPU),
computes random feature approximations that are closely related to the ones stud-
ied in this thesis. We derive the associated limiting kernel, and we demonstrate
its usefulness for a set of computer vision tasks. We show that the OPU can po-
tentially be faster than a recent GPU while using less energy, making such devices
interesting from a sustainability viewpoint.
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Résumé

Les noyaux de produit scalaire, tels que les noyaux polynomiaux et exponentiels
(softmax), sont parmi les noyaux les plus utilisés en apprentissage automatique, car ils
permettent de modéliser les interactions entre les composantes des vecteurs d’entrée, ce
qui est crucial dans des applications telles que la vision par ordinateur, le traitement
du langage naturel et les systèmes de recommandation. Cependant, un inconvénient
fondamental des modèles statistiques basés sur les noyaux est leur évolutivité limitée à
un grand nombre de données d’entrée, ce qui nécessite de recourir à des approximations.

Dans cette thèse, nous étudions des techniques pour linéariser les méthodes à base
de noyaux au moyen d’approximations de caractéristiques aléatoires et nous nous con-
centrons sur l’approximation de noyaux polynomiaux et de noyaux plus généraux de
produit scalaire pour rendre ces noyaux plus utiles dans l’apprentissage à grande échelle.

Nous commençons par analyser une classe d’approximations de caractéristiques aléatoires
pour les noyaux polynomiaux de la littérature que nous appelons croquis de produit
(Product-Sketches). En particulier, nous nous concentrons sur une analyse de variance
comme outil principal pour étudier et améliorer l’efficacité statistique de ces croquis
(sketches). Nous développons donc des généralisations structurées et complexes de cro-
quis de produit, et nous élucidons les conditions dans lesquelles elles peuvent produire
des améliorations significatives de la variance. Ces généralisations nous permettent de
construire un croquis de produit structuré, nommé Complex-to-Real (CtR) TensorSRHT,
qui atteint des erreurs d’approximation de noyau faibles ainsi que des performances de
régression et de classification de pointe, tout en étant plus rapide que les caractéristiques
aléatoires comparables dans la littérature.

De plus, nous combinons les croquis de produit discutés dans notre thèse pour
approximer des noyaux de produit scalaire plus généraux et des noyaux gaussiens.
L’analyse de variance susmentionnée devient ainsi la base pour développer une approche
d’optimisation basée sur les données pour allouer le nombre de caractéristiques aléatoires
entre les croquis de produit de différents degrés. Nous décrivons les améliorations ap-
portées par ces contributions à l’aide d’expériences approfondies sur une variété de tâches
et d’ensembles de données.

Enfin, nous montrons qu’un matériel optique (nommé Optical Processing Unit -

OPU ), calcule des approximations de caractéristiques aléatoires qui sont étroitement

liées à celles étudiées dans cette thèse. Nous dérivons le noyau limite associé, et nous

démontrons son utilité pour un ensemble de tâches de vision par ordinateur. Nous

montrons que l’OPU peut potentiellement être plus rapide qu’un GPU récent tout en

utilisant moins d’énergie, ce qui rend ces dispositifs intéressants du point de vue de la

durabilité.
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Preface

This thesis is divided into 7 main chapters. Chapter 1 is an introductory chapter
and Chapter 2 is a literature review that provides a context for the contributions
made in this thesis. Chapters 3-5 should be read consecutively since intermediate
contributions build the basis for the contributions that follow. Chapter 6 can be
read as an independent chapter, but some technical aspects are closely related to
Chapters 3-5. Chapter 7 is a concluding chapter that discusses future work. We
briefly summarize each chapter including the contributions made therein in the
following.

Chapter 1 is an introductory chapter that motivates the use of random fea-
tures, in particular for dot product kernels. We define positive definite kernels,
discuss associated scalability bottlenecks for Gaussian processes regression, and
provide an intuitive introduction to modern example applications that make use
of random features for dot product kernels.

Chapter 2 is a literature review that discusses random feature approximations
for shift-invariant kernels and for polynomial kernels. We further draw connec-
tions between the two. The main purpose of this chapter is to provide a context
for Chapter 3. Some of the methods discussed also serve as baselines for our
experiments in subsequent chapters.

In Chapter 3, we discuss and extend random feature approximations for poly-
nomial kernels that we refer to as polynomial sketches. We make several contribu-
tions to the literature in this chapter.

Our first contribution is the derivation of closed form variance formulas for a
group of polynomial sketches complementing existing theoretical results. Prior to
our work, only upper bounds for such variances had been derived in the literature.
Our novel variance formulas make it possible to study conditions under which
a certain polynomial sketch yields lower mean squared errors than another. In
particular, we show for the first time that the variance of structured polynomial
sketches is upper-bounded by the variance of their unstructured counterparts when
the degree of the polynomial is odd.

Our second contribution in this chapter is to construct complex-valued gen-
eralizations of the aforementioned polynomial sketches. We show that complex
polynomial sketches can yield much lower variances than their real-valued coun-
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vii

terparts, especially when the degree of the polynomial is large.

In Chapter 4, we convert the complex polynomial sketches introduced in
Chapter 3 into real-valued ones, and discuss the implications of such complex-to-
real (CtR) transformations on their variances. In particular, we prove that CtR
Gaussian and Rademacher polynomial sketches yield lower variances than their
real-valued analogs under the same conditions as it is the case for the complex
polynomial sketches introduced before. We demonstrate empirically that our novel
structured CtR-TensorSRHT sketch achieves state-of-the-art performance in terms
of kernel approximation errors and feature construction time.

In Chapter 5, we show how any dot product kernel can be represented as a
positively weighted sum of polynomial kernels using a Maclaurin series. This ob-
servation allows us to construct random features for dot product kernels and even
for the Gaussian kernel using the polynomial sketches introduced in the chap-
ters before. Using our derived variance formulas from Chapter 3, we develop a
data-driven optimization approach to determine the number of random features
assigned to each polynomial sketch used in this construction. In an extensive
empirical evaluation, we show that our optimized sketches achieve state-of-the-
art performance for the tasks of polynomial and Gaussian kernel approximation.
Lastly, we identify a pathology of our approach when approximating a Gaussian
kernel with short length scales and propose a cure for this pathology.

Chapter 6 deals with the Optical Processing Unit (OPU), an optical hardware
used to compute random projections. We show that such random projections nat-
urally give rise to a limiting kernel that is closely related to a degree-2 polynomial
kernel. In addition, we numerically modify these random feature maps to obtain
higher-degree polynomials and derive associated variances in closed form. Finally,
we benchmark projection times and energy consumption of the OPU against a
recent GPU.

In Chapter 7, we conclude our work and discuss improvements that could
be tackled in future work. In particular, we discuss the attention mechanism in
Transformer neural network architectures and show that current random feature
methods do not yield sufficiently good approximations in this case.

Chapters 3 and 5 are based on

• J. Wacker, M. Kanagawa, and M. Filippone. Improved random features for
dot product kernels. arXiv preprint arXiv:2201.08712, 2022a

submitted to the Journal of Machine Learning Research.

• J. Wacker and M. Filippone. Local random feature approximations of the
gaussian kernel. In Proceedings of the 26th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems, Pro-
cedia Computer Science. Elsevier, 2021.
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Chapter 4 is based on

• J. Wacker, R. Ohana, and M. Filippone. Complex-to-real random features
for polynomial kernels. arXiv preprint arXiv:2202.02031, 2022b.

Chapter 6 is based on the following conference paper:

• R. Ohana, J. Wacker, J. Dong, S. Marmin, F. Krzakala, M. Filippone, and
L. Daudet. Kernel computations from large-scale random features obtained
by optical processing units. In IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 9294–9298, 2020.

The following additional conference paper was published during the course of writ-
ing this thesis:

• J. Wacker, M. Ladeira, and J. E. V. Nascimento. Transfer learning for brain
tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries - 6th International Workshop, BrainLes 2020, Held
in Conjunction with MICCAI 2020., volume 12658 of Lecture Notes in Com-
puter Science, pages 241–251. Springer, 2020.

However, this contribution was made completely independently from the other
works and we therefore consider it to be out of scope for this thesis.



Mathematical Notation

We reserve italic letters (e.g., a) for scalars. We use lower case boldface letters
(e.g., a) for column vectors, and upper case boldface letters (e.g., A) for matrices.

AH Hermitian transpose of A
A⊤ transpose of A
∥a∥ Euclidean norm of a

∥A∥F Frobenius norm of A
(A)i,j (i, j)-th entry of A

(a1, . . . ,an) horizontal concatenation of the column vectors a1, . . . ,an

into a matrix
{Ai}Ni=1 set consisting of the matrices A1, . . . ,AN

In identity matrix of dimension n; the subscript may be
omitted when no confusion arises

tr(A) trace of A
Re{A} real part of A
Im{A} imaginary part of A

A conjugate of a matrix A
ei i-th standard basis vector, i.e., the i-th column of I
0 zero vector with proper dimension

:=,=: definitions from the right and from the left
diag(a) diagonal matrix with the vector a being its diagonal
vec(A) column vector obtained by stacking column-wise the ele-

ments of A
A⊗B Kronecker product of two matrices A and B
A⊙B element-wise product of two matrices A and B
E[A] expection of A
V[a] variance of a

Pr{E} probability of an event E
CN (µ,K) Circularly symmetric complex Gaussian distribution with

mean µ and covariance matrix K
R set of real numbers
C set of complex numbers
N set of natural numbers

Sd−1 (d− 1)-dimensional unit sphere in d-dimensional space
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Acronyms and Abbreviations

CPU Central Processing Unit
GPU Graphical Processing Unit
OPU Optical Processing Unit
NLP Natural Language Processing
RF Random Features

w.r.t. with respect to
w.l.o.g. without loss of generality

a.s. almost surely
i.i.d. independent and identically distributed
e.g. exempli gratia, for example
i.e. id est, that is
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Chapter 1

Introduction

The contents of this thesis are all related to random features for polynomial kernels
and more general dot product kernels. The purpose of random features is to ac-
celerate statistical models by constructing approximations of such kernels. Before
delving into the details about random features, this introductory chapter serves
to provide the reader with an intuitive understanding about the benefits of such
approximations.

In the following, we define positive definite kernels including the subclasses of
dot product kernels and shift-invariant kernels that are relevant to this thesis. We
then discuss several example applications that suffer from a scalability bottleneck
when exact kernel evaluations are used, and show how this bottleneck is resolved
through the use of random features. Several of these examples are related to dot
product kernels motivating the need for random feature approximations for this
particular class of kernels. Lastly, we provide a brief introduction to the Optical
Processing Unit (OPU), an optical hardware that we worked with, and from which
we drew the inspiration for the main contents of this thesis.

For now, we treat random feature maps as black-box functions and postpone
the introduction of first concrete examples to Chapter 2.

1.1 Positive Definite Kernels

Positive definite kernels are ubiquitous in machine learning. They are tradition-
ally used in kernel methods (Scholkopf and Smola, 2002) and Gaussian processes
(Rasmussen and Williams, 2006) to model non-linear phenomena in a theoretically
principled way. Associated learning algorithms are often simple to solve and can
therefore be equipped with theoretical guarantees. This is why traditional learn-
ing algorithms using positive definite kernels are often preferred in applications
where the learning machine should behave in an anticipated manner, e.g., when
high-stake decision-making is involved or when safety is required.

At the same time, many successful modern deep learning approaches embed
kernel methods into neural network architectures to either yield richer feature rep-

1



Chapter 1. Introduction 2

resentations or to incorporate prior domain knowledge. We discuss such examples
in the remainder of this chapter.

We now give a brief formal introduction to positive definite kernels. A more
complete introduction can be found in, e.g., Scholkopf and Smola (2002, Chapter
2) and Steinwart and Christmann (2008, Chapter 4). The kernels we discuss in this
work are generally real-valued, but their approximations can be complex-valued as
we will see in Chapters 2 and 3. Therefore, we provide a more general definition
for complex positive definite kernels in the following.

Positive definite kernel. Let X be a nonempty set. A function k : X ×X → C
is a positive definite kernel if for every x1, . . . , xm ∈ X and c1, . . . , cm ∈ C

m∑
i=1

m∑
j=1

cicjk(xi, xj) ≥ 0 (1.1)

holds, where · denotes the complex conjugate.
We call the (positive semi-definite) matrix K ∈ Cm×m with elements (K)i,j =

k(xi, xj) the Gram (or kernel) matrix of k with respect to x1, . . . , xm. K is Her-

mitian, i.e., we have k(xi, xj) = k(xj, xi). For a real-valued kernel k : X ×X → R,
this simplifies to k(xi, xj) = k(xj, xi). In this case, we use c1, . . . , cm ∈ R in
Eq. (1.1).

Feature map. Kernels can equivalently be defined through feature maps. Let
X be a nonempty set. A function k : X × X → C is a positive definite kernel if
there exists a C-Hilbert space H and a map ϕ : X → H such that for all x, y ∈ X

k(x, y) = ⟨ϕ(x), ϕ(y)⟩H

holds, where ⟨·, ·⟩H is an inner product in H. We call ϕ a feature map and H a
feature space of k.

In this work, we generally assume X ⊆ Rd. We denote vector-valued inputs by
bold-faced letters. Hence, we write k(x,y) for some x,y ∈ Rd. Depending on the
kernel, H can be infinite dimensional.

The goal of this work is therefore to construct low-dimensional random fea-
ture maps yielding an approximate kernel k̂. We denote these feature maps by
ΦR : Rd → RD if they are real-valued and by ΦC : Rd → CD if they are
complex-valued, and we drop the subscript when the context is clear. For un-
biased random feature maps, the approximate kernel k̂R(x,y) = ΦR(x)

⊤ΦR(y) or
k̂C(x,y) = ΦC(x)

⊤ΦC(y) converges in probability to k(x,y) as D increases. This
leads to a trade-off between approximation quality and computational costs that
both increase with D.



Chapter 1. Introduction 3

Classes of kernel functions. For the purpose of this work, we distinguish two
major classes of kernels, shift-invariant or stationary kernels, and dot product
kernels (see Rasmussen and Williams, 2006, Chapter 4). Shift-invariant kernels
depend only on the lag vector τ := x− y ∈ Rd, i.e., we can overload the notation
and write k(x,y) = k(τ ) for two inputs x,y ∈ Rd. A well-known example is
the Gaussian kernel exp(−∥τ∥2/(2l2)) with length scale parameter l > 0. Dot
product kernels on the other hand depend only on the inner product x⊤y ∈ R, so
we write k(x,y) = k(x⊤y). Well-known examples include the polynomial kernel
(γx⊤y + ν)p for some γ, ν ≥ 0, p ∈ N and the exponential dot product kernel
exp(x⊤y/l2) for some l > 0. We will cover random feature approximations for
shift-invariant kernels and polynomial kernels in detail in Chapters 2, 3 and 4.
General dot product kernels are covered later on in Chapter 5.

Scalability bottleneck. Statistical models such as kernel methods (Scholkopf
and Smola, 2002) and Gaussian processes (Rasmussen and Williams, 2006) suffer
from a scalability bottleneck when direct kernel evaluations are used. This is
because the kernel needs to be evaluated for all pairs of inputs, which implies a
time and memory complexity that is at least quadratic in the number of input
points.

The scalability issue has been a focus of research since the earliest literature
(Wahba, 1990, Chapter 7), and many approximation methods for reducing the
computational costs have been developed (e.g., Williams and Seeger 2000; Rahimi
and Recht 2007; Titsias 2009; Hensman et al. 2018). The random features that we
discuss in this work, are a particularly popular approximation method that was
originally introduced for shift-invariant kernels in the seminal work by Rahimi and
Recht (2007). We follow this line of research and show in the following how such
approximations can be used to improve the scalability of various statistical models
that make use of kernels.

We start with the example of Gaussian process regression that is used in many
of the numerical experiments that we carried out for this thesis.

1.2 Gaussian Process Regression

Gaussian process regression (GPR) (Rasmussen and Williams, 2006, Chapter 2)
is a Bayesian non-parametric approach to supervised learning that makes use of
positive-definite kernels. It is an attractive modelling choice as it provides uncer-
tainty estimates through predictive variances next to the actual prediction. At
the same time, the hyperparameters of the kernel function k can be obtained
through a gradient-based optimization of the log marginal likelihood (Rasmussen
and Williams, 2006, Chapter 5.4) avoiding time-consuming cross-validation.

However, GPR does not scale well to a large number of training points due to
the necessity for algebraic manipulations of the Gram matrix. We introduce GPR
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here and show how its scalability bottleneck can be overcome by means of random
feature approximations.

Suppose a training data set D := {(xi, yi)}Ni=1 with (xi, yi) ∈ Rd × R that
we summarize in matrix notation as X := (x1, . . . ,xN)

⊤ ∈ RN×d and y :=
(y1, . . . , yN)

⊤ ∈ RN . We assume that the observations y have been generated
from X by an unknown latent function f : Rd → R that has been corrupted

by independent Gaussian noise, i.e., yi = f(xi) + ϵi with ϵi
i.i.d.∼ N (0, σ2

noise) and
σ2
noise > 0.
In GPR, the vector of function evaluations f := (f(x1), . . . , f(xN))

⊤ ∈ RN

is assumed to have a joint Gaussian distribution with mean µ ∈ RN and covari-
ance matrix Kff ∈ RN×N . We follow the standard approach and set µ to zero
here although more complex models exist (Rasmussen and Williams, 2006, Chap-
ter 2.7). For now we assume to be working with real-valued GPs and introduce
complex-valued GPs later on in this work. So the entries of Kff correspond to
the evaluations of a real-valued positive definite kernel k : Rd × Rd → R with
(Kff )i,j = k(xi,xj) that determines the covariance of a pair of function values
f(xi) and f(xj).

The task of GPR is to predict the latent function value at a new test input
x∗ ∈ Rd given a training set D. The predictive distribution of f(x∗)|D ∈ R can
be computed in closed form, and it is N (µ∗, σ

2
∗) with

µ∗ := k⊤
f∗(Kff + σ2

noiseI)
−1y and σ2

∗ := k∗∗ − k⊤
f∗(Kff + σ2

noiseI)
−1kf∗, (1.2)

where kf∗ = (k(x1,x∗), . . . , k(xN ,x∗))
⊤ ∈ RN , k∗∗ = k(x∗,x∗) and I ∈ RN×N is

the identity matrix.
Although being available in closed form, the computation of the GPR predictor

can be expensive in practice. The computational bottleneck here is to solve the
linear systems in Eq. (1.2), which costs O(N3) time. Even storing the matrix Kff

requires O(N2) memory and becomes infeasible when N is large, typically greater
than 10, 000 for a regular machine, so that approximations become necessary. We
now present an alternative GPR formulation that is amenable to the random
feature approximations discussed in this thesis.

Explicit feature space formulation. If there exists a finite-dimensional fea-
ture map Φ : Rd → RD such that k(x,y) = Φ(x)⊤Φ(y), it can be shown (Ras-
mussen and Williams, 2006, Chapter 2) that Eq. (1.2) can be reformulated as

µ∗ := Φ(x∗)
⊤A−1Φ(X)⊤y/σ2

noise and σ2
∗ := Φ(x∗)

⊤A−1Φ(x∗), (1.3)

with A := Φ(X)⊤Φ(X)/σ2
noise + I and Φ(X) = (Φ(x1), . . . ,Φ(xN))

⊤ ∈ RN×D.
The feature space representation (1.3) changes the computational cost from

O(N3) to O(ND2), and thus improves the scaling of GPR drastically if D ≪ N .
Unfortunately, exact feature maps can be high-dimensional, as is the case for, e.g.,
polynomial kernels, or even infinite dimensional rendering an explicit feature space
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formulation infeasible. In such cases, we can use the random feature maps studied
in this thesis as a drop-in replacement for Φ in Eq. (1.3), where the dimension D
of Φ becomes a parameter determining the trade-off between computational costs
and approximation quality of the exact GP predictor.

There exist further applications for positive definite kernels that, similar to
GPR, suffer from a scalability bottleneck due to pairwise kernel evaluations. In
the following, we introduce some example applications from the literature, which
make use of dot product kernels and their random feature approximations in par-
ticular. Therefore, these applications motivate the necessity for random features
for polynomial kernels and more general dot product kernels that are the focus of
this manuscript.

1.3 Applications for Dot Product Kernels

While random features for shift-invariant kernels have been studied extensively
in the past (see Liu et al. (2020) for a recent overview), there are relatively few
works studying random features for the general class of dot product kernels. The
purpose of this section is therefore to provide recent examples from the literature
that benefit from such approximations.

As we will show in Chapter 5, any dot product kernel and even the Gaussian
kernel can be formulated as a positively weighted sum of polynomial kernels. This
turns polynomial kernels into very general function approximators to which we
assign a great importance in this work. Polynomial kernels in turn model multi-
plicative interactions between the input features, which is why dot product kernels
such as polynomial kernels are used in applications that make use of such interac-
tions. Such applications include genomic data analysis (Aschard, 2016; Weissbrod
et al., 2016), recommender systems (Rendle, 2010; Blondel et al., 2016), computer
vision (Lin et al., 2018; Gao et al., 2016; Fukui et al., 2016), natural language pro-
cessing (Yamada and Matsumoto, 2003; Chang et al., 2010; Vaswani et al., 2017),
and evaluation metrics like the Kernel Inception Distance (KID) (Bińkowski et al.,
2018) 1.

In the following, we focus on recent example applications in deep learning,
namely bilinear pooling for fine-grained visual recognition (Lin et al., 2018), multi-
modal bilinear pooling for visual question answering (Fukui et al., 2016), and the
dot-product attention mechanism used in Transformers (Vaswani et al., 2017).

1.3.1 Bilinear Pooling

We begin by discussing applications for the so-called bilinear pooling operation that
is used in fine-grained visual recognition (Lin et al., 2018) and has been extended
to a multi-modal context for visual question answering (Fukui et al., 2016). We

1We cover a random feature approximation of the KID in more detail in Chapter 4.
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Figure 1.1: Comparing a Ring Billed Gull (left) to a California Gull (right) from
the CUB-200 data set. The Ring Billed Gull has a yellow bill with a black ring
around it, and a pale eye. The California Gull has a red spot on the lower bill and
a dark eye.

cover the example of fine-grained visual recognition first, and show therein how
bilinear pooling relates to explicit feature maps of a degree-2 polynomial kernel.

Fine-grained visual recognition. The task of fine-grained visual recognition
is about the classification of pictures within a subordinate category. This classifi-
cation usually requires the detection of fine-grained details. An example for such
a task is the Caltech-UCSD Birds (CUB) 200 data set (Welinder et al., 2010) in
which birds are categorized into 200 different species. Fig. 1.1 shows two example
images of two similar bird species that can be distinguished by detecting details
on their bills and eyes, respectively2.

One way to solve this task would be to rely on anatomic annotations, locating
different body parts of the bird on each picture. In this way, features could be
extracted from each body part allowing for a detailed comparison. Although being
provided in the CUB-200 data set, such annotations are expensive to obtain for
a large number of images. This makes holistic models that globally process an
image without annotations an attractive choice.

Lin et al. (2018) achieve remarkable improvements of holistic models on CUB-
200 as well as other fine-grained visual recognition data sets, by applying a bilinear
pooling operation to the outputs of a convolutional neural network. We define this
operation and explain its scalability bottleneck in the following.

2See https://www.allaboutbirds.org/guide/Ring-billed_Gull/species-compare for
an explanation. Accessed: 26/04/2022.

https://www.allaboutbirds.org/guide/Ring-billed_Gull/species-compare
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Bilinear Pooling (Lin et al., 2018). We consider a set of images I, where an
image A ∈ I can be of arbitrary size. We then define a feature descriptor as a
function f : I ×L → Rd that describes an image A at a location l ∈ L, where the
set of locations L is defined by the feature descriptor and generally depends on A.

Let a⊗ b := vec(ab⊤) ∈ Rd1·d2 be the vectorized outer product of two vectors
a ∈ Rd1 and b ∈ Rd2 . The bilinear pooling operation is then defined as

Bil(f,A) :=
∑
l∈L

f(A, l)⊗ f(A, l) ∈ Rd2 , (1.4)

which forms a global image descriptor, since the sum over L, referred to as a
pooling operation, aggregates local image descriptions over image locations. f
could correspond to feature extractors such as SIFT (Lowe, 1999), HOG (Dalal
and Triggs, 2005), or a convolutional neural network (Lecun et al., 1998).

The term f(A, l) ⊗ f(A, l) in Eq. (1.4) contains second-order multiplicative
interactions of the coordinates of f(A, l). These interactions correspond to the
explicit feature map of a degree-2 polynomial kernel as shown in Scholkopf and
Smola (2002, Proposition 2.1). Taking the inner product of the bilinearly pooled
features of two different images A,B ∈ I thus yields a sum of degree-2 polynomial
kernels:

Bil(f,A)⊤Bil(f,B) =
∑
l∈L

∑
l′∈L

(f(A, l)⊤f(B, l′))2

The polynomial kernel here is defined as k(x,y) = (γx⊤y + ν)2, where we set
x = f(A, l),y = f(B, l′), γ = 1 and ν = 0.

Computational bottleneck. The dimension of the bilinear features Bil(f, ·)
(1.4) is d2, where d is the dimension of the features extracted by f . The quadratic
scaling in d can render the bilinear pooling operation expensive. E.g., Lin et al.
(2018) extract relu5 outputs from a VGG-M network (Chatfield et al., 2014), which
yields d = 512 dimensional outputs with |L| = 272 for an RGB input image of size
448× 448× 3 from the CUB-200 data set.

As there are 200 classes in the CUB-200 data set, a linear classifier used on top
of the bilinear pooling features has 5122 · 200 ≈ 52 million parameters imposing
high computational and memory costs. At the same time, storing 5122 dimen-
sional features for subsequent image comparison and retrieval tasks requires one
megabyte of storage per image, which is around 10 times as much as storing the
original image in JPEG format.

Hence, Gao et al. (2016) propose Compact Bilinear Pooling to reduce the di-
mensionality of Bil(f, ·) (1.4) using TensorSketch (Pham and Pagh, 2013). More
precisely, they replace f(A, l)⊗f(A, l) in Eq. (1.4) by Φ(f(A, l)), where Φ : Rd →
RD is a random feature map of the polynomial kernel. This can drastically reduce
computational costs when D ≪ d2 holds. We will introduce such random feature
maps as well as TensorSketch in Chapter 2.
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Q: What does the sign say? A: stop Q: How many bikes are there? A: 2

Figure 1.2: Two question-answer pairs from the VQA data set (Antol et al., 2015)
along with the corresponding images.

In the following, we provide an additional example application, where bilinear
pooling is used to combine the features of two different modalities, namely image
and text.

Multi-modal bilinear pooling for visual question answering. The task
of Visual Question Answering (VQA) is to provide an answer to a question that
relates to an image (see Fig. 1.2 for an example). The answers to be predicted can
be multiple choice or open-ended, meaning that they need to be provided in the
form of free text. Models solving the VQA task well could be used for instance to
describe images to visually impaired people.

Answers in the VQA benchmark (Antol et al., 2015) take the form of short
descriptive words instead of full sentences. They may contain only a single word,
and many answers such as numbers, colors and objects appear frequently. There-
fore, Fukui et al. (2016) model the VQA problem as a classification task, where
the input to the model is an image and a question, and the output is the most
probable answer among a provided list of frequently occurring answers in the data
set.

The challenge in modelling this task is to combine the feature representations
of two different modalities (image and text) for further processing. These repre-
sentations then need to be classified into a large number of categories, e.g., Fukui
et al. (2016) use 3000 of the most common answers as classes. They introduce
the technique of multi-modal compact bilinear pooling to combine the features of
both modalities in a low-dimensional representation that can be projected onto a
3000-dimensional class representation under a reasonable computational budget.
This feature representation is an instance of random feature approximations for
polynomial kernels. We therefore introduce multi-modal bilinear pooling in the
following.

Let fimg : I × L → Rd1 be an image feature extraction function as introduced
before for bilinear pooling. To convert a given question into a numerical represen-
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tation, we further define a function ftxt : T → Rd2 that converts a text t ∈ T into
a d2-dimensional feature vector. For instance, this function could be a recurrent
neural network or a Transformer (Vaswani et al., 2017).

We then extend Eq. (1.4) to a multi-modal context as follows:

MulBil(fimg, ftxt,A, t) :=
∑
l∈L

fimg(A, l)⊗ ftxt(t) ∈ Rd1·d2 (1.5)

Thus, the vectorized outer product is applied to the features of two different modal-
ities instead of a feature map with itself, giving rise to a multi-modal feature vector.

This way of combining the features of different modalities provides a richer rep-
resentation than taking their element-wise sum/product or simply concatenating
them, since we consider multiplicative interactions between all pairs of elements.
As for standard bilinear pooling, the caveat is that this feature representation is
high-dimensional if d1 and/or d2 are large. E.g., d1 = d2 = 2048 in Fukui et al.
(2016) lead to a subsequent classification layer with 20482 · 3000 ≈ 12.6 billion pa-
rameters occupying around 48 gigabytes of memory when using 32 bits precision.

Similar to Gao et al. (2016), Fukui et al. (2016) propose to employ TensorSketch
to obtain a low-dimensional sketch of fimg(A, l)⊗ftxt(t) without ever constructing
this vector explicitly. The sketching methods for polynomial kernels discussed in
this thesis such as TensorSketch can be applied here despite the fact that the outer
product ⊗ in Eq. (1.5) is not applied to a vector with itself. This is because ran-
dom feature maps for polynomial kernels are generally constructed by combining
independent linear projections of individual inputs as we will show in Chapter 2.
In this way, Fukui et al. (2016) obtain a 16, 000-dimensional representation, which
corresponds to around 0.4% of the original number of elements that would be ob-
tained through Eq. (1.5). The storage of the classification layer is thus reduced to
around 183 megabytes rendering the training of the model feasible. Efficiency im-
provements of random features for polynomial kernels that we discuss in this thesis
could yield further computational savings for applications of bilinear pooling.

The applications discussed so far are connected to the use of polynomial kernels.
We now provide an example application for the exponential dot product kernel.

1.3.2 Dot Product Attention for Transformers

Transformers (Vaswani et al., 2017) are neural network architectures that have
been improving the state-of-the-art performance in numerous machine learning
benchmarks over the last years. Examples include natural language processing
(NLP) tasks like language generation (Brown et al., 2020) and machine translation
(Banar et al., 2020), but also other tasks like image classification (Liu et al., 2021).
Transformers gained particular popularity in NLP as they can be pretrained on
large amounts of unstructured text available on the web, and be fine-tuned to the
task at hand on a regular GPU affordable to the larger public (Devlin et al., 2019).
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These architectures heavily rely on the attention mechanism (Vaswani et al.,
2017) that models pairwise dependencies between the elements of an input se-
quence. E.g., in machine translation, the elements of an input sequence would
be the tokens (word fragments like word stems or syllables) of a sentence to be
translated. However, modelling pairwise interactions inside an input sequence in-
troduces a quadratic time and memory complexity in the number L of elements
in the sequence, making it impossible to train and fine-tune such models for large
L ≫ 512. This is also because transformers commonly use multiple attention
modules, e.g., BERT-large (Devlin et al., 2019) uses a total of 24 layers equipped
with 16 attention heads leading to a total number of 384 attention modules. This
computational bottleneck makes it difficult to capture long-range dependencies
between different tokens. Such dependencies need to be captured in tasks like
text summarization, where an input sequence could consist of thousands of tokens
contained in a long text.

The computational bottleneck for the modelling of long input sequences has
been addressed in numerous works (e.g. Xiong et al., 2021; Choromanski et al.,
2021; Zaheer et al., 2020). We provide a brief introduction to the kernelized view-
point here for which random feature approximations have been proposed (Choro-
manski et al., 2021). This viewpoint is of particular interest to this thesis as it
shows that the attention matrix is a normalized Gram matrix of a dot product ker-
nel that can be approximated through random features, enabling a linear instead
of a quadratic time and memory complexity with respect to L.

Dot-product attention. The dot product self-attention mechanism (Vaswani
et al., 2017) can be described as follows. Consider an input sequence of objects
x1, . . . ,xL such as text tokens or image fragments, where each object {xi}Li=1 is
represented numerically by a demb-dimensional feature vector, such that it can be
processed by a neural network. We summarize the sequence in matrix form as
X := (x1, . . . ,xL)

⊤ ∈ RL×demb .
The self-attention mechanism is a learnable transformation that converts the

input sequence X into an output sequence Z := (z1, . . . ,zL)
⊤ ∈ RL×d, where the

output dimension d is determined by a set of trainable weight matricesWQ,WK ,W V ∈
Rdemb×d. We define a set of linear projections Q := XWQ,K := XWK ,V :=
XW V and summarize the self-attention transformation in matrix-form as follows:

Z =Att(Q,K,V ) := D−1AV

with A := exp(QK⊤/
√
d) and D := diag(

L∑
i=1

A1i, . . . ,
L∑
i=1

ALi)

Each element of D−1A hence corresponds to the evaluation of the softmax 3 func-

3Softmax is defined as a function f : RL → RL with (f(x))j = exp(xj)/
∑L

j=1 exp(xj).
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tion:

αi,j := (D−1A)i,j =
exp((WQxi)

⊤(WKxj)/
√
d)∑L

j=1 exp((WQxi)⊤(WKxj)/
√
d)
, (1.6)

where D−1 takes the role of normalizing the rows of A. αi,j ∈ [0, 1] for i, j =
1, . . . , L are called attention weights. This means that each individual output
{zi}Li=1 is computed as zi =

∑L
j=1(W V xj)αi,j, and is hence a positively weighted

average of the vectors {W V xj}Lj=1.
The learnable attention weights αi,j should be large for related embeddings

and small for unrelated ones. For instance, in NLP tasks, these embeddings could
encode semantic information, and a weighted average of semantically related to-
kens in an input sequence could yield a contextualized representation avoiding
ambiguities. To give a concrete example, the word “Jaguar” can either relate to
an animal or a car manufacturer and its numerical embedding may therefore be
ambiguous. Obtaining a novel numerical representation by averaging out its em-
bedding vector with the one for the word “car” that appears in the same input
sequence would disambiguate its numerical representation. The attention weight
between the embeddings of “Jaguar” and “car” should thus be large.

Kernelized view. We can see A as a Gram matrix consisting of evaluations
of an exponential dot product kernel k(x,y) = exp(x⊤y) for some x,y ∈ Rd.
Setting (A)i,j = k(WQxi/

4
√
d,WKxj/

4
√
d) shows this correspondence. We will

show in the following how random feature maps can accelerate the computation
of the attention mechanism explained before.

There exist random feature approximations for the exponential dot product
kernel (Kar and Karnick, 2012; Choromanski et al., 2021) and we derive novel
random feature maps for it in Chapter 5. We can thus define the approximate
kernel k̂(x,y) := Φ(x)⊤Φ(y) for some feature map Φ : Rd → RD such that
E[k̂(x,y)] = k(x,y). Substituting k̂ into Eq. (1.6) yields the approximate atten-
tion weights

α̂ij =
Φ(WQxi/

4
√
d)⊤Φ(WKxj/

4
√
d)∑L

j=1Φ(WQxi/
4
√
d)⊤Φ(WKxj/

4
√
d)
.

We can now efficiently compute each {zi}Li=1 as

zi =
L∑

j=1

(W V xj)α̂ij =

∑L
j=1(W V xj)Φ(WQxi/

4
√
d)⊤Φ(WKxj/

4
√
d)

Φ(WQxi/
4
√
d)⊤

∑L
j=1Φ(WKxj/

4
√
d)

=

(∑L
j=1(W V xj)Φ(WKxj/

4
√
d)⊤
)
Φ(WQxi/

4
√
d)

Φ(WQxi/
4
√
d)⊤

(∑L
j=1Φ(WKxj/

4
√
d)
) , (1.7)
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Figure 1.3: Exploiting the associativity of the matrix product to enable linear time
complexity when computing random feature attention. The original unnormalized
attention matrix exp(QK⊤/

√
d) (left) is factorized into the approximate matrix

Φ(Q/ 4
√
d)Φ(K/ 4

√
d)⊤ (right) that can be efficiently multiplied with V .

where the terms in parenthesis in Eq. (1.7) only need to be computed once in
O(LdD) time as the terms are independent of i. Computing all {zi}Li=1 then takes
O(LdD) again. Fig. 1.3 summarizes this computation in matrix form. We thus
achieve O(LdD) instead of O(L2d) computational complexity, where an advantage
is achieved with random features if D < L.

A similar random feature approximation has been proposed to sample efficiently
from the softmax distribution for classification problems with a large number of
classes (Rawat et al., 2019).

The efficiency gains in Transformer architectures brought by random feature
approximations could have a significant impact on computational as well as energy
savings in the future. In fact, it was shown in Strubell et al. (2019) that training
a simple and commonly used BERT-base (Devlin et al., 2019) language model on
a GPU cloud platform creates the same amount of CO2 emissions as a flight from
New York to San Francisco for one passenger, while the price paid to the cloud
platform lies between 3, 700 and 12, 500 US dollars. These amounts are orders of
magnitude larger when including the necessary hyperparameter tuning and archi-
tecture search. Due to the widespread use of such models, efficient random feature
approximations of the exponential kernel could thus contribute to more sustainable
machine learning infrastructures in this domain.

Having motivated random feature approximations for dot product kernels through
a set of example applications, we describe in the remainder of this chapter how
such approximations naturally occur as the result of a physical process. The Opti-
cal Processing Unit is an optical hardware that makes use of this phenomenon to
compute random features efficiently, both in terms of speed and power consump-
tion. This device could potentially yield additional energy savings and working
with it inspired the line of research that we pursue in this thesis.
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Figure 1.4: Experimental setup of the Optical Processing Unit (modified with
permission from Saade et al. (2016)). The data vector is encoded in the coherent
light from a laser using a DMD. Light then goes through a scattering medium and
a speckle pattern is measured by a camera.

1.4 The Optical Processing Unit

The Optical Processing Unit (OPU) (Saade et al., 2016; Ohana et al., 2020) is an
optical hardware that performs random projections literally at the speed of light,
since these projections are the result of an optical scattering process. The principle
of the random projections performed by the OPU is based on the use of a semi-
transparent “scattering” material that refracts the laser light passing through it.
As discussed in Liutkus et al. (2014), light going through such a scattering medium
follows many complex paths that depend on the refractive index inhomogeneities
at random positions. For a fixed scattering medium, the resulting process is still
linear, deterministic, and reproducible making the features obtained by the OPU
useful for machine learning.

Fig. 1.4 shows a schematic drawing of the physical apparatus of the OPU. We
transform an arbitrary data point x ∈ Rd into an analog representation by filtering
a laser light beam at different positions using a digital micromirror device (DMD).
This encoded light then passes through the heterogeneous medium, implicitly per-
forming a random matrix multiplication, where the random matrix is inherently
determined by the scattering medium. The scattered light results in a so-called
speckle pattern that is recorded by a camera, where the light intensity at each
measuring point is the result of a superposition of the light beams filtered by the
DMD. This superposition is mathematically modelled by a sum of the components
of x weighted by random coefficients. Measuring the intensity of light at an ar-
bitrary pixel location recorded by the camera induces a non-linear transformation
of this sum. D arbitrary pixel values taken together then constitute the random
feature map

Φ(x) = |Ux|2/
√
D, with U ∈ CD×d and (U)i,j

i.i.d.∼ CN (0, 1),

where | · |2 is the squared absolute value taken element-wise.
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We showed in our work (Ohana et al., 2020) that the random projections
computed and recorded by the OPU correspond to the random features of a kernel
that is closely related to a degree-2 polynomial kernel. This is a remarkable result
because it shows that the random features obtained by the aforementioned light
scattering process are useful in machine learning applications where polynomial
kernels are used.

We derive this result and further extensions in Chapter 6, where we also com-
pare the energy consumption of the OPU against a recent GPU. Since the OPU
has a lower power consumption (30 Watts) than a typical GPU (200-300 Watts)
while potentially achieving faster projection times, these findings are interesting
both from an ecological as well as from a performance perspective. Moreover, re-
cent work (Gupta et al., 2019) has shown that the OPU can also be used to obtain
purely linear random projections offering a wide range of additional applications
in random feature approximations and randomized linear algebra.



Chapter 2

Random Feature Approximations
of Shift-Invariant Kernels and
Polynomial Kernels

In the previous chapter, we motivated the use of random feature approximations
through a set of example applications, while treating random features as black-box
functions. The purpose of this chapter is to provide a literature overview on ran-
dom feature methods with a focus on random features for polynomial kernels, since
these form the basis for the random feature methods developed in the subsequent
chapters of this thesis.

At the same time, we cover random features for shift-invariant kernels, as
they are the most widely used random feature approximations (see Liu et al.
(2020) for a recent overview). Random feature constructions for shift-invariant
kernels and polynomial kernels are conceptually different, but Pennington et al.
(2015) established a connection between the two. As we compare against their
method as well as against random Fourier features for the approximation of the
Gaussian kernel in the empirical evaluations carried out for this thesis, we consider
it important to discuss both lines of research in this chapter.

Random features were originally introduced as random Fourier features for
shift-invariant kernels by Rahimi and Recht (2007), and several other works fol-
lowed later on that studied random feature approximations for the polynomial
kernel, in particular Kar and Karnick (2012); Pham and Pagh (2013); Hamid
et al. (2014); Avron et al. (2014); Pennington et al. (2015); Ahle et al. (2020).

We therefore cover random Fourier features for shift-invariant kernels first.

15
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2.1 Random Fourier Features for Shift-Invariant

Kernels

In this section, we give a general introduction to random features for shift-invariant
kernels. In addition, we discuss the subclass of isotropic kernels for which these
random features take on a special form.

A shift-invariant (or stationary) kernel k(x,y) ∈ C is a positive definite func-
tion of τ = x− y ∈ Rd, making it invariant to translations of the inputs. We will
thus overload the notation and write k(τ ) instead.

Shift-invariant kernels are characterized through Bochner’s theorem (see Stein,
1999, Chapter 2.5):

Theorem 2.1.1 (Bochner’s theorem). A complex-valued shift-invariant kernel
k(τ ) on Rd is positive definite if and only if it can be written in the following
form:

k(τ ) =

∫
Rd

exp(iω⊤τ )µ(ω)dω, (2.1)

where µ is a non-negative finite measure and i :=
√
−1.

The construction of random Fourier features relies entirely on the above theo-
rem and we introduce them in the following.

Random Fourier features. Random Fourier features were introduced in the
seminal work by Rahimi and Recht (2007) who exploit the fact that the mea-
sure µ is proportional to a probability density p. To see this, let σ2 := k(0) =∫
Rd µ(ω)dω ≥ 0. We then obtain a density p(ω) := µ(ω)/σ2 because p(ω) ≥ 0
and

∫
Rd p(ω)dω = 1 hold. W.l.o.g., we assume σ2 = 1 from now on. (Stein, 1999,

Chapter 2.5) call p(ω) the spectral density, which can be found for a given kernel
through the following inversion formula:

p(ω) =
1

(2π)d

∫
Rd

exp(−iω⊤τ )k(τ )dτ (2.2)

Therefore, there is a one-to-one correspondence between spectral densities and
shift-invariant kernels.

Given a properly scaled shift-invariant kernel and its spectral density, we can
rewrite Eq. (2.1) as:

k(τ ) =

∫
Rd

exp(iω⊤τ )p(ω)dω = Eω∼p(ω)

[
exp(iω⊤τ )

]
= Eω∼p(ω)

[
exp(iω⊤x) exp(iω⊤y)

]
. (2.3)

We can then obtain a Monte-Carlo estimate k̂C(τ ) := ΦC(x)
⊤ΦC(y) of k(τ ) with

ΦC(x) =
(
exp(iω⊤

1 x), . . . , exp(iω
⊤
Dx)

)⊤
/
√
D ∈ CD,
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where ω1, . . . ,ωD
i.i.d.∼ p(ω). ΦC : Rd → CD is called a random feature map and we

use the subscript C to emphasize the use of complex-valued basis functions. From
now on, we drop the subscript ω ∼ p(ω) of the expectation for brevity.

The dimension D of the random feature map determines a trade-off between
computational cost and approximation quality. We briefly derive the variances of
random Fourier features to show this effect.

Variance of the complex estimator. The variance of k̂C(τ ) is:

V[k̂C(τ )] =
1

D2

D∑
ℓ=1

V[exp(iω⊤
ℓ τ )] =

1

D2

D∑
ℓ=1

E
[∣∣exp(iω⊤

ℓ τ )
∣∣2]− ∣∣E [exp(iω⊤

ℓ τ )
]∣∣2

=
1

D2

D∑
ℓ=1

E
[
cos2(ω⊤

ℓ τ ) + sin2(ω⊤
ℓ τ )

]
− k(τ )2 =

1

D

(
1− k(τ )2

)
As the {wℓ}Dℓ=1 are i.i.d., we have V[k̂(τ )] ∝ 1/D giving better kernel approxima-
tions for larger D. At the same time, the input τ also affects the variance. E.g.,
if τ = 0, the variance is always zero regardless of D.

When the kernel of interest is real-valued, we can derive a real-valued feature
map as follows.

Real-valued feature maps. For kernels k(τ ) ∈ R, we can rewrite Eq. (2.3) as:

kR(τ ) = E
[
exp(iω⊤τ )

]
= E

[
cos(ω⊤τ )

]
+ iE

[
sin(ω⊤τ )

]
= E

[
cos(ω⊤τ )

]
= E

[
cos(ω⊤x− ω⊤y)

]
= E

[
cos(ω⊤x) cos(ω⊤y) + sin(ω⊤x) sin(ω⊤y)

]
,

where we use the trigonometric identity cos(α−β) = cos(α) cos(β)+sin(α) sin(β).
Thus, we can use an alternative random feature map ΦR : Rd → R2D for real-
valued kernels k̂R(τ ) := ΦR(x)

⊤ΦR(y) with

ΦR(x) :=
[
cos(ω⊤

1 x), sin(ω
⊤
1 x), . . . , cos(ω

⊤
Dx), sin(ω

⊤
Dx)

]⊤
/
√
D ∈ R2D. (2.4)

Variance of the real estimator. In this case the variance is

V[k̂R(τ )] =
1

D2

D∑
ℓ=1

V
[
cos(ω⊤

ℓ τ )
]
=

1

D2

D∑
ℓ=1

E
[
cos2(ω⊤

ℓ τ )
]
− E

[
cos(ω⊤

ℓ τ )
]2

=
1

D

(
1

2
+

1

2
k(2τ )− k(τ )2

)
≤ V[k̂C(τ )],

where we use the trigonometric identity cos(α2) = 1
2
+ 1

2
cos(2α).
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Figure 2.1: The Gaussian kernel (blue) and the variance of complex (green) and
real-valued (yellow) kernel estimators. We double the variance of the real-valued
estimator to compare feature maps of equal dimensions.

Comparing the variance of real and complex kernel estimates. Although
we obtain a variance reduction w.r.t. D when using the real-valued estimator, this
comes at the expense of doubling the dimension of the feature map compared to
the complex case. We therefore compare V[k̂R(τ )] and V[k̂C(τ )] on the example
of the Gaussian kernel defined as k(τ ) := exp(−∥τ∥2/(2l2)) with length scale
parameter l > 0 in the following.

Fig. 2.1 shows this comparison across different values of ∥τ/l∥. In order to
yield a fair comparison, we double the variance of the real-valued estimator since
it requires 2D features (orange line). It can be seen that the real-valued estima-
tor has a lower variance than its complex-valued counterpart (green line) for all
values ∥τ/l∥. Thus, for the Gaussian kernel, real-valued random Fourier features
perform better despite doubling the feature map dimension. Furthermore, we can
generally observe that variances increase as ∥τ/l∥ increases, which indicates that
more random features are required when l is short compared to the scaling of the
data itself. This happens in particular when the function to be modelled oscillates
quickly, i.e., it uses high frequencies. We will empirically study this phenomenon
in Chapter 5.

Although complex-valued feature maps perform worse in terms of the approxi-
mation variance in this example, we will show in Chapter 3 that the opposite can
be the case for polynomial kernel approximations.

For further statistical guarantees on random Fourier features, we refer the
reader to the following related works. Exponential concentration bounds are de-
rived in the original work by Rahimi and Recht (2007) and are tightened by Suther-
land and Schneider (2015). Statistical guarantees for kernel ridge regression are
derived in (Avron et al., 2017; Rudi and Rosasco, 2017).

2.1.1 Spherical Random Features for Isotropic Kernels

A special class of random Fourier features are Spherical Random Features (SRF)
introduced in Pennington et al. (2015) for isotropic kernels. They are of particular
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importance to this thesis, as they will provide us with a baseline method when
approximating high-degree polynomial kernels in Chapter 5.

We begin by characterizing isotropic kernels.

Isotropic kernels. Isotropic kernels are shift-invariant (or stationary) kernels
of the form k(x,y) = k(∥x − y∥) for some x,y ∈ Rd, where ∥ · ∥ denotes the
Euclidean norm. This means that these kernels are also rotation-invariant. To see
this, consider a rotation matrix R ∈ Rd×d with R⊤R = Id being applied to both
x and y. Then we have:

∥Rx−Ry∥2 = (Rx)⊤(Rx) + (Ry)⊤(Ry)− 2(Rx)⊤(Ry) = ∥x− y∥2.

We now show that all isotropic kernels are real-valued. Recall from the previous
chapter that k(x,y) = k(y,x) holds for any kernel k. Therefore, we can write

k(x,y) = k(y,x) = k(∥ − τ∥) = k(∥τ∥) = k(x,y),

which implies that Im{k(τ )} = 0, where Im{·} denotes the imaginary part of a
complex number.

Popular examples of isotropic kernels include Gaussian and Matérn kernels (see
Rasmussen and Williams, 2006, Chapter 4.2). In the following, we derive random
feature approximations for the specific case of isotropic kernels. For this purpose,
we rely on a transformation of Bochner’s theorem.

Basis functions for isotropic kernels. Bochner’s theorem (2.1) can be re-
formulated to provide a specific spectral representation for the class of isotropic
kernels. Let k(∥τ∥) be an isotropic kernel with spectral density p(ω). As shown in
Stein (1999, Chapter 2.10), the spectral density of isotropic kernels is radial, i.e.,
it only depends on ∥ω∥. This allows to change the integration over the density
p(ω) in Eq. (2.1) into an integration over the one-dimensional density p̂(∥ω∥), i.e.,
a density over the norm of ω, as follows:

k(∥τ∥) =
∫ ∞

0

d ∥w∥ p̂(∥ω∥) Γ

(
d

2

)(
2

∥ω∥ ∥τ∥

) d
2
−1

J d
2
−1(∥ω∥ ∥τ∥)︸ ︷︷ ︸

:= Λd(∥ω∥∥τ∥)

, (2.5)

where Jν with ν ∈ R is the Bessel function of the first kind (Abramowitz and
Stegun, 1974, Chapter 10) and Γ(·) is the Gamma function.

The one-dimensional density p̂(∥ω∥) can be derived from p(ω) by using an
integration over spherical coordinates and the fact that both densities need to
integrate to one:∫

Rd

p(ω)dw =

∫ ∞

0

p(ω) ∥ω∥d−1 (2π)
d/2

Γ(d/2)︸ ︷︷ ︸
=: p̂(∥ω∥)

d ∥ω∥ = 1 (2.6)
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Figure 2.2: Comparing Λd(x) on the left to exp(−x2/(2d)) on the right for different
values of d. The functions are indistinguishable for large enough d.

In fact, the density p̂(∥ω∥) depends on the dimension d of ω and only exists if k
is a valid kernel, which is the case when

∫∞
0

∥τ∥d−1 |k(∥τ∥)| d ∥τ∥ < ∞ holds (see
Stein, 1999, Chapter 2.10).

As noted in Genton (2002), the basis functions Λd(·) in Eq. (2.5) become less
expressive and have an increasing lower bound for increasing d. Therefore, the
class of valid isotropic kernels becomes more restrictive as d increases and certain
isotropic kernels are positive definite only up to a certain input dimension. Fig. 2.2
shows the basis functions Λd(·) in Eq. (2.5) for different values of d. It is interesting
to note that Λd(∥ω∥ ∥τ∥) approaches exp(−(∥ω∥ ∥τ∥)2/(2d)) as d increases. This
has the immediate consequence that any isotropic kernel that is positive definite
for all d, can be modeled as a scale-mixture of Gaussians. This idea is formalized
in Schoenberg’s theorem:

Theorem 2.1.2 (Schoenberg 1938). A continuous function f : [0,∞) → R
is positive definite and radial on Rd if and only if it is of the form f(r) =∫∞
0

exp(−r2t2)dµ(t), where µ is a finite non-negative Borel measure on [0,∞).

Having learned that any positive definite isotropic kernel is directly defined by
the one-dimensional density p̂(∥ω∥) allows us to adapt the sampling procedure of
random Fourier features for the class of isotropic kernels. We refer to this novel
sampling procedure as Spherical Random Features and explain it in the following.

Spherical Random Features (SRF). As noted earlier, the original spectral
density p(ω) of isotropic kernels is radial and thus depends only on ∥ω∥. This
density must therefore be equal for all ω with an equal radius r := ∥ω∥ > 0. This
observation allows to sample from p(ω) by drawing uniform samples from the unit
sphere Sd−1 := {ω ∈ Rd : ∥ω∥ = 1} and to scale them using samples from the
norm density p̂(∥ω∥). Algorithm 1 summarizes this procedure.

Pennington et al. (2015) refer to the resulting random features as Spherical
Random Features. Since isotropic kernels are always real-valued, we can replace
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Algorithm 1: Spherical Random Features (SRF)

Result: An SRF map ΦC(x)
Draw D i.i.d. samples s1, s2, . . . , sD from N (0, Id) ;
Draw D i.i.d. samples ω1, ω2, . . . , ωD from p̂(∥ω∥) ;
Compute ΦC(x) =

(
exp

(
i ω1

∥s1∥s
⊤
1 x
)
, . . . , exp

(
i ωD

∥sD∥s
⊤
Dx
))

/
√
D ∈ CD ;

the complex-valued basis functions in Algorithm 1 with sines and cosines to obtain
a real-valued feature map as we did in Eq. (2.4).

A crucial advantage of Algorithm 1 is that we can substitute i.i.d. samples from
the unit-sphere Sd−1 with orthogonal quasi-Monte-Carlo samples as described by
Yu et al. (2016) to approximate the integral in Eq. (2.1) more efficiently, i.e.,
requiring less random features for the same kernel approximation error. An in-
depth discussion when orthogonal samples are superior approximators for isotropic
kernels can be found in Choromanski et al. (2018).

Spherical Random Features can also be used to approximate polynomial kernels
on the unit sphere. However, such random feature approximations are biased. We
therefore delay their introduction to the end of this chapter and cover unbiased
approximations first.

2.2 Random Features for Polynomial Kernels

We study here random feature approximations of polynomial kernels, defined as

k(x,y) = (γx⊤y + ν)p, (2.7)

where γ, ν ≥ 0 and p ∈ N. We call such random features polynomial sketches1.
Since polynomial kernels are not shift-invariant, widely known random Fourier
features (Rahimi and Recht, 2007) cannot be applied for their unbiased approxi-
mation. Polynomial sketches are a fundamentally different approach, and can be
understood as implicit linear random projections, or sketches (Woodruff, 2014), of
the explicit high dimensional feature maps of polynomial kernels.

For simplicity, we focus on homogeneous polynomial kernels of the form

k(x,y) = (x⊤y)p, (2.8)

i.e., we set γ = 1, ν = 0 in Eq. (2.7). All other cases can be reduced to the
homogeneous case, by appending

√
ν to the input vectors and rescaling them, i.e.,

by setting x̃ := (
√
γx⊤,

√
ν)⊤ ∈ Rd+1 and ỹ := (

√
γy⊤,

√
ν)⊤ ∈ Rd+1, we have

(γx⊤y + ν)p = (x̃⊤ỹ)p.

1We exclude Spherical Random Features (Pennington et al., 2015) from this terminology as
they are not implicit high-dimensional sketches.
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In this way, polynomial sketches for the homogeneous case can also be applied to
the inhomogeneous case.

There exists an explicit feature map for polynomial kernels. To see this, we
introduce some new notation. Recall from the previous chapter that we define the
vectorized outer product between two vectors a, b ∈ Rd as a⊗b := vec(ab⊤) ∈ Rd2 .
We further define

a(k) := a⊗ · · · ⊗ a︸ ︷︷ ︸
k terms

∈ Rdk (2.9)

for some k ∈ N. Then the homogeneous polynomial kernel can be written as
(Scholkopf and Smola, 2002, Proposition 2.1):

(x⊤y)p = (x(p))⊤y(p) (2.10)

Thus, x(p) and y(p) are the exact feature maps of the input vectors x and y,
respectively. This exact feature expansion leads to dp dimensional vectors2 that
are infeasible to construct when d and/or p are moderately large. This justifies
the need for randomized approximations of the polynomial kernel.

There are several different approaches for the randomized approximation of
polynomial kernels in the literature. We identify four different construction types
of such polynomial sketches that we call: (A) Product-Sketches, (B) Convolutions
of CountSketches (a.k.a. TensorSketch), (C) Kronecker Product of SRHT sketches
(a.k.a. TensorSRHT), and (D) Spherical Random Features for polynomial kernels.
They all have in common that they can be constructed without forming the exact
dp-dimensional feature map of the polynomial kernel.

There exist further algorithms that can be used on top of the aforementioned
random feature approximations to improve their efficiency. E.g., Hamid et al.
(2014) propose to first create a high-dimensional projection that is down-projected
in a second step and Ahle et al. (2020) propose a hierarchical random feature
construction. Such algorithms are not the focus of this work and we will not
discuss them further. The random features discussed in this thesis should be seen
as base sketches that can be used inside such algorithms. The goal of this thesis
is to improve the efficiency of these base sketches.

The contributions in this thesis are all made regarding Product-Sketches that
were the first ones to be proposed in the literature. We cover them in the following
and introduce random feature types (B)-(D) in the remainder of this chapter to
give a context over the literature.

2By grouping up equal terms, we can reduce the dimensionality to
(
d+p−1

p

)
, which still leads to

unrealistic dimensional feature vectors as soon as d is large. For example, working with MNIST
(Lecun et al., 1998) images of size 28x28 (d = 784) leads to 307,720 features for p = 2 and to
80,622,640 features for p = 3.
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2.2.1 (A) Product-Sketches

We first study polynomial sketches proposed by Kar and Karnick (2012), which
are also discussed in Hamid et al. (2014).

Let D ∈ N be the number of random features, and p ∈ N be the the degree of
the polynomial kernel (2.8). Suppose we generate p×D i.i.d. random vectors

wi,ℓ ∈ Rd satisfying E[wi,ℓw
⊤
i,ℓ] = Id, i ∈ {1, . . . , p}, ℓ ∈ {1, . . . , D},

(2.11)
where Id ∈ Rd×d denotes the identity matrix.

Then we define a random feature map as

Φ(x) :=
1√
D

[
(

p∏
i=1

w⊤
i,1x), . . . , (

p∏
i=1

w⊤
i,Dx)

]⊤
∈ RD. (2.12)

We call the specific form of the feature map in Eq. (2.12) a Product-Sketch since
they are an element-wise product of individual linear random projections. The
resulting approximation of the polynomial kernel (2.8) is given by

k̂(x,y) := Φ(x)⊤Φ(y), (2.13)

which is unbiased, as the expectation with respect to the random vectors (2.11)
gives

E
[
Φ(x)⊤Φ(y)

]
=

1

D

D∑
ℓ=1

p∏
i=1

x⊤E[wi,ℓw
⊤
i,ℓ]y = (x⊤y)p.

Kar and Karnick (2012) suggest to define random vectors in (2.11) using the
Rademacher distribution: each element ofwi,ℓ is independently drawn from {−1, 1}
with equal probability. Hamid et al. (2014) suggest to use Gaussian as well as
structured Rademacher weights based on the subsampled randomized Hadamard
transform (SRHT) (Tropp, 2011) instead. We study in Chapter 3 how the distri-
bution of the random vectors affects the quality of the kernel approximation.

Implicit sketching of high-dimensional features. The random feature map
(2.12) can be interpreted as a linear sketch (projection) of an explicit high-dimensional
feature vector for the polynomial kernel. To describe this, consider the case D = 1
and let wi = (wi,1, . . . , wi,d)

⊤ ∈ Rd with i = 1, . . . , p be i.i.d. random vectors
satisfying E[wiw

⊤
i ] = Id. Then, the random feature map Φ(x) (which is one

dimensional in this case) for x := (x1, . . . , xd)
⊤ is given by

Φ(x) =

p∏
i=1

w⊤
i x =

p∏
i=1

d∑
j=1

wi,jxj =
d∑

j1=1,...,jp=1

w1,j1xj1 · · ·wp,jpxjp (2.14)

= (w1 ⊗ · · · ⊗wp)
⊤x(p), (2.15)
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where x(p) ∈ Rdp is defined as in Eq. (2.9). Therefore, for D = 1, the approximate
kernel is given as

k̂(x,y) := Φ(x) · Φ(y) = (w1 ⊗ · · · ⊗wp)
⊤x(p) · (w1 ⊗ · · · ⊗wp)

⊤y(p) (2.16)

As shown in Eq. (2.10), x(p) and y(p) are the exact feature maps of the polynomial
kernel for the input vectors x and y, respectively. Thus, the random feature map
Φ(x) ∈ R in (2.15) is a projection of the exact feature map x(p) ∈ Rdp onto R.

Similarly, if D > 1, the random feature map Φ(x) ∈ RD in (2.12) can be
interpreted as a projection of the exact feature map x(p) onto RD. A remarkable
point of this random feature map is that it can be obtained without constructing
the exact feature vector x(p). Indeed, the computational complexity of constructing
the random feature map Φ(x) is O(pdD), while the exact feature map x(p) requires
O(dp).

The variances of the sketches introduced in this section have not been explored
prior to our work. We will derive detailed variance formulas for several Product-
Sketches in Chapters 3 and 4. However, there exist exponential concentration
bounds similar to the ones derived in Rahimi and Recht (2007) for random Fourier
features. These can be found in Kar and Karnick (2012); Hamid et al. (2014). We
want to emphasize however, that these bounds serve to provide theoretical guaran-
tees for the number of random features required for a certain approximation error.
They should not be used to compare the statistical efficiency of these sketches.
I.e., Hamid et al. (2014) obtain a tighter bound when using Gaussian weights in
Eq. (2.11) than the one for Rademacher weights obtained by Kar and Karnick
(2012). We will show in Chapter 3 however, that Rademacher sketches, and in
particular structured ones yield much lower approximation variances than Gaus-
sian sketches, which is also reflected in their empirical performances in downstream
tasks in Chapter 4.

2.2.2 (B) Convolutions of CountSketches a.k.a. TensorS-
ketch

TensorSketch is a structured polynomial sketch that was introduced by Pham and
Pagh (2013). It can still be considered a state-of-the-art polynomial sketch in
terms of kernel approximation quality and computation speed. Hence, it was used
in Gao et al. (2016) and Fukui et al. (2016) to accelerate bilinear pooling opera-
tions as explained in the previous chapter. Since TensorSketch is a convolution of
CountSketches (Charikar et al., 2002), we introduce CountSketches first.

CountSketch (Charikar et al., 2002). CountSketches were originally invented
to maintain approximate counts of high-frequency elements in large data streams
where it is infeasible to store the entire vocabulary of unique elements (Charikar
et al., 2002). Weinberger et al. (2009); Woodruff (2014) show that CountSketches
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can also be used as a dimensionality reduction technique leading to unbiased esti-
mates of the linear kernel.

CountSketches are usually defined in terms of hash functions (Charikar et al.,
2002; Pham and Pagh, 2013). However, in order to keep a consistent framework
throughout this literature review, we define CountSketches in terms of randomized
linear projections.

Let C ∈ {−1, 0, 1}D×d be a sparse projection matrix with elements

(C)i,j = δ(hj = i)sj, with i ∈ {0, . . . , D − 1}, j ∈ {1, . . . , d}, (2.17)

where h := (h1, . . . , hd)
⊤ ∈ Rd has elements independently and uniformly drawn

from {0, . . . , D−1} and s := (s1, . . . , sd)
⊤ ∈ {−1, 1}d is a vector with independent

Rademacher samples. δ(hj = i) = 1 if hj = i and zero otherwise. The rows of C
are indexed starting from zero as this will simplify our notation later on.

C is sparse because it has only one non-zero entry per column defined through
h. Thus, it has only d non-zero entries in total allowing to compute the CountS-
ketch Cx ∈ RD for a given x ∈ Rd in O(d) time and memory. In fact, it is
sufficient to only store h and s in the place of C. The i-th element of Cx can
then be efficiently computed as (Cx)i =

∑
j:hj=i xjsj.

We now show that Cx⊤Cy is an unbiased estimate of the linear kernel:

E[Cx⊤Cy] = E

[
D−1∑
i=0

(
d∑

j=1

δ(hj = i)sjxj

)(
d∑

j′=1

δ(hj′ = i)sj′yj′

)]
(2.18)

=
D−1∑
i=0

d∑
j=1

d∑
j′=1

E[δ(hj = i)δ(hj′ = i)]E[sjsj′ ]xjyj′

=
D−1∑
i=0

d∑
j=1

E[δ(hj = i)δ(hj = i)]xjyj =
D−1∑
i=0

d∑
j=1

1

D
xjxj = x⊤y,

where we use the fact that E[sjsj′ ] = 1 if j = j′ and E[sjsj′ ] = E[sj]E[sj′ ] = 0
otherwise. Moreover, E[δ(hj = i)] = 1/D · 1 + 0 = 1/D.

In the following, we describe an efficient way to compute a CountSketch of
x(p) known as TensorSketch (Pham and Pagh, 2013) without ever constructing
x(p) itself. TensorSketch is thus a polynomial sketch and it is formed through a
convolution of p individual CountSketches.

TensorSketch. The convolution operation is equivalent to a product in the fre-
quency domain. We therefore apply the discrete Fourier transform (DFT) to a
CountSketch. Let k ∈ {0, . . . , D − 1} be the index over the elements of Cx. The
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k-th element of its DFT is computed as:

(DFT[Cx])k =
D−1∑
i=0

exp

(
−i

2π

D
ki

)
c⊤i x =

d∑
j=1

D−1∑
i=0

exp

(
−i

2π

D
ki

)
δ(hj = i)sjxj

=
d∑

j=1

exp

(
−i

2π

D
khj

)
sjxj.

Now we take the element-wise product of the Fourier transform of two indepen-
dent CountSketches C1x and C2x defined through h1,h2 and s1, s2, respectively.
The k-th element of this product then yields:

(DFT[C1x])k · (DFT[C2x])k

=

(
d∑

j=1

exp

(
−i

2π

D
kh1,j

)
s1,jxj

)(
d∑

j′=1

exp

(
−i

2π

D
kh2,j′

)
s2,j′xj′

)

=
d∑

j=1

d∑
j′=1

exp

(
−i

2π

D
k(h1,j + h2,j′)

)
s1,js2,j′xjxj′

=
d∑

j=1

d∑
j′=1

exp

(
−i

2π

D
k((h1,j + h2,j′) mod D)

)
s1,js2,j′xjxj′ = (DFT[C(1∗2)x

(2)])k,

where C(1∗2) ∈ {−1, 0, 1}D×d2 is a novel CountSketch with h and s in Eq. (2.17)
being replaced by

h(1+2) := vec(h1 + h⊤
2 ) mod D ∈ Rd2 and s(1⊗2) := s1 ⊗ s2 ∈ Rd2 .

Note that the arithmetic modulus arises because f(x) = exp(−i 2π
D
x) has a period

of D.
In Appendix A.1, we show that h(1+2) has elements drawn uniformly from

{0, . . . , D−1}. Moreover, s(1⊗2) is a vector with elements drawn from the Rademacher
distribution because the product of two independent Rademacher variables is again
Rademacher distributed. This means that the convolution of two independent
CountSketches of x yields a CountSketch of x(2). Extending the derivation above
to p independent CountSketches {Cix}pi=1 gives a new CountSketch C(1∗···∗p) of
x(p) that can be computed as:

Φ(x) := DFT−1 [DFT[C1x] · · ·DFT[Cpx]] = C(1∗···∗p)x
(p), (2.19)

where DFT−1 is the inverse discrete Fourier transform. We call Φ(x) (2.19) a Ten-
sorSketch of degree p. Using the Fast Fourier Transform, the total computational
cost for obtaining Φ(x) is O(p(d+D logD)). This implies that we implicitly obtain
a linear sketch in dp dimensions without ever having to compute x(p) explicitly.
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Using Eq. (2.18), we can show that the feature map Φ(x) leads to an unbiased
estimate k̂(x,y) := Φ(x)⊤Φ(y) of the polynomial kernel:

E[k̂(x,y)] = x(p)⊤y(p) = (x⊤y)p

A caveat of TensorSketch is that the elements of the outer product s(1⊗···⊗p) =
s1 ⊗ · · · ⊗ sp are statistically dependent despite having pairwise covariances of
zero. This is sufficient for TensorSketch to yield unbiased kernel estimates, but
it influences higher order moments making it difficult to study its approximation
variances for p > 1 as shown in Avron et al. (2014, Lemma 2 of the longer version)
(the case p = 1 is covered in Weinberger et al. (2009)). There is thus no closed-form
variance formula available in the literature3.

Avron et al. (2014) derive only the following upper bound on the variance:

Theorem 2.2.1 (Avron et al. (2014), Lemma 2). For any x,y ∈ Rd, the variance
of the TensorSketch kernel estimate k̂(x,y) := Φ(x)⊤Φ(y) with Φ defined as in
Eq. (2.19) is upper-bounded as follows:

V
[
k̂(x,y)

]
≤ 1

D
(2 + 3p) ∥x∥2p ∥y∥2p

We will show in Chapter 4 that TensorSketch performs better than Rademacher
Product-Sketches empirically, in spite of the upper bound in Theorem 2.2.1 being
larger than the one we obtain for the Rademacher and Gaussian Product-Sketches
in Chapter 3. To the best of our knowledge, there are also no exponential con-
centration bounds for TensorSketch available in the literature, as it is the case for
the Product-Sketches discussed in the previous section. We hypothesize that this
is due to the fact that the rows of the matrix C(1∗···∗p) are not sampled indepen-
dently obstructing a simple application of well-known concentration inequalities.
Nonetheless, theoretical guarantees for downstream tasks like kernel ridge regres-
sion and kernel PCA are given in Avron et al. (2014); Ahle et al. (2020).

2.2.3 (C) Kronecker Product of SRHT Sketches a.k.a. Ten-
sorSRHT

In this section, we introduce structured polynomial sketches known as TensorSRHT
(Tensor Subsampled Randomized Hadamard Transform). Tropp (2011) studied
TensorSRHT for p = 1 (linear case) called simply SRHT, and Hamid et al. (2014);
Ahle et al. (2020) extended it4 to arbitrary polynomial degrees p. Ahle et al.
(2020) introduced the TensorSRHT sketch that we present in this section. The

3The original TensorSketch paper (Pham and Pagh, 2013) contains a variance formula, but
makes the simplifying assumption that TensorSketch has the same variance properties as CountS-
ketch (Charikar et al., 2002) applied to tensorized inputs.

4The sketches proposed by Hamid et al. (2014) and Ahle et al. (2020) are similar but not
exactly the same. Hamid et al. (2014) uses p×B independent linear SRHT sketches (see Tropp,
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prefix “Tensor” is used here to refer to the fact we form the Kronecker or Tensor
product of p independent sketches, which yields a new sketch that is an implicit
linear projection of the tensorized input x(p), as it was also the case for the other
sketches described before. TensorSRHT is of great relevance to this thesis because
we develop a closely related sketch in Chapter 3.

In order to define TensorSRHT, we need to cover some preliminaries first. More
specifically, we need to define Kronecker products and Hadamard matrices.

Kronecker Product. We start by extending the notion of the outer product in
Eq. (2.9) applied to vectors being applied to matrices instead. For this purpose,
we define the Kronecker product of two matrices A ∈ Rm1×n1 ,B ∈ Rm2×n2 as

A⊗B :=

 (A)11B . . . (A)1n1B
...

. . .
...

(A)m11B . . . (A)m1n1B

 ∈ R(m1·m2)×(n1·n2).

The Kronecker product has the mixed-product property defined as follows. For
matrices A,B,C,D of such sizes that one can compute AC and BD, it holds
that

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (2.20)

Note especially that we have (A⊗B)(x⊗y) = Ax⊗By for two vectors x and y.
We make use of this property for an efficient computation of TensorSRHT later.

We define structured Hadamard matrices next.

Hadamard matrices. Let n := 2m with m ∈ N, and define Hn ∈ {1,−1}n×n

to be the unnormalized Hadamard matrix, which is recursively defined as

H2n :=

[
Hn Hn

Hn −Hn

]
, with H2 :=

[
1 1
1 −1

]
. (2.21)

From now on, we always use Hd ∈ {1,−1}d×d with d being the dimensionality of
input vectors, assuming d = 2m for some m ∈ N. If d ̸= 2m for any m ∈ N, we
pad the input vectors with zeros until their dimensionality becomes 2m for some
m ∈ N. For i = 1, . . . , d, let hi ∈ {1,−1}d be the i-th column of Hd, i.e.,

Hd = (h1, . . . ,hd) ∈ {1,−1}d×d.

Hd has very useful properties that we exploit for the construction of several
polynomial sketches in this thesis. The first useful property is HdH

⊤
d = H⊤

d Hd =

2011), where B :=
⌈
D
d

⌉
is the number of SRHT blocks per degree. The elements of these

sketches are then shuffled across degress and blocks and the blocks are multiplied elementwise
over p. Ahle et al. (2020) compute only p independent sketches and subsample from their tensor
product instead.
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dId, which implies that distinct columns (and rows) of Hd are orthogonal to each
other, i.e., h⊤

i hj = 0 for i ̸= j. Another useful property is that Hd2 = Hd ⊗Hd

holds, which will be needed for the construction of the TensorSRHT sketch in
the following. Lastly, the recursive definition of Hd gives rise to the Fast Walsh-
Hadamard Transform (FWHT) (Fino and Algazi, 1976) that multiplies Hd with
a vector a ∈ Rd in O(d log d) instead of O(d2) time while Hd does not need to be
stored in memory.

We now move on to define SRHT, which is a linear random projection that
forms the basis for the construction of TensorSRHT.

Subsampled Randomized Hadamard Transform (SRHT). SRHT (Tropp,
2011) is a linear random projection that is particularly fast due to the structured
nature of Hd.

Let D := diag(w) ∈ Rd×d be a diagonal matrix whose diagonal entries w :=
(w1, . . . , wd)

⊤ ∈ {1,−1}d are i.i.d. Rademacher random variables. Further con-
sider a random permutation of the indices π : {1, . . . , d} → {1, . . . , d}, and let
π(1), . . . , π(d) be the permuted indices. We define a sampling matrix P π :=
(eπ(1), . . . , eπ(D))

⊤ ∈ RD×d with D ≤ d, where eπ(ℓ) ∈ Rd is a vector whose π(ℓ)-th
element is 1 and all other elements are 0.

The SRHT is then defined as

Φ(x) := P πHdDx/
√
D = P π(Hd(w ⊙ x))/

√
D ∈ RD, (2.22)

where ⊙ denotes the element-wise (Hadamard) product.
The parenthesis on the right-hand-side of Eq. (2.22) indicate the efficient order

of computation to leverage the Fast Walsh-Hadamard Transform. Φ(x) can thus
be computed in O(d log d) instead of O(d2) time, and using only O(d) memory
since Hd does not need to be stored.

The sketch (2.22) leads to an unbiased estimate k̂(x,y) = Φ(x)⊤Φ(y) because

E[Φ(x)⊤Φ(y)] =
1

D

D∑
ℓ=1

E[h⊤
π(ℓ)(w ⊙ x) · h⊤

π(ℓ)(w ⊙ y)]

=
1

D

D∑
ℓ=1

d∑
j=1

d∑
j′=1

E[hπ(ℓ),jhπ(ℓ),j′ ]E[wjwj′ ]xjyj′

=
1

D

D∑
ℓ=1

d∑
j=1

h2
π(ℓ),jE[w2

j ]︸ ︷︷ ︸
= 1

xjyj = x⊤y,

where the expectation is taken w.r.t. both the random permutation π as well as
w. We have h2

π(ℓ),j = 1 for all {hπ(ℓ),j}dj=1 because the elements of hπ(ℓ) are either
−1 or +1.

The goal of TensorSRHT is to apply SRHT to the tensorized input x(p) to
obtain an unbiased estimate of the polynomial kernel without ever constructing
x(p) explicitly.
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TensorSRHT. The sketch defined by Ahle et al. (2020, Definition 15) exploits
the mixed-product property (2.20) of the Kronecker product. This property allows
for an efficient construction of a dp-dimensional SRHT sketch, while working only
with random projections in Rd.

Let {Di}pi=1 be independently sampled diagonal matrices of size Rd×d with
their diagonal elements being defined through the independent Rademacher vectors
{wi}pi=1 of size Rd, respectively. We further define a random sampling matrix
P π := (eπ(1), . . . , eπ(D))

⊤ ∈ RD×dp with D ≤ dp as before.
We now show how to transform p individual SRHT sketches {HDix}pi=1 into a

single SRHT sketch of an input point x(p). Fur this purpose, we apply the mixed-
product property (2.20) twice and use Hd ⊗Hd = Hd2 to show the following key
relationship used in TensorSRHT:

Φ(x) := P π(HdD1x⊗ · · · ⊗HdDpx)/
√
D (2.23)

= P π(HdD1 ⊗ · · · ⊗HdDp)(x⊗ · · · ⊗ x)/
√
D

= P π(Hd ⊗ · · · ⊗Hd)(D1 ⊗ · · · ⊗Dp)x
(p)/

√
D

= P πHdp(D1 ⊗ · · · ⊗Dp)x
(p)/

√
D (2.24)

(D1 ⊗ · · · ⊗ Dp) in Eq. (2.24) is a diagonal matrix of size Rdp×dp with its di-
agonal elements being w1 ⊗ · · · ⊗ wp ∈ Rdp . As noted for TensorSketch before,
these elements are Rademacher distributed with zero covariance. Φ(x) (2.24) thus
corresponds to SRHT applied to x(p).

The equivalent formulation in Eq. (2.23) allows us to efficiently compute this
sketch.

Efficient computation. We can efficiently compute Φ(x) by first computing
{HDix}pi=1 via the FWHT as shown in Eq. (2.23). Then we sample D index
tuples {(i1,ℓ, . . . , ip,ℓ)}Dℓ=1 without replacement, where i1,ℓ, . . . , ip,ℓ are uniformly
sampled from {1, . . . , d}. The tuples {(i1,ℓ, . . . , ip,ℓ)}Dℓ=1 can be understood as D
single indices sampled without replacement from {1, . . . , dp}.

We then compute each element {Φ(x)ℓ}Dℓ=1 of the final TensorSRHT sketch as

Φ(x)ℓ = (HD1x)i1,ℓ · · · (HDpx)ip,ℓ/
√
D, (2.25)

where Φ(x)ℓ corresponds to a randomly sampled element (without replacement)
from the dp-dimensional vector Hdp(D1 ⊗ · · · ⊗Dp)x

(p)/
√
D.

The computational cost of TensorSRHT is thus O(p(d log d +D)), since com-
puting {HDix}pi=1 costs O(pd log d) and taking the products in Eq. (2.25) for
ℓ = 1, . . . , D costs an additional O(pD). Recall that TensorSketch discussed in
the section before has a cost of O(p(D logD+d)). This makes TensorSRHT faster
than TensorSketch if D > d.
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Statistical guarantees. As for TensorSketch, the variance of the TensorSRHT
sketch discussed here is not available in closed form in the literature as soon as
p > 1 (a result for p = 1 is available in Choromanski et al. (2017)). Once again,
we hypothesize that this is because the entries of (D1 ⊗ · · · ⊗ Dp) in Eq. (2.24)
are statistically dependent despite having zero covariance. Moreover, the elements
of Φ(x) (2.24) additionally have non-zero covariances since every row of Hdp is
multiplied by the same matrix (D1 ⊗ · · · ⊗Dp).

One of the main contributions of this thesis is to derive a closely related struc-
tured sketch in Chapter 3 for which we obtain closed form variances. While Ahle
et al. (2020) focus on statistical guarantees that do not take the data distribution
into account, we elucidate under which conditions of the input data our struc-
tured sketches perform better than non-structured sketches in terms of variance
comparisons. In particular, we show that our structured sketches yield lower vari-
ances than unstructured analogs for odd degrees of the polynomial kernel, with
the additional advantage of being faster. We are not aware of any other work
in the literature that theoretically proves such statistical advantages for struc-
tured polynomial sketches. Nonetheless, theoretical guarantees for TensorSRHT
for downstream tasks can be found in Ahle et al. (2020).

2.2.4 (D) Spherical Random Features for Polynomial Ker-
nels

Pennington et al. (2015) propose a fundamentally different approach to polynomial
kernel approximation from the previous ones presented in this chapter. Instead
of constructing an unbiased implicit sketch in dp dimensions, the authors propose
to approximate polynomial kernels through isotropic kernels and random Fourier
features (see Section 2.1.1). We review this approach here as it can be considered
the state-of-the-art for the approximation of high-degree polynomial kernels on the
unit sphere. It also serves as an important baseline in our work and we found it
rather difficult to implement it in practice, which is why this section provides a
comprehensive introduction and discusses some limitations of the method.

The approach by Pennington et al. (2015) is motivated by the fact that poly-
nomial kernels with data lying on the unit-sphere can be expressed as isotropic
kernels. The authors consider the approximation of a polynomial kernel k :
Sd−1 × Sd−1 → R being parameterized as follows:

k(x,y) =

(
1− ∥x− y∥2

a2

)p

=
(
ν + γ(x⊤y)

)p
, (2.26)

where ν = 1− 2/a2 and γ = 2/a2 for some a ≥ 2.
Eq. (2.26) shows the correspondence between a shift-invariant kernel (left-hand-

side) and a polynomial kernel (right-hand-side) valid for inputs lying on the unit-
sphere.
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However, the condition a ≥ 2 makes it impossible to model homogeneous
polynomial kernels for which we have ν = 0 and thus a =

√
2. Furthermore, the

offset ν and the scaling term γ are inter-dependent through a common dependency
on a, which limits the class of polynomial kernels being modelled.

Since Eq. (2.26) takes the form of an isotropic kernel, one could hope to approx-
imate k with random Fourier features as shown in Section 2.1. Yet, for x,y ∈ Sd−1,
we have ∥τ∥ = ∥x − y∥ =

√
2− 2 cos θ ∈ [0, 2], where θ is the angle between x

and y. Therefore, the support of τ is not defined over the entire space Rd and
Bochner’s theorem (2.1) does not apply. Pennington et al. (2015) further prove
that the support of τ cannot be artificially extended such that the kernel function
(2.26) remains positive definite. Hence, there exists no spectral density for this
kernel, which obstructs the use of random Fourier features.

The authors therefore consider a biased approximation by finding a closely
related isotropic kernel defined on Rd, i.e., one for which random Fourier features
can be obtained.

Finding an approximate isotropic kernel. Recall from Section 2.1 that any
isotropic kernel defined on Rd for some d ∈ N can be expressed using Eq. (2.5) as

k̂(∥τ∥) =
∫ ∞

0

d ∥ω∥ p̂(∥ω∥) Λd(∥ω∥ ∥τ∥), (2.27)

where p̂(∥ω∥) is a one-dimensional density and Λd(·) is defined through Eq. (2.5).
Pennington et al. (2015) propose to optimize p̂(∥ω∥) so as to minimize the mean
squared error

L =
1

2

∫ 2

0

d ∥τ∥
(
k(∥τ∥)− k̂(∥τ∥)

)2
(2.28)

with k being defined as in Eq. (2.26). In practice, L is evaluated on a grid over
∥τ∥ ∈ [0, 2]. Here, the density is parameterized as

p̂(∥ω∥) ∝ ∥ω∥d−1max

(
0,

N∑
i=1

ci

(
1√
2σi

)d

exp(−∥ω∥2 /4σ2
i )

)
(2.29)

for some {ci}Ni=1, {σi}Ni=1 with ci ∈ R and σi > 0.
The formulation of p̂(∥ω∥) is motivated by Theorem 2.1.2 stating that any

isotropic kernel defined on arbitrary domains Rd can be modelled as a scale-mixture
of Gaussian functions. Eq. (2.29) is obtained by choosing a scale-mixture over
Gaussian distributions for p(ω) (2.2) and transforming it using Eq. (2.6). Pen-
nington et al. (2015) further modify the resulting density by adding max(0, ·) and
allowing negative values for {ci}Ni=1 in Eq. (2.29) for greater numerical flexibility.
The normalization constant in Eq. (2.29) is found through a numerical integration
on a grid over ∥ω∥ ∈ R+, which is also done for the evaluation of k̂ (2.27) itself.
{ci}Ni=1, {σi}Ni=1 in Eq. (2.29) are then found using a gradient-based optimizer. Once
they are obtained, one can sample from p̂(∥ω∥) using inverse-transform-sampling
to eventually sample Spherical Random Features using Algorithm 1.
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Figure 2.3: Approximating polynomial kernels on the unit-sphere through isotropic
kernels. The first row shows approximations for d = 2 while the bottom row shows
them for d = 128.

Limits of the approximation. Unlike the polynomial sketches presented ear-
lier, the approximation (2.27) of k (2.26) is biased. We show some characteristic
approximation functions k̂(∥τ∥) (2.27) in Fig. 2.3 that are obtained through the
optimization of Eq. (2.28). Note that these functions are themselves approximated
using Spherical Random Features in a second step. Plots (a),(b),(d),(e) show ker-
nel parameterizations with a ≥ 2 as desired by Pennington et al. (2015). Plots (c)
and (f) explicitly show homogeneous polynomial kernels (a =

√
2), and it becomes

immediately obvious that they cannot be matched through k̂ (2.27) exposing an
important limitation of this method.

Furthermore, we note that high-degree (p = 20) polynomial kernels are better
approximated than low-degree (p = 3) ones confirming the findings of the authors,
who argue that their method is particularly suitable for large p leading to a lower
bias. They further show that Spherical Random Features can outperform previous
approaches presented in Sections 2.2.1 and 2.2.2 for data lying on the unit-sphere
in this case.

Although performing well for large p, we want to emphasize that the method
by Pennington et al. (2015) is challenging to implement in practice. We therefore
provide some insights on the numerical stability of the method that can help to
simplify the implementation.

Numerical stability. The issue of numerical stability is not discussed in Pen-
nington et al. (2015) but quite relevant. The evaluation of the Bessel function of
the first kind Jd/2−1(·) as part of Λd(·) in Eq. (2.27) yields small values and tends to
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numerically underflow for large d. The original implementation5 proposed by the
authors solves this issue by using different series approximations for different val-
ues of d. Instead, we propose to use exp(−x2/(2d)) instead of Λd(x) from d > 128
to simplify the implementation. This gives a reasonably good approximation of
Λd(x) as shown in Fig. 2.2.

5https://github.com/felixyu/SRF

https://github.com/felixyu/SRF


Chapter 3

Analysis and Extension of
Product-Sketches

In this chapter, we focus on the unbiased approximation of polynomial kernels by
means of Product-Sketches that we introduced in Chapter 2. As we will learn in
Chapter 5, polynomial sketches can be used to construct random feature maps for
arbitrary dot product kernels. This gives the study of the efficient approximation
of polynomial sketches a large importance. Therefore, we carry out an in-depth
variance analysis of Product-Sketches in this chapter and propose structured and
complex extensions that improve these variances.

Product-Sketches were used in Kar and Karnick (2012) and Hamid et al.
(2014), who proposed to sample corresponding weight vectors from Gaussian and
Rademacher distributions, and derived concentration results for both. The bound
for Gaussian Product-Sketches derived in Hamid et al. (2014, Lemma 3.1) guaran-
tees a given pointwise kernel approximation error for fewer random features than
the bound by Kar and Karnick (2012) for Rademacher sketches. However, this
result does not reflect the empirical performance of these two sketches as we show
later in this work.

In this chapter, we carry out a variance analysis of Product-sketches and we
show that Rademacher sketches achieve a variance lower bound under the as-
sumption that the corresponding weight vectors are i.i.d. We further prove that
even lower variances can be attained when lifting the i.i.d. assumption and using
structured Rademacher sketches.

To the best of our knowledge, such an analysis is novel to the literature and
it elucidates under which conditions of the input data one sketch should be pre-
ferred over another. This is a key contribution of this chapter, which complements
existing theoretical results that rather focus on the question how many random
features are needed to provide a certain approximation error at a given probability.
Unlike our analysis, such statistical guarantees can make it difficult to compare
the average-case efficiency of different sketches.

The second major contribution of this chapter is to derive complex-valued gen-

35
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eralizations of Product-Sketches and to study under which conditions they achieve
lower variances than real-valued analogs. We show that variances generally de-
crease considerably for positively-valued data and large polynomial degrees.

3.1 Variance Analysis for Real-Valued Product-

Sketches

We begin by studying the variance properties of existing real-valued Product-
Sketches, namely the Gaussian and Rademacher sketches introduced in Kar and
Karnick (2012); Hamid et al. (2014).

Recall from Chapter 2 that a Product-Sketch is defined as

ΦR(x) :=
1√
D

[
(

p∏
i=1

w⊤
i,1x), . . . , (

p∏
i=1

w⊤
i,Dx)

]⊤
∈ RD, (3.1)

for some weight vectorswi,ℓ with i = 1, . . . , p and ℓ = 1, . . . , D, where the subscript
R emphasizes the use of real-valued weight vectors here. We construct complex-
valued generalizations later on.

The resulting approximation of the polynomial kernel (x⊤y)p is then given by

k̂R(x,y) := ΦR(x)
⊤ΦR(y). (3.2)

For ease of presentation, we focus on the case D = 1 (a single random feature),
and consider p i.i.d. weight vectors

wi = (wi,1, . . . , wi,d)
⊤ ∈ Rd satisfying E[wi] = 0, E[wiw

⊤
i ] = Id, (3.3)

with i = 1, . . . , p, where the elements wi,1, . . . , wi,d are themselves i.i.d. Then the
resulting approximate kernel (3.2) is given by

k̂R(x,y) =

p∏
i=1

w⊤
i xw

⊤
i y. (3.4)

The variances for the case D > 1 can be simply obtained by dividing the variance
for D = 1 by D, since the approximate kernel (3.2) for D > 1 is the average of D
i.i.d. copies of the approximate kernel (3.4) for D = 1.

Since the polynomial sketches discussed here are unbiased, the resulting vari-
ance of the approximate kernel k̂R(x,y) in (3.2) is the mean-square error with
respect to the true polynomial kernel k(x,y) = (x,y)p, thus serving as a quality
metric:

V[k̂R(x,y)] := E[(k̂R(x,y)− E[k̂R(x,y)])2] = E[(k̂R(x,y)− k(x,y))2],
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where the expectation is with respect to the weight vectors wi for i = 1, . . . , p.
Thus, the variance analysis also enables understanding how the distribution of the
weight vectors affects the quality of the kernel approximation.

Theorem 3.1.1 below provides a closed form expression of the variance of the
approximate kernel and its lower bound. To the best of our knowledge, this result is
a novel contribution to the literature. It is useful in understanding how the variance
depends on the distribution of the weight vectors w1, . . . ,wp and the properties of
input vectors x and y. Since this result is a special case of a more general result
presented later in Theorem 3.3.1 regarding complex polynomial sketches, we omit
its proof.

Theorem 3.1.1. Let x := (x1, . . . , xd)
⊤ ∈ Rd and y := (y1, . . . , yd)

⊤ ∈ Rd be any
input vectors. Let w1, . . . ,wp ∈ Rd be i.i.d. random vectors satisfying (3.3), such
that elements wi1, . . . , wid of each vector wi = (wi1, . . . , wid)

⊤ are themselves i.i.d.
Let w = (w1, . . . , wd)

⊤ ∈ Rd be a random vector independently and identically
distributed as w1, . . . ,wp. Then, for the variance of the approximate kernel (3.4),
we have

V
[
k̂R(x,y)

]
=

(
d∑

k=1

E[w4
k]x

2
ky

2
k + ∥x∥2 ∥y∥2 − 3

d∑
k=1

x2
ky

2
k + 2(x⊤y)2

)p

− (x⊤y)2p

(3.5)

≥

(
∥x∥2 ∥y∥2 + 2

[
(x⊤y)2 −

d∑
k=1

x2
ky

2
k

])p

− (x⊤y)2p (3.6)

Eq. (3.5) of Theorem 3.1.1 shows that the distribution of the i.i.d. weight vectors
w1, . . . ,wp affects the variance of the approximate kernel only through the 4-th
moments E[w4

k], provided that the distribution satisfies the required conditions in
Theorem 3.1.1. In particular, the smaller these 4-th moments are, the smaller
the variance becomes. This observation enables discussing the optimal choice for
the distribution of the weight vectors. The lower bound in Eq. (3.6) is the lowest
possible variance, since we have E[w4

k] ≥ (E[w2
k])

2 = 1 by Jensen’s inequality, where
E[w2

k] = 1 follows from Eq. (3.3).
Let us discuss two choices for the distribution of the weight vectors in Eq. (3.3):

Rademacher and Gaussian distributions. For the Rademacher distribution, we
have E[w4

k] = 0.5 · 14 + 0.5 · (−1)4 = 1. Therefore, the variance in Eq. (3.5)
simplifies to:

(Var. Rademacher)

(
∥x∥2 ∥y∥2 + 2

[
(x⊤y)2 −

d∑
k=1

x2
ky

2
k

])p

− (x⊤y)2p,

(3.7)
which is equal to the lower bound in Eq. (3.6). Therefore, Theorem 3.1.1 shows
the optimality of the Rademacher distribution for the approximate kernel (3.4).
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As an alternative, one can consider the standard Gaussian distribution, that
is, wk ∼ N (0, 1). Then we have E[w4

k] = 3 (the fourth moment of a standard
Gaussian random variable), and the variance in Eq. (3.5) simplifies to:

(Var. Gaussian)
(
∥x∥2∥y∥2 + 2(x⊤y)2

)p − (x⊤y)2p. (3.8)

This is larger than the variance of the Rademacher sketch in Eq. (3.7). Thus, in
terms of the variance of the approximate kernel, the Gaussian sketch is less effi-
cient than the Rademacher sketch. These arguments suggest that the Rademacher
sketch should be a preferred choice. This is in contrast to (Hamid et al., 2014,
Lemma 3.1) who obtain better statistical guarantees for Gaussian sketches than
the ones for Rademacher sketches derived in (Kar and Karnick, 2012). This is
most likely because the bound by Hamid et al. (2014) exploits upper bounds on
higher order moments and is probably tighter than the one given by (Kar and
Karnick, 2012) that does not exploit such information.

3.2 Complex-Valued Product-Sketches

We now introduce complex-valued polynomial sketches, one of our novel contribu-
tions. We do this by extending the analysis of Choromanski et al. (2017) for linear
sketches to polynomial sketches.1

As before, without loss of generality, we focus on approximating the homoge-
neous polynomial kernel k(x,y) = (x⊤y)p of degree p ∈ N. Let D ∈ N. Suppose
we generate p×D complex-valued random vectors satisfying

zi,ℓ ∈ Cd satisfying E[zi,ℓzi,ℓ
⊤] = Id, i ∈ {1, . . . , p}, ℓ ∈ {1, . . . , D} (3.9)

We then define a complex-valued random feature map as

ΦC(x) :=
1√
D

[
(

p∏
i=1

z⊤
i,1x), . . . , (

p∏
i=1

z⊤
i,Dx)

]⊤
∈ CD, x ∈ Rd, (3.10)

and the resulting approximate kernel as

k̂C(x,y) := ΦC(x)
⊤ΦC(y) =

1

D

D∑
ℓ=1

p∏
i=1

(z⊤
i,ℓx)(z

⊤
i,ℓy), x,y ∈ Rd. (3.11)

Eq. (3.11) is a generalization of the approximate kernel (3.2) with real-valued
features, as Eq. (3.2) can be recovered by defining the complex random vectors zi,ℓ

1More specifically, Choromanski et al. (2017) analyze the variance of the real part of the
approximate complex-valued kernel in Eq. (3.11) for p = 1. In contrast, we study Eq. (3.11)
with generic p ∈ N, and analyze the variance of Eq. (3.11) itself, including both the real and
imaginary parts.
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in Eq. (3.9) as real random vectors wi,ℓ in Eq. (3.3); in this case the requirement
E[zi,ℓzi,ℓ

⊤] = E[wi,ℓw
⊤
i,ℓ] = Id is satisfied.

For example, complex-valued random vectors zi,ℓ satisfying Eq. (3.9) can be
generated as follows.

Example 1. Suppose we generate 2×p×D independent real-valued random vectors

vi,ℓ, wi,ℓ ∈ Rd satisfying E[vi,ℓ] = E[wi,ℓ] = 0, E[vi,ℓv
⊤
i,ℓ] = E[wi,ℓw

⊤
i,ℓ] = Id

(3.12)

for i ∈ {1, . . . , p}, ℓ ∈ {1, . . . , D}. Then one can define complex-valued random
vectors (3.9) as

zi,ℓ :=

√
1

2
(vi,ℓ + iwi,ℓ) ∈ Cd, i ∈ {1, . . . , p}, ℓ ∈ {1, . . . , D}. (3.13)

The following two examples are specific cases of Example 1 and are complex
versions of the real-valued Rademacher and Gaussian sketches discussed previously.

Example 2 (Complex Rademacher Sketch). In Example 1, suppose that elements
of random vectors vi,ℓ and wi,ℓ are independently sampled from the Rademacher
distribution, i.e., sampled uniformly from {1,−1}. Then the resulting random
vectors vi,ℓ, wi,ℓ satisfy the conditions in Eq. (3.12) and thus the complex random
vectors in Eq. (3.13) satisfy the condition Eq. (3.9).

Example 3 (Complex Gaussian Sketch). In Example 1, suppose that elements of
random vectors vi,ℓ and wi,ℓ are independently sampled from the standard Gaus-
sian distribution, N (0, 1). Then the resulting random vectors vi,ℓ, wi,ℓ satisfy the
conditions in Eq. (3.12) and thus the complex random vectors in Eq. (3.13) satisfy
the condition Eq. (3.9).

Example 4. Suppose the elements of each random vector zi,ℓ ∈ Cd are indepen-
dently sampled from the uniform distribution on {1,−1, i,−i}. Then the require-
ment in Eq. (3.9) is satisfied.

Example 4 is essentially identical to the complex Rademacher sketch in Exam-
ple 2, in that each element of zi,ℓ in Example 4 can be obtained by multiplying
eiπ/4 to an element of zi,ℓ in Example 2, and vice versa. The multiplication by
eiπ/4 is equivalent to rotating an element counter-clockwise by 45 degrees. See
Fig. 3.1 for an illustration. One can see that this multiplication by eiπ/4 does not
change the resulting approximate kernel (3.11). In this sense, the constructions of
Example 2 and Example 4 are equivalent. However, the sketch in Example 4 gives
a computational advantage over Example 2: Since every element of each random
vector zi,ℓ is either real or imaginary, the inner products z⊤

i,ℓx in Eq. (3.10) can
be computed at the same cost as for real polynomial sketches.

We show in the following proposition that the approximate kernel (3.11) is an
unbiased estimator of the polynomial kernel (x⊤y)p.
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Figure 3.1: Multiplying each element of a random vector zi,ℓ in Example 2 by
exp(i π

4
) corresponds to a counter-clockwise rotation of that element by 45 degrees

on the complex plane. The support of the resulting elements is {1,−1, i,−i} and
the construction of Example 4 is obtained.

Proposition 3.2.1. Let x,y ∈ Rd be arbitrary, and k̂C(x,y) be the approximate
kernel in (3.11). Then we have

E[k̂C(x,y)] = (x⊤y)p

Proof. Since Eq. (3.11) is the empirical average of D terms, it is sufficient to show
the unbiasedness of each term. To this end, we consider here the case D = 1 and
drop the index ℓ. We have

E

[
p∏

i=1

z⊤
i xz

⊤
i y

]
=

p∏
i=1

E
[
z⊤
i xz

⊤
i y
]
=

p∏
i=1

x⊤E
[
zizi

⊤]y = (x⊤y)p.

where we used Eq. (3.9) in the last identity.

3.3 Variance of Complex-Valued Product-Sketches

We now study the variance of the approximate kernel (3.11) with the complex-
valued random feature map (3.10). As for the real-valued case, we consider the
case D = 1 and drop the index ℓ:

k̂C(x,y) =

p∏
i=1

z⊤
i xz

⊤
i y. (3.14)

The variance of the case D > 1 can be obtained by dividing the variance of
Eq. (3.14) byD, since the approximate kernel (3.11) is the average ofD i.i.d. copies
of Eq. (3.14). We denote by zi,k the k-th element of zi.

Note that the variance of a complex random variable Z ∈ C is defined by

V[Z] := E[|Z − E[Z]|2] = E[(Z − E[Z])(Z − E[Z])] = E[|Z|2]− |E[Z]|2
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Theorem 3.3.1 below characterizes the variance in terms of the input vectors x,y ∈
Rd and the distribution of the complex weight vectors (3.9). The proof is given in
Appendix B.1.1.

Theorem 3.3.1. Let x := (x1, . . . , xd)
⊤ ∈ Rd and y := (y1, . . . , yd)

⊤ ∈ Rd be
any input vectors. Let z1, . . . ,zp ∈ Cd be i.i.d. random vectors satisfying (3.9),
such that elements zi1, . . . , zid of each vector zi = (zi1, . . . , zid)

⊤ are themselves
i.i.d. Let z = (z1, . . . , zd)

⊤ ∈ Cd be a random vector independently and identically
distributed as z1, . . . ,zp, and write zk = ak + ibk with ak, bk ∈ R. Suppose

E[akbk] = 0, E[a2k] = q, E[b2k] = 1− q where 0 ≤ q ≤ 1. (3.15)

Then, for the approximate kernel (3.14), we have

V[k̂C(x,y)] =
( d∑

k=1

E[|zk|4]x2
ky

2
k + ∥x∥2∥y∥2 −

d∑
k=1

x2
ky

2
k

+
(
(2q − 1)2 + 1

) (
(x⊤y)2 −

d∑
k=1

x2
ky

2
k

))p

− (x⊤y)2p (3.16)

≥

(
∥x∥2∥y∥2 +

(
(2q − 1)2 + 1

) (
(x⊤y)2 −

d∑
k=1

x2
ky

2
k

))p

− (x⊤y)2p.

(3.17)

Theorem 3.3.1 is a generalization of Theorem 3.1.1 as it applies to a spectrum
of complex polynomial sketches in terms of q, where the case q = 1 recovers Theo-
rem 3.1.1 for real-valued polynomial sketches. The key condition in Theorem 3.3.1
is Eq. (3.15),2 where the constant q is the average length of the real part ak of
each random element zk = ak+ibk. Note that E[b2k] = 1− q follows from E[a2k] = q
since 1 = E[|zk|2] = a2k + b2k. Eq. (3.15) is satisfied for Examples 2, 3 and 4 with
q = 1/2 and for the real-valued Rademacher and Gaussian sketches with q = 1.
If zk is sampled uniformly from {i,−i}, which is eligible as it satisfies Eq. (3.9),
then q = 0. If zk is sampled uniformly from {1,−1} with probability q and from
{i,−i} with probability 1− q, then Eq. (3.15) is satisfied with this q.

Eq. (3.17) is the smallest possible variance attainable by complex polynomial
sketches satisfying the conditions in Theorem 3.3.1. For q = 1/2, this lower bound
is attained by the complex Rademacher sketch (Example 2) and its equivalent
construction (Example 4), for which we have E[|zk|4] = 1:

(Comp. Rademacher)

(
∥x∥2 ∥y∥2 + (x⊤y)2 −

d∑
k=1

x2
ky

2
k

)p

− (x⊤y)2p (3.18)

On the other hand, for the complex Gaussian sketch (Example 3) we have E[|zk|4] =
E[(a2k + b2k)

2] = 2, and the variance is given by

(Comp. Gaussian)
(
∥x∥2∥y∥2 + (x⊤y)2

)p − (x⊤y)2p (3.19)
2Eq. (3.15) implies that zk is a proper complex random variable (Neeser and Massey, 1993).
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Comparing the Real and Complex Polynomial Sketches. Let us now com-
pare the variances of real (q = 1) and complex (q ̸= 1) polynomial sketches.
First, it is easy to see that the variance of the complex Gaussian polynomial
sketch (Eq. (3.19)) is upper-bounded by the variance of the real Gaussian sketch
(Eq. (3.8)). For the lower bound in Eq. (3.17), which is attained by the Rademacher
sketches, a more detailed analysis is needed. To this end, consider the term that
depends on q: (

(2q − 1)2 + 1
) (

(x⊤y)2 −
d∑

k=1

x2
ky

2
k

)
The variance in Eq. (3.16) is a monotonically increasing function of this term.
Suppose

(x⊤y)2 −
d∑

k=1

x2
ky

2
k =

d∑
i=1

d∑
j=1
j ̸=i

xixjyiyj ≥ 0 (3.20)

Then q = 1/2 (e.g., complex sketches in Examples 2, 3 and 4) makes the term
the smallest, while q = 1 and q = 0 (purely real and imaginary polynomial
sketches) makes it the largest. In other words, for input vectors x and y sat-
isfying Eq. (3.20), complex-valued sketches with q = 1/2 result in a lower variance
than the real-valued counterparts with q = 1. On the other hand, if Eq. (3.20) does
not hold, real-valued sketches result in a lower variance than the complex-valued
counterparts.

Therefore, whether complex-valued Rademacher sketches (q = 1/2) yield a
lower variance than real-valued Rademacher sketches (q = 1) depends on whether
Eq. (3.20) holds. For example, Eq. (3.20) holds true if input vectors x = (x1, . . . , xd)

⊤

and y = (y1, . . . , yd)
⊤ are nonnegative: x1, ..., xd ≥ 0 and y1, . . . , yd ≥ 0. Nonnega-

tive input vectors are ubiquitous in real-world applications, e.g., where each input
feature represents the amount of a certain quantity, where input vectors are given
by bag-of-words representations, one-hot encoding (categorical data), or min-max
feature scaling, and where they are outputs of a ReLU neural network3. For such
applications with nonnegative input vectors, complex-valued polynomial sketches
always yield a smaller variance than the real-valued counterparts.

3.4 Probabilistic Error Bounds for Rademacher

Sketches

We present here probabilistic error bounds for the approximate kernel in Eq. (3.11)
in terms of the number D of random features, using the variance formula obtained
in the previous section and focusing on Rademacher sketches. The proof of the
following result is given in Appendix B.1.2.

3c.f. DeepFried Convnets (Yang et al., 2015) and fine-grained image recognition (Gao et al.,
2016).
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Theorem 3.4.1. Let x,y ∈ Rd be arbitrary input vectors. For 0 ≤ q ≤ 1, consider
a polynomial sketch in Theorem 3.3.1 such that E[|zk|4] = 1 and thus attains the
variance in Eq. (3.17). Define a constant σ2 ≥ 0 by

σ2 :=
1

∥x∥2p∥y∥2p

[(
∥x∥2∥y∥2 +

(
(2q − 1)2 + 1

) (
(x⊤y)2 −

d∑
k=1

x2
ky

2
k

))p

− (x⊤y)2p

]

Let ϵ, δ > 0 be arbitrary, and D ∈ N be such that

D ≥ 2

(
2

3ϵ
+

σ2

ϵ2

)
log

(
2

δ

)
. (3.21)

Then, for the approximate kernel k̂C(x,y) in Eq. (3.11), we have

Pr
[∣∣∣k̂C(x,y)− (x⊤y)p

∣∣∣ ≤ ϵ ∥x∥p1 ∥y∥
p
1

]
≥ 1− δ.

Eq. (3.21) shows that the required number D of random features to achieve
the relative accuracy of ε (where the “relative” is with respect to ∥x∥p1 ∥y∥

p
1) with

probability at least 1 − δ. For small ϵ, the second term σ2/ϵ2 dominates the first
term 2/(3ϵ). This second term depends on σ2, which is a scaled version of the
variance in Eq. (3.17) of the approximate kernel for D = 1. Thus, if the variance
in Eq. (3.17) is smaller (resp. larger), one needs a smaller (resp. larger) number of
random features to achieve the relative accuracy of ϵ.

Let us now compare the real-valued (q = 1) and complex-valued (q = 1/2)
Rademacher sketches. As discussed earlier, the complex Rademacher sketch has a
smaller variance than the real Rademacher sketch when the inequality in Eq. (3.20)
holds for the two input vectors x,y. In particular, this inequality always holds
when the input vectors are nonnegative. Therefore, in this case, the complex
Rademacher sketch requires a smaller number of random features than the real
Rademacher sketch to achieve a given accuracy.

When the inequality in Eq. (3.20) holds, the advantage of the complex Rademacher
sketch becomes more significant for larger p. We illustrate this in Fig. 3.2, where
x = y = (1, . . . , 1)⊤/

√
d ∈ Rd. In this case, we have σ2 = (2 − 1/d)p − 1 for the

complex Rademacher sketch (q = 1/2), while we have σ2 = (3−2/d)p−1 for the real
Rademacher sketch (q = 1). For larger p, the value of σ2 for the real Rademacher
sketch becomes relatively larger than that for the complex Rademacher sketch, im-
plying that the complex Rademacher sketch is more efficient. Fig. 3.2 empirically
supports this observation.

3.5 Structured Product-Sketches

We study here structured polynomial sketches and their extensions with complex
features. In Section 3.1, we studied polynomial sketches in Eq. (3.4) (or Eq. (3.10)
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Figure 3.2: This plot shows the mean absolute error E[|k̂(x,y) − (x⊤y)p|] for
different values of the degree p, where the mean is taken over 100 independent
constructions of the approximate kernel k̂(x,y), for both the real and complex
Rademacher sketches. The number of random features is D = 5, 000 and the
dimensionality of input vectors is d = 1, 000. The input vectors are x = y =
(1, . . . , 1)⊤/

√
d ∈ Rd.

for complex extensions), where the p×D random vectors wi,ℓ ∈ Rd (i = 1, . . . , p,
ℓ = 1, . . . , D) are generated in an i.i.d. manner. By putting a structural constraint
on these vectors, one can construct more efficient random features with a lower
variance. Moreover, such a structural constraint leads to a computational advan-
tage, as the imposed structure may be used for implementing an efficient algorithm
for fast matrix multiplication.

We develop two novel structured polynomial sketches that are closely related
to TensorSRHT (Ahle et al., 2020) introduced in Chapter 2. Just like the origi-
nal version by Ahle et al. (2020), our sketches apply the Subsampled Randomized
Hadamard Transform (SRHT) to an input x ∈ Rd in order to then form an im-
plicit sketch of x(p). The key difference is that our sketches are embedded into
the Product-Sketch framework and permit us to derive closed-form variances for
them. Currently there are only upper bounds on the variances for structured
polynomial sketches like TensorSRHT and TensorSketch available in the litera-
ture, which is why statistical advantages have only been shown empirically up
until now. Our contribution is to theoretically characterize statistical advantages
over non-structured polynomial sketches by means of closed-form variance deriva-
tions and comparisons. Since our two proposed sketches are closely related to
TensorSRHT by Ahle et al. (2020), we will stick to the term TensorSRHT and add
further precisions when necessary.

Our second main contribution in this section is to develop a complex extension
of the aforementioned structured sketches and to study their variance advantage
empirically. In Section 3.5.1, we introduce our version of TensorSRHT with real
features, and present its extension using complex features in Section 3.5.2. We
then make a comparison between the real and complex versions in Section 3.5.3.
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3.5.1 Our Version of TensorSRHT

Recall from Chapter 2 that TensorSRHT by Ahle et al. (2020) is defined as

Φ(x) = P π(HdD1x⊗ · · · ⊗HdDpx)/
√
D (3.22)

= P πHdp(D1 ⊗ · · · ⊗Dp)x
(p)/

√
D,

where P π ∈ {0, 1}D×dp is a sampling matrix, Hn is the unnormalized Hadamard
matrix of size {0, 1}n×n for some n = 2m,m ∈ N and {Di}pi=1 are diagonal
Rademacher matrices of size Rd×d.

By looking at Eq. (3.22), one can see that TensorSRHT is constructed by
formingD distinct combinations of the elements of {HDix}pi=1. More precisely, we
sample the index tuples {(i1,ℓ, . . . , ip,ℓ)}Dℓ=1 without replacement, where i1,ℓ, . . . , ip,ℓ
are uniformly sampled from {1, . . . , d}. Each element {Φ(x)ℓ}Dℓ=1 is then computed
as

Φ(x)ℓ = (HdD1x)i1,ℓ · · · (HdDpx)ip,ℓ/
√
D. (3.23)

In the following, we propose two modifications of TensorSRHT that can be rep-
resented in terms of an equivalent Product-Sketch (3.4). The advantage of our
proposed sketches is that we can compute their variances in closed form making
it possible to study the statistical advantages of our TensorSRHT modifications
compared to non-structured Product-Sketches.

We call our modified TensorSRHT sketches stacked TensorSRHT and upsam-
pled TensorSRHT, respectively. We developed stacked TensorSRHT in our earlier
work (Wacker et al., 2022a) since we could easily derive a convex surrogate function
of its variance over D, as it is needed for our optimized Maclaurin method that we
propose in Chapter 5. In our later work (Wacker et al., 2022b), we developed the
upsampled TensorSRHT that reduces the time complexity from O(p(D log d+D))
of stacked TensorSRHT to O(p(d log d+D)) to project a single data point, and is
thus faster when D > d. Upsampled TensorSRHT has the same time complexity
as TensorSRHT by Ahle et al. (2020) that can be considered the state-of-the-art
in terms of computation time. We start by defining stacked TensorSRHT and
introduce upsampled TensorSRHT afterwards.

Stacked TensorSRHT

To simplify the definition of stacked TensorSRHT, we distinguish two cases for D,
namely D ≤ d and D > d. We now cover the first case.

Case D ≤ d. For now we assume that the number D of random features is less
or equal to the dimensionality d of the input vectors: D ≤ d. For i = 1, . . . , p,
define wi ∈ Rd as a random vector whose elements are i.i.d. Rademacher random
variables:

wi := (wi,1, . . . , wi,d)
⊤ ∈ Rd, wi,j

i.i.d.∼ unif({1,−1}) (j = 1, . . . , d)
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Consider a random permutation of the indices πi : {1, . . . , d} → {1, . . . , d} for
every i = 1, . . . , p, and let

πi(1), . . . , πi(d)

be the permuted indices. For i = 1, . . . , p and ℓ = 1, . . . , D, we then define a
random vector si,ℓ ∈ Rd as the Hadamard product (i.e., element-wise product)
of the Rademacher vector wi and the permuted column hπi(ℓ) of the Hadamard
matrix:

si,ℓ := wi ◦ hπi(ℓ) = (wi,1hπi(ℓ),1, . . . , wi,dhπi(ℓ),d)
⊤ ∈ Rd, (3.24)

where hπi(ℓ),j denotes the j-th element of hπi(ℓ).
Because of the orthogonality of the columns h1, . . . ,hd of the Hadamard matrix

Hd, the random weight vectors si,1, . . . , si,d are orthogonal to each other almost
surely: for ℓ ̸= m, we have

s⊤i,ℓsi,m = (wi ◦ hπi(ℓ))
⊤(wi ◦ hπi(m)) =

d∑
j=1

w2
i,jhπi(ℓ),jhπi(m),j = h⊤

πi(ℓ)
hπi(m) = 0.

Note also that, given the permutation πi(1), . . . , πi(d), the elements of each random
vector si,ℓ in (3.24) are i.i.d. Rademacher variables.

Finally, we define a random feature map ΦR(x) : Rd → RD for the case D ≤ d
as

ΦR(x) :=
1√
D

[
(

p∏
i=1

s⊤i,1x), . . . , (

p∏
i=1

s⊤i,Dx)

]⊤
∈ RD, (3.25)

which defines an approximate kernel as

k̂R(x,y) := ΦR(x)
⊤ΦR(y) =

1

D

D∑
ℓ=1

ΦR(x)ℓΦR(y)ℓ

where ΦR(·)ℓ denotes the ℓ-th element of ΦR(·).
The orthogonality of the weight vectors in Eq. (3.24) leads to negative covari-

ances between the terms ΦR(x)ℓΦR(y)ℓ and ΦR(x)mΦR(y)m with distinct indices
ℓ ̸= m in the approximate kernel. These negative covariances decrease the overall
variance of the approximate kernel, as we will show later in Theorem 3.5.2.

For D ≤ d, our version of TensorSRHT (3.25) and the one by Ahle et al. (2020)
in Eq. (3.22) are almost equivalent. To see this, let (si,1, . . . , si,d)

⊤x = P πi
HdDix

with Di := diag(wi) and P πi
:= (eπi(1), . . . , eπi(d))

⊤ ∈ Rd×d, where eπi(ℓ) ∈ Rd is
a vector whose πi(ℓ)-th element is 1 and other elements are 0 (ℓ = 1, . . . , d). P πi

has the role of shuffling the elements of HdDix at random. As a result, the ℓ-th
element of ΦR(x) (3.25) can be expressed as

ΦR(x)ℓ = (HdD1x)π1(ℓ) · · · (HdDpx)πp(ℓ)/
√
D. (3.26)
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Each permutation index {πi(ℓ)}Dℓ=1 is sampled from {1, . . . , d} without replacement
for every i = 1, . . . , p due to the shuffling operation. From this it follows that the
tuples {(π1(ℓ), . . . , πp(ℓ))}Dℓ=1 are sampled without replacement from {1, . . . , d}p.
However, it is not possible to obtain two tuples that have equal indices πi(ℓ) =
πi(ℓ

′) for some ℓ ̸= ℓ′ and i ∈ 1, . . . , p, which shows a minor difference between our
version of TensorSRHT (3.26) and TensorSRHT by Ahle et al. (2020) (3.23).

Case D > d. We now explain how to drawD > d random feature samples, which
requires an extension of the sketch in Eq. (3.25) described so far. In the case of
stacked TensorSRHT, we independently generate the feature map in Eq. (3.25)
a total number of B :=

⌈
D
d

⌉
times and concatenate the resulting B vectors to

obtain a Bd-dimensional feature map, and then discard the redundant last Bd−D
components of it to obtain aD-dimensional feature map. In this way, we can obtain
a D-dimensional feature map for arbitrary D ∈ N, which we can still write as

ΦR(x) :=
1√
D

[
(

p∏
i=1

s⊤i,1x), . . . , (

p∏
i=1

s⊤i,Dx)

]⊤
∈ RD. (3.27)

as in Eq. (3.25), but with {si,ℓ}Dℓ=1 corresponding to our stacked construction. The
entire procedure for constructing the structured polynomial sketch in Eq. (3.27)
is outlined in Algorithm 2, where we also cover the complex-valued case discussed
later.

In Algorithm 2, we use the equivalent matrix formulation introduced in Eq. (3.26),
since it enables the Fast Walsh-Hadamard transform by employing the associativ-
ity, and thus the feature map can be computed much faster. To explain this more
precisely, we can compute

(s⊤i,1x, . . . , s
⊤
i,dx) = x⊤(si,1, . . . , si,d) = x⊤(DiHdP πi

) =
(
(x⊤Di)Hd

)
P πi

by 1) first computing x⊤Di, 2) then multiplying the Hadamard matrix Hd using
the Fast Walsh-Hadamard transform, and 3) lastly multiplying the permutation
matrix P πi

, which is more efficient than first precomputing DiHdP πi
and then

multiplying x⊤. In this way, thanks to the Fast Walsh-Hadamard transform,
(s⊤i,1x, . . . , s

⊤
i,dx) can be computed in O(d log d) instead of O(d2) (Fino and Algazi,

1976). The total computational complexity is therefore O(p(D log d+D)) and the
memory requirement is O(pD), and this is a computational advantage over the
non-structured i.i.d. estimator in Eq. (3.4).

The feature map in Eq. (3.27) induces an approximate kernel k̂R(x,y) =
ΦR(x)

⊤ΦR(y). The following proposition summarizes that this approximate ker-
nel is unbiased with respect to the target polynomial kernel k(x,y) = (x⊤y)p. As
mentioned earlier, stacked TensorSRHT discussed here is slightly different from
TensorSRHT by Ahle et al. (2020). Therefore, this result is novel in its own right.
The result follows from Proposition 3.5.8 in the next subsection, so we omit the
proof.
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Algorithm 2: Real and Complex stacked TensorSRHT

Result: A feature map ΦR/C(x)
Pad x with zeros so that d becomes a power of 2 ;

Let B =
⌈
D
d

⌉
be the number of stacked projection blocks ;

forall b ∈ {1, . . . , B} do
forall i ∈ {1, . . . , p} do

Real case Generate a random vector wi = (wi,1, . . . , wi,d)
⊤ ∈ Rd

as wi,1, . . . , wi,d
i.i.d∼ unif({1,−1}), and define a diagonal matrix

Di := diag(wi) ∈ Rd×d;
Complex case Generate a random vector

zi = (zi,1, . . . , zi,d)
⊤ ∈ Cd as zi,1, . . . , zi,d

i.i.d∼ unif({1,−1, i,−i}),
and define a diagonal matrix Di := diag(wi) ∈ Cd×d ;
Randomly permute the indices 1, . . . , d to πi(1), . . . , πi(d) ;
Let P π := (eπi(1), . . . , eπi(d)) ∈ Rd×d, where eπi(ℓ) ∈ Rd is a vector
whose πi(ℓ)-th element is 1 and other elements are 0 (ℓ = 1, . . . , d)
;
Let (si,1, . . . , si,d) := DiHdP πi

;

end

Compute Φb(x) :=
√

1/D[(
∏p

i=1 s
⊤
i,1x), . . . , (

∏p
i=1 s

⊤
i,dx)]

⊤ ;

end
Concatenate the elements of Φ1(x), . . . ,ΦB(x) to yield a single projection
vector ΦR/C(x) and keep the first D entries ;

Proposition 3.5.1. Let x,y ∈ Rd be arbitrary, and k̂R(x,y) = ΦR(x)
⊤ΦR(y) be

the approximate kernel with ΦR(x),ΦR(y) ∈ RD given by the random feature map
in Eq. (3.27). Then we have E[k̂R(x,y)] = (x⊤y)p.

We next study the variance of the approximate kernel given by stacked Ten-
sorSRHT, which is the mean squared error of the approximate kernel since it is
unbiased as shown above. The following theorem provides a closed form expression
for the variance, whose proof is given for the more general complex case in Ap-
pendix B.2.2. It is a novel result and extends Choromanski et al. (2017, Theorem
3.3) to the setting p > 1 and D > d.

Theorem 3.5.2 (Variance of Real Stacked TensorSRHT). Let x,y ∈ Rd be arbi-
trary, and k̂R(x,y) = ΦR(x)

⊤ΦR(y) be the approximate kernel with Φ(x),Φ(y) ∈
RD given by the random feature map in Eq. (3.27). Then we have

V
[
k̂R(x,y)

]
=

V
(p)
Rad

D︸ ︷︷ ︸
(A)

− c(D, d)

D2

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
Rad

d− 1

)p]
︸ ︷︷ ︸

(B)

, (3.28)
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where V
(p)
Rad ≥ 0 and V

(1)
Rad ≥ 0 are the variances of the real Rademacher sketch

with a single feature in Eq. (3.7) with generic p ∈ N and p = 1, respectively, and
c(D, d) ∈ N is defined by

c(D, d) := ⌊D/d⌋d(d− 1) + mod(D, d)(mod(D, d)− 1). (3.29)

Remark 3.5.3. The constant c(D, d) in Eq. (3.29) is the number of pairs of indices
ℓ, ℓ′ = 1, . . . , D with ℓ ̸= ℓ′ for which the covariance of the weight vectors si,ℓ and
si,ℓ′ in Eq. (3.27) is non-zero (see the proof in Appendix B.2.2 for details). If
D = Bd for some B ∈ N, this constant simplifies to c(D, d) = Bd(d− 1), and the
variance in Eq. (3.28) becomes

V
[
k̂R(x,y)

]
=

1

D
V

(p)
Rad −

d− 1

D

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
Rad

d− 1

)p]
.

An interesting subcase is p = 1, for which the variance becomes zero. Thus, setting
D ∈ {kd | k ∈ N} for p = 1 is equivalent to using the linear kernel with the original
inputs.

Theorem 3.5.2 enables understanding the condition under which stacked Ten-
sorSRHT has a smaller variance than the unstructured Rademacher sketch in
Eq. (3.1). Note that the term (A) in Eq. (3.28) is the variance of the approxi-
mate kernel with the Rademacher sketch with D features. On the other hand, the
term (B) in Eq. (3.28) can be interpreted as the effect of the structured sketch.
The term (B) always becomes non-negative when p is odd, and thus the overall
variance of stacked TensorSRHT becomes smaller than the Rademacher sketch, as
summarized in the following corollary. Thus, when p is odd, stacked TensorSRHT
should be preferred over the Rademacher sketch.

Corollary 3.5.4. Let p ∈ N be odd. Then, for all input vectors x,y ∈ Rd,
the variance of the approximate kernel with stacked TensorSRHT in Eq. (3.28) is
smaller or equal to the variance of the approximate kernel with the Rademacher
sketch:

V
(p)
Rad

D
− c(D, d)

D2

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
Rad

d− 1

)p]
≤ V

(p)
Rad

D

Proof. Since, V
(1)
Rad ≥ 0, we have (x⊤y)2 − 1

d−1
V

(1)
Rad ≤ (x⊤y)2. For odd p this leads

to
(
(x⊤y)2 − 1

d−1
V

(1)
Rad

)p
≤ (x⊤y)2p. The assertion immediately follows.

If p is even, on the other hand, the variance of stacked TensorSRHT can be
larger than the Rademacher sketch for certain input vectors x,y ∈ Rd. For in-
stance, if x and y are orthogonal, i.e., x⊤y = 0, then the variance of TensorSRHT
in Eq. (3.28) is

Eq. (3.28) =
V

(p)
Rad

D
+

c(D, d)

D2

(
V

(1)
Rad

d− 1

)p

≥ V
(p)
Rad

D
.
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Therefore, for even p, we do not have a theoretical guarantee for the advantage
of stacked TensorSRHT over the Rademacher sketch in terms of their variances.
In practice, however, stacked TensorSRHT has often a smaller variance than the
Rademacher sketch also for even p, as demonstrated in our experiments described
later. Moreover, stacked TensorSRHT has a computational advantage over the
Rademacher sketch, thanks to the fast Walsh-Hadamard transform.

Remark 3.5.5. One can straightforwardly derive a probabilistic error bound for
stacked TensorSRHT by using Theorem 3.5.2 and Chebyshev’s inequality. How-
ever, deriving an exponential tail bound for stacked TensorSRHT is more involved
despite our derived closed form variance formula, because different features in the
feature map ΦR(x) in Eq. (3.25) are dependent for stacked TensorSRHT and thus
applying Bersnstein’s inequality is not straightforward. One can find an exponential
tail bound for TensorSRHT in Ahle et al. (2020, Lemma 33 in the longer version),
while they analyze a slightly different version of TensorSRHT from ours and their
bound is a uniform upper bound that holds for all input vectors simultaneously.

Our variance formula in Eq. (3.28), which is a novel contribution to the liter-
ature, provides a precise characterization of how the variance of the approximate
kernel depends on the input vectors x,y ∈ Rd, and shows when stacked Ten-
sorSRHT is more advantageous than the Rademacher sketch. Moreover, as the
variance formula can be computed in practice, it can be used for designing an
objective function for a certain optimization problem, as we do in Chapter 5 for
designing a data-driven approach to feature construction.

Upsampled TensorSRHT

We now briefly discuss our upsampled TensorSRHT modification that is faster
than stacked TensorSRHT if D > d and more closely related to the original con-
struction in Ahle et al. (2020) while still providing closed form variances. The
disadvantage of upsampled TensorSRHT is that we have not derived a convex sur-
rogate function for its variance, obstructing its use for the optimized Maclaurin
method in Chapter 5.

For D ≤ d, upsampled TensorSRHT and stacked TensorSRHT are equivalent.
We will thus directly focus on the case D > d. Instead of generating the feature
map in Eq. (3.25) a total number of B = ⌈D/d⌉ times independently as for stacked
TensorSRHT, we keep the construction in Eq. (3.25) and change only the sampling
matrices {P πi

}pi=1.
For this purpose, we concatenate the index vector (1, . . . , d)⊤ ∈ Rd a total

number of B times with itself and call the resulting vector pbase ∈ R⌈D/d⌉d. We
then shuffle the elements of pbase for each i ∈ {1, . . . , p} independently at random
and call the shuffled vectors {pi}

p
i=1. Each vector pi defines a sampling matrix

P i = (epi,1 , . . . , epi,D)
⊤ ∈ {0, 1}D×d. We keep only the first D elements of every

pi to create D random feature samples. Now we let (si,1, . . . , si,D) := DiHdP i.
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Using {si,1, . . . , si,D}pi=1 as part of Eq. (3.25) defines our upsampled TensorSRHT
sketch.

The computation of this sketch can be equivalently written as

ΦR(x) := (P 1HdD1x)⊙ · · · ⊙ (P pHdDpx)/
√
D, (3.30)

which allows for a computation in O(p(d log d+D)) time.
The unbiasedness of upsampled TensorSRHT can be shown by following the

same arguments as in Proposition 3.5.8. The following theorem provides a closed
form expression for the variance, whose proof is given for the more general complex
case in Appendix B.2.2.

Theorem 3.5.6 (Variance of Real Upsampled TensorSRHT). Let x,y ∈ Rd be ar-
bitrary, and k̂R(x,y) = ΦR(x)

⊤ΦR(y) be the approximate kernel with Φ(x),Φ(y) ∈
RD given by the random feature map in Eq. (3.30). Then we have

V
[
k̂R(x,y)

]
=

V
(p)
Rad

D︸ ︷︷ ︸
(A)

−
(
1− 1

D

)[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
Rad

⌈D/d⌉d− 1

)p]
︸ ︷︷ ︸

(B)

,

(3.31)

where V
(p)
Rad ≥ 0 and V

(1)
Rad ≥ 0 are the variances of the real Rademacher sketch with

a single feature in Eq. (3.7) with generic p ∈ N and p = 1, respectively, as before.

Remark 3.5.7. c(D, d) in Eq. (3.28) has been replaced by (1− 1/D) in Eq. (3.31)
because all weight vectors si,ℓ in Eq. (3.25) have a non-zero covariance for upsam-

pled TensorSRHT. At the same time,
V

(1)
Rad

d−1
is replaced by

V
(1)
Rad

⌈D/d⌉d−1
, which counter-

balances the aforementioned upscaling from c(D, d) to (1 − 1/D). We observed
that upsampled TensorSRHT and stacked TensorSRHT perform similarly well in
preliminary experiments although we did not carry out a detailed comparison since
we developed both sketches in separate works and for a different purpose.

3.5.2 Complex-Valued TensorSRHT

We present here a generalization of stacked and upsampled TensorSRHT by allow-
ing for complex features. To this end, let z ∈ C be a random variable such that (i)
|z| = 1 almost surely, (ii) E[z] = 0 and (iii) z is symmetric, i.e., the distributions
of z and −z are the same. Define then z1, . . . ,zp ∈ Cd as i.i.d. complex random
vectors such that elements of each random vector zi are i.i.d. realizations of z:

zi = (zi,1, . . . , zi,d)
⊤ ∈ Cd, zi,j

i.i.d.∼ Pz (j = 1, . . . , d), (3.32)

where Pz denotes the probability distribution of z.
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We propose the complex version of stacked TensorSRHT in detail, while the
complex version of upsampled TensorSRHT is obtained using the same modifica-
tions. Let π : {1, . . . , d} → {1, . . . , d} be a random permutation of indices 1, . . . , d.
For i = 1, . . . , p and ℓ = 1, . . . , D, we then define a random vector si,ℓ ∈ Cd as the
Hadamard product of the random vector zi in (3.32) and the permuted column
hπ(ℓ) of the Hadamard matrix Hd:

si,ℓ := zi ◦ hπ(ℓ) = (zi,1hπ(ℓ),1, . . . , zi,dhπ(ℓ),d)
⊤ ∈ Cd, (3.33)

With these weight vectors si,ℓ, we define a random feature map exactly in the
same way as the feature map in Eq. (3.27) for the real stacked TensorSRHT in
Section 3.5.1. We define the resulting feature map ΦC : Rd → CD by

ΦC(x) :=
1√
D

[
(

p∏
i=1

s⊤i,1x), . . . , (

p∏
i=1

s⊤i,Dx)

]⊤
∈ CD. (3.34)

We call this feature construction complex stacked TensorSRHT. Substituting the
diagonal real Rademacher matrices {Di}pi=1 in Eq. (3.30) by the matrices {diag(zi)}pi=1

instead results in the complex version of upsampled TensorSRHT.
Admissible examples of the distribution Pz in Eq. (3.32) include: (1) the uni-

form distribution on {1,−1}; (2) the uniform distribution on {1,−1, i,−i}; and
(3) the uniform distribution on the unit circle in Cd. The example (1) is where z
is a real Rademacher random variable, and in this case the complex TensorSRHT
coincides with the real TensorSRHT. Thus, the complex TensorSRHT is a strict
generalization of the real TensorSRHT.

We first show that the stacked complex TensorSRHT provides an unbiased
approximation of the polynomial kernel k(x,y) = (x⊤y)p. Since the real Ten-
sorSRHT is a special case, its unbiasedness follows from this result.

Proposition 3.5.8. Let x,y ∈ Rd be arbitrary, and k̂C(x,y) = ΦC(x)
⊤ΦC(y) be

the approximate kernel with ΦC(x),ΦC(y) ∈ CD given by the random feature map
in Eq. (3.34). Then we have E[k̂C(x,y)] = (x⊤y)p.

Proof. We first show E[si,ℓsi,ℓ⊤] = Id for all i = 1, . . . , p and ℓ = 1, . . . , D. This
follows from the fact that, for all t, u = 1, . . . , d, we have

E[(si,ℓsi,ℓ⊤)tu] = E[zi,thπ(ℓ),tzi,uhπ(ℓ),u] =

{
E[|zi,t|2]E[h2

π(ℓ),t] = 1 (if t = u),

E[zi,t]E[zi,u]E[hπ(ℓ),thπ(ℓ),u] = 0 (if t ̸= u),
.

Using this, we have

E
[
ΦC(x)

⊤ΦC(y)
]
= E

[
1

D

D∑
ℓ=1

p∏
i=1

x⊤si,ℓsi,ℓ
⊤y

]
=

1

D

D∑
ℓ=1

p∏
i=1

x⊤E[si,ℓsi,ℓ⊤]y = (x⊤y)p
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The proof for the unbiasedness of complex upsampled TensorSRHT is analo-
gous.

We now study the variance of the approximate kernel given by complex stacked
TensorSRHT in Eq. (3.34) as well as complex upsampled TensorSRHT. To this
end, we use the same notation as Theorem 3.3.1 to write the real and imaginary
parts of the random variable z as z = a + ib with real-valued random variables
a, b ∈ R. The proof of the following theorem is provided in Appendix B.2.2.

Theorem 3.5.9 (Variance of Complex Stacked TensorSRHT). Let x,y ∈ Rd be
arbitrary, and k̂C(x,y) = ΦC(x)

⊤ΦC(y) be the approximate kernel with ΦC(x),ΦC(y) ∈
CD given by the complex random feature map in Eq. (3.34). For the random vari-
able z defining Eq. (3.32), write z = a+ ib with a, b ∈ R, and suppose that

E[ab] = 0, E[a2] = q, E[b2] = 1− q where 0 ≤ q ≤ 1.

Then we have

V[k̂C(x,y)] =
V

(p)
q

D︸︷︷︸
(A)

− c(D, d)

D2

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

d− 1

)p]
︸ ︷︷ ︸

(B)

, (3.35)

for complex stacked TensorSRHT, where V
(p)
q ≥ 0 and V

(1)
q ≥ 0 are Eq. (3.17)

with the considered value of p and p = 1, respectively, and c(D, d) ∈ N is defined
in (3.29).

For complex upsampled TensorSRHT, we have

V[k̂C(x,y)] =
V

(p)
q

D︸︷︷︸
(A)

−
(
1− 1

D

)[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

⌈D/d⌉d− 1

)p]
︸ ︷︷ ︸

(B)

. (3.36)

Regarding Theorem 3.5.9, we make the following observations.

• The case q = 1 recovers Theorem 3.5.2 and Theorem 3.5.6 on the real Ten-
sorSRHT, where z ∈ {1,−1} is a Rademacher random variable. The case
q = 1/2 is the complex TensorSRHT with, for instance, Pz being the uni-
form distribution on {1,−1, i,−i} or on the unit circle in C. Other values of
q ∈ [0, 1] can also be considered, but we do not discuss them further.

• The first term (A) in Eq. (3.35) and Eq. (3.36) is the variance of the un-

structured polynomial sketch in Eq. (3.10) with D features, since V
(p)
q is its

variance with a single feature (D = 1) in Eq. (3.17). The second term (B)
in Eq. (3.35) and Eq. (3.36) is the effect of using the structured sketch. The

quantity V
(1)
q is the variance of the unstructured sketch in Eq. (3.10) with a

single feature in Eq. (3.17) with p = 1.
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• As for the real case, the variance (3.35) becomes zero when p = 1 and
D ∈ {kd | k ∈ N}.

As we discussed for the real TensorSRHT in Corollary 3.5.4, Theorem 3.5.9
enables understanding a condition under which the complex TensorSRHT is ad-
vantageous over the corresponding unstructured complex sketch in Eq. (3.10). As
for the real case, the condition is that the degree p of the polynomial kernel is odd,
as stated in the following.

Corollary 3.5.10. Let p ∈ N be odd. Then, for all input vectors x,y ∈ Rd,
the variance of the approximate kernel with the complex stacked TensorSRHT in
Eq. (3.35) is smaller or equal to the variance of the approximate kernel with the
corresponding unstructured polynomial sketch:

V
(p)
q

D
− c(D, d)

D2

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

d− 1

)p]
≤ V

(p)
q

D

Proof. Since, V
(1)
q ≥ 0, we have (x⊤y)2 − 1

d−1
V

(1)
q ≤ (x⊤y)2. For odd p this leads

to
(
(x⊤y)2 − 1

d−1
V

(1)
q

)p
≤ (x⊤y)2p. The assertion immediately follows.

As discussed for the real case, if p is even, the variance of the complex Ten-
sorSRHT can be larger than the corresponding unstructured sketch for certain
input vectors x,y ∈ Rd (e.g., when x⊤y = 0). Empirically, however, the complex
TensorSRHT often has a smaller variance also for even p, as we demonstrate later.
Moreover, the arguments of Corollary 3.5.10 can also be applied to upsampled
TensorSRHT.

3.5.3 Comparing the Real and Complex TensorSRHT

Let us now compare the real and complex TensorSRHT. We focus on a comparison
of stacked TensorSRHT here although the same arguments can be applied to up-
sampled TensorSRHT. To make the discussion clearer, suppose that the number
of random features satisfies D = Bd for some B ∈ N, as in Remark 3.5.3. Then
the variance formula in Eq. (3.35) simplifies to

V[k̂C(x,y)] =
V

(p)
q

D︸︷︷︸
(A)

− d− 1

D

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

d− 1

)p]
︸ ︷︷ ︸

(B)

. (3.37)

Recall that setting q = 1 and q = 1/2 recover the variances of real and complex
TensorSRHT, respectively. Thus, let us compare these two cases. We make the
following observations:
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• As discussed in Section 3.3, it holds that V
(p)
1/2 ≤ V

(p)
1 and V

(1)
1/2 ≤ V

(1)
1 given

that the input vectors x = (x1, . . . , xd),y = (y1, . . . , yd) satisfy the inequality
in Eq. (3.20), i.e.,

∑
i ̸=j xixjyiyj ≥ 0, which is satisfied when x and y are

non-negative vectors.

• Thus, if Eq. (3.20) is satisfied, the first term (A) becomes smaller for q = 1/2
(complex case) than q = 1 (real case). On the other hand, if p is odd, the
second term (B) becomes smaller for q = 1/2 than q = 1; thus, the variance
reduction (i.e., −(B)) is smaller for q = 1/2 than q = 1.

The above observations suggest that, even when Eq. (3.20) is satisfied, whether
the complex TensorSRHT (q = 1/2) has a smaller variance than the real Ten-
sorSRHT (q = 1) depends on the balance between the two terms (A) and (B) and
on the properties of the input vectors x,y ∈ Rd. We have not been able to provide
a theoretical characterization of exact situations where the complex TensorSRHT
has a smaller variance than the real TensorSRHT.

To complement the lack of a theoretical characterization, we performed experi-
ments to compare the variances of real and complex TensorSRHT, whose results are
shown in Fig. 3.3. We evaluated the variance formula in Eq. (3.37) for q = 1 (real)
and q = 1/2 (complex), for 1000 pairs of input vectors x,y randomly sampled
from a given dataset (EEG, CIFAR 10 ResNet34 features, MNIST and Gisette).
For each pair x,y, we computed the ratio of Eq. (3.37) with q = 1/2 divided by
Eq. (3.37) with q = 1, and Fig. 3.3 shows the empirical cumulative distribution
function of this ratio for the 4 datasets. In these datasets, the input vectors are
nonnegative.

Fig. 3.3 shows that, for 100%, 100%, 97.8%, 100% of the cases of the 4 datasets,
respectively, the variance of the complex TensorSRHT is smaller than that of the
real TensorSRHT. Moreover, the ratio of the variances tends to be even smaller for
a larger value of p. These results suggest that the complex TensorSRHT is effective
in reducing the variance of the real TensorSRHT, and the variance reduction is
more significant for a larger value p of the polynomial degree. We leave a theoretical
analysis for explaining this improvement of the complex TensorSRHT for a future
work.

So far, we have compared the variances of real and complex Product-Sketches.
In the following, we compare complex Rademacher and TensorSRHT sketches
against their real analogs in terms of their downstream task performance for the
task of Gaussian process classification.

3.5.4 Wall-Clock Time Comparison of Real and Complex
Random Features in GP Classification

In this section, we empirically compare the complex Rademacher and TensorSRHT
sketches that we introduced in this chapter against their real analogs, where we
measure classification error against wall-clock time for the task of Gaussian process
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Figure 3.3: Empirical cumulative distribution of pairwise ratios Var(Compl. Ten-
sorSRHT) / Var(Real TensorSRHT) on a subsample (1000 samples) of four dif-
ferent datasets (EEG, CIFAR10 ResNet34 features, MNIST, Gisette) with unit-
normalized data where D = d. The datasets are not zero-centered and therefore
entirely positive.

classification. This comparison is relevant because complex-valued random feature
maps may incur a higher computational cost for the downstream task. We there-
fore investigate whether they lead to a better downstream task performance using
the same computational budget as their real-valued counterparts. For complete-
ness, we explain how to use complex-valued random features in Gaussian process
inference and discuss the resulting computational costs in Appendix B.34.

We consider Gaussian process classification using the polynomial kernel

k(x,y) = σ2

((
1− 2

a2

)
+

2

a2
x⊤y

)p

= σ2

(
1− ∥x− y∥2

a2

)p

(3.38)

with p ∈ N, a = 4, σ2 > 0, and ∥x∥ = ∥y∥ = 1.

Setting. We use the Rademacher sketch and stacked TensorSRHT, and their re-
spective complex versions. For each polynomial sketch, we compute the KL diver-
gence (B.23) between the approximate and exact GP posteriors (see Appendix B.3
for details), and record wall-clock time (in seconds) spent on constructing random
features and on computing the approximate GP posterior.5 We use FashionMNIST
(Xiao et al., 2017) for this experiment.

Results. Fig. 3.4 describes the results. The approximate GPs using complex
random features achieve equal or lower KL-divergences than those using real fea-

4Specifically, if one uses D complex features, then the inversion of the matrix in Eq. (B.20)
requires 4 times as many floating point operations as the case of using D real features. Note
that, if one instead uses 2D real features, then the inversion of the matrix in Eq. (B.20) requires
8 times as many operations as the case of using D real features. Thus, doubling the number
of real features is 2 times more expensive than using complex features. See Appendix B.3.3 for
details.

5We recorded the time measurements on an NVIDIA P100 GPU and PyTorch version 1.10
with native complex linear algebra support.
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Figure 3.4: Results of the experiments in Section 3.5.4 on wall-clock time compar-
ison of real and complex random features in GP classification on FashionMNIST.
In each plot, the vertical axis shows the KL divergence (B.23) between the approx-
imate and the exact GP posteriors for each polynomial sketch, and the horizontal
axis is wall-clock time (in seconds) spent on constructing random features and on
computing the approximate GP posterior. Each column corresponds to a different
degree p ∈ {3, 7, 10, 20} of the polynomial kernel in Eq. (3.38). The top row shows
results on the non-centered (thus non-negative) data, and the bottom row to those
on the zero-centered data. The number of random features is D ∈ {1d, . . . , 10d}
for real features, and D ∈ {1d, . . . , 5d} for complex features, as annotated next to
the respective measurements in each plot.

tures of the same computation time, for all the cases. In particular, the improve-
ments of complex features are larger for higher polynomial degrees p and for the
non-centered (and thus non-negative) data. This observations agrees with the dis-
cussion in Section 3.3 on when complex features yield lower variances than real
features.



Chapter 4

Complex-to-Real
Product-Sketches

In the previous chapter, we introduced complex Product-Sketches and analyzed
their implications on the variances of the corresponding kernel estimate. Although
complex polynomial sketches can yield much lower variances than real-valued
analogs, they require the downstream model to handle complex data, which usually
leads to an increased computational cost as we show for the example of Gaussian
processes in Section B.3.

In this chapter, we show how to transform complex polynomial sketches into
real ones that we call Complex-to-Real (CtR) polynomial sketches from now on.
CtR-Sketches do not require the downstream model to handle complex data and
can be used as a drop-in replacement inside any model that makes use of ran-
dom feature approximations. We show that CtR-sketches maintain the variance
reduction properties of complex Product-Sketches, thus leading to an even better
downstream performance under a fixed computational budget.

4.1 Transforming Complex into Real Sketches

In the following, we show how to convert complex polynomial sketches into real-
valued CtR-sketches. Let ΦC : Rd → CD be a complex polynomial sketch and
k̂C(x,y) = ΦC(x)

⊤ΦC(y) the approximate kernel as defined in Chapter 3, where
we make the use of complex projections explicit through the subscript C. We
further denote by Re{·} and Im{·} the real and imaginary parts of a complex
vector.

k̂C(x,y) is generally complex-valued and can hence be written as

k̂C(x,y) = Re{k̂C(x,y)}+ i · Im{k̂C(x,y)}.

For an unbiased polynomial sketch, we have E[k̂C(x,y)] = k(x,y) + 0 · i. From
this it follows that E[Re{k̂C(x,y)}] = k(x,y) and E[Im{k̂C(x,y)}] = 0 through
the linearity of the expectation.

58
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We thus define k̂CtR(x,y) := Re{k̂C(x,y)} to be our novel kernel estimate
which, by expanding the real part of ΦC(x)

⊤ΦC(y), can be written as

k̂CtR(x,y) = Re{ΦC(x)}⊤Re{ΦC(y)}+ Im{ΦC(x)}⊤Im{ΦC(y)}.

Note that Re{ΦC(x)}, Im{ΦC(x)} ∈ RD, which allows us to define a 2D-dimensional
real-valued polynomial sketch

ΦCtR(x) :=
(
Re{ΦC(x)1}, . . . ,Re{ΦC(x)D}, (4.1)

Im{ΦC(x)1}, . . . , Im{ΦC(x)D}
)⊤ ∈ R2D,

for which we have

ΦCtR(x)
⊤ΦCtR(y) = Re{k̂C(x,y)} = k̂CtR(x,y). (4.2)

We call ΦCtR a Complex-to-Real (CtR) polynomial sketch and summarize its con-
struction in Algorithm 3, where we assume ΦC to be one of the Product-Sketches
defined in Chapter 3.

The dimension of the feature map ΦCtR (4.1) is 2D for a given D random
samples, while the dimension of the real and complex feature maps, ΦR and ΦC,
discussed in the previous chapter is only D. Feature maps with higher dimensions
usually render the downstream task more expensive and the key question that
we address in this chapter is thus: Does the CtR estimator in Eq. (4.2) yield
lower variances than k̂R(x,y) = ΦR(x)

⊤ΦR(y), where ΦR is the corresponding
real-valued Product-Sketch defined in Chapter 3, if ΦCtR and ΦR have the same
output dimension?

We will show in Section 4.2.1 that this is indeed the case meaning that CtR-
sketches inherit the variance reduction properties of complex Product-Sketches.
This result implies that, under the conditions provided in this work, CtR-Product-
Sketches should be preferred over traditional real-valued Product-Sketches con-
tained in (Kar and Karnick, 2012; Hamid et al., 2014). Unlike the complex sketches
discussed in the previous chapter, CtR-sketches are real-valued and do not require
the downstream model to handle complex data.

4.2 Variances of CtR Product-Sketches

We will now study the variances of CtR-Product-Sketches. Obtaining a closed
form expression for their variances seems challenging at first sight, as we need to
evaluate

V[k̂CtR(x,y)] = V

[
1

D

D∑
ℓ=1

Re

{
p∏

i=1

(w⊤
i,ℓx)(w

⊤
i,ℓy)

}]
,

where the weights W i = (wi,1, . . . ,wi,D)
⊤ ∈ CD×d are defined through the respec-

tive sketch as shown in Algorithm 3.
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Algorithm 3: Complex-to-Real (CtR) Random Features

Result: A feature map ΦCtR(x)
Input: Datapoint x ∈ Rd, projection dimension D ∈ N, degree p ∈ N ;
Sample {W i}pi=1 with W i ∈ CD×d independently according to one of the
following sketches:

• Gaussian: (W i)ℓ,k
i.i.d.∼ CN (0, 1)

• Rademacher: (W i)ℓ,k
i.i.d.∼ Unif({1,−1, i,−i})

• Stacked/Upsampled TensorSRHT: W i = (si,1, . . . , si,D)
⊤ with {si,ℓ}Dℓ=1

defined in Eq. (3.34) in Section 3

Compute ΦC(x) := (W 1x⊙ · · · ⊙W px)/
√
D ;

Set ΦCtR(x) := (Re{ΦC(x)1}, . . . ,Re{ΦC(x)D},
Im{ΦC(x)1}, . . . , Im{ΦC(x)D})⊤ ∈ R2D ;

The challenge here is that the real part of the product of complex numbers
corresponds to a large sum and we are not allowed to “swap” Re(·) with this
product. However, we prove the following proposition that simplifies this problem
and allows us to make use of the variances for complex Product-Sketches that we
derived previously in Chapter 3.

Proposition 4.2.1. Let k̂CtR(x,y) = Re{k̂C(x,y)} for some complex-valued ker-
nel estimate k̂C(x,y) with E[k̂C(x,y)] = k(x,y). Then the following holds:

V[k̂CtR(x,y)] =
1

2
Re
{
V[k̂C(x,y)] + PV[k̂C(x,y)]

}
(4.3)

with PV[k̂C(x,y)] := E[k̂C(x,y)2]− (x⊤y)2p

being the pseudo-variance of k̂C(x,y) and V[k̂C(x,y)] its variance.
Proof. For a complex random variable z = a + i b with a, b ∈ R, we have |z|2 =
a2+b2 and Re{z2} = a2−b2. Combining both equations gives a2 = 1

2
(|z|2+Re{z2}).

The scalar a is real-valued and its variance V[a] = E[a2]− E[a]2 is thus

V[a] =
1

2
Re{E[|z|2] + E[z2]− 2E[a]2}. (4.4)

Now we set z = k̂C(x,y), from which it follows that a = Re{z} = k̂CtR(x,y).
Eq. (4.4) can then be rewritten as

V[k̂CtR(x,y)] =
1

2
Re{E[|k̂C(x,y)|2] + E[k̂C(x,y)2]− 2E[Re{k̂C(x,y)}]2}

=
1

2
Re{E[|k̂C(x,y)|2] + E[k̂C(x,y)2]− 2E[k̂C(x,y)]2}

=
1

2
Re{V[k̂C(x,y)] + PV[k̂C(x,y)]},
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where PV[k̂C(x,y)] := E[k̂C(x,y)2]−E[k̂C(x,y)] ∈ C is called the pseudo-variance
of k̂C(x,y) (Park, 2018, Chapter 5).

Remark 4.2.2. In fact, we show next that Im{PV[k̂C(x,y)]} = 0 for all the poly-
nomial sketches discussed in this work. Hence, we can also write V[k̂CtR(x,y)] =
1
2
(V[k̂C(x,y)] + PV[k̂C(x,y)]) for them since V[z] ∈ R for any z ∈ C.

In order to determine V[k̂CtR(x,y)], we thus only need to know V[k̂C(x,y)]
and PV[k̂C(x,y)] for Gaussian, Rademacher and TensorSRHT sketches discussed
in Algorithm 3. As we already derived V[k̂C(x,y)] for all these sketches in the pre-
vious chapter, the remaining task is to derive the pseudo-variances PV[k̂C(x,y)],
which can be easily done using very similar techniques that we already used for
the derivation of the variances.

We derive the Pseudo-Variances of Gaussian and Rademacher sketches in Sec-
tion C.1 and the ones for upsampled and stacked TensorSRHT in Section C.3. We
summarize these novel results in the lower half of Table 4.1. For completeness,
we add the variances of real and complex polynomial sketches from Chapter 3
ΦR to the upper half of Table 4.1. The variance of any CtR-Sketch discussed in
this work can thus be obtained by substituting the corresponding variance and
pseudo-variance expressions from Table 4.1 into Eq. (4.3).

Having worked out the variances of CtR-Product-Sketches allows us to compare
these sketches to their real-valued analogs in the following and to draw conclusions
when which sketch should be preferred.

4.2.1 Variance Comparison for Gaussian and Rademacher
CtR-Sketches

We begin by studying the variance reduction properties of Rademacher and Gaus-
sian CtR-sketches over their real-valued analogs that were originally proposed by
Kar and Karnick (2012); Hamid et al. (2014).

Let ΦR : Rd → R2D (using 2D random features) be a real polynomial sketch
as defined in Chapter 3 and ΦCtR : Rd → R2D a CtR-sketch (using only D random
features) as defined in Eq. (4.1). Let k̂R(x,y) and k̂CtR(x,y) be the respective
approximate kernels for some x,y ∈ Rd. Then we can provide the following
theorem for the case of Rademacher sketches.

Theorem 4.2.3 (CtR-Rademacher advantage). Let a :=
∑d

i=1

∑d
j ̸=i xixjyiyj and

b(j) := ∥x∥2j ∥y∥2j − (
∑d

i=1 x
2
i y

2
i )

j ≥ 0. Then V[k̂R(x,y)]− V[k̂CtR(x,y)] yields

1

2D

p∑
k=2

k−1∑
j=0

(
p

k

)(
k

j

)
b(j) ap−j ≥ 0 if a ≥ 0.

Furthermore, CtR-Rademacher sketches achieve the lowest possible variance for
k̂CtR(x,y) = Re{ΦC(x)

⊤ΦC(y)} with ΦC being defined through Eq. (3.10) in Chap-
ter 3.
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Sketch Variance V[k̂C(x,y)] (q = 1) and V[k̂R(x,y)] (q = 2)

Gaussian D−1[(∥x∥2 ∥y∥2 + q(x⊤y)2)p − (x⊤y)2p]

Rademacher D−1[(∥x∥2 ∥y∥2 + q((x⊤y)2 −
∑d

i=1 x
2
i y

2
i ))

p − (x⊤y)2p]

TensorSRHT (stacked) V(p)
Rad. − (c(D, d)/D2) · [(x⊤y)2p − (CVar.)

p]

with CVar. = (x⊤y)2 − (d− 1)−1 V(1)
Rad.

TensorSRHT (upsampled) V(p)
Rad. − (1− 1/D) · [(x⊤y)2p − (CVar.)

p]

with CVar. = (x⊤y)2 − (⌈D/d⌉d− 1)−1 V(1)
Rad.

Sketch Pseudo-Variance PV[k̂C(x,y)]

Gaussian D−1[(2(x⊤y)2)p − (x⊤y)2p]

Rademacher D−1[(2(x⊤y)2 −
∑d

i=1 x
2
i y

2
i )

p − (x⊤y)2p]

TensorSRHT (stacked) PV(p)
Rad. − (c(D, d)/D2) · [(x⊤y)2p − (CPVar.)

p]

with CPVar. = (x⊤y)2 − (d− 1)−1 PV(1)
Rad.

TensorSRHT (upsampled) PV(p)
Rad. − (1− 1/D) · [(x⊤y)2p − (CPVar.)

p]

with CPVar. = (x⊤y)2 − (⌈D/d⌉d− 1)−1 PV(1)
Rad.

Table 4.1: Variances of complex k̂C(x,y) and real k̂R(x,y) as well as pseudo-
variances of complex k̂C(x,y) are shown.

V(p)
Rad.,V

(1)
Rad. and PV(p)

Rad.,PV
(1)
Rad. are the Rademacher variances and pseudo-

variances for a given degree p and p = 1, respectively.
c(D, d) := ⌊D/d⌋d(d− 1) + (D mod d)(D mod d− 1).

Proof. The variance reduction property is proven in Section C.2 and we show in
Section C.1 that Rademacher sketches achieve the lowest possible pseudo-variance
for the estimator defined through Eq. (3.10). Since they also achieve the lowest
possible variance as shown in Theorem 3.3.1, this implies that they achieve the
lowest CtR-variance.

Theorem 4.2.3 tells us that ΦCtR should be preferred over ΦR when a ≥ 0 for
two given inputs x,y ∈ Rd and the variance gap increases as p increases. This is the
same condition under which complex Rademacher sketches have lower variances
than real ones (see Eq. (3.20) in Chapter 3), which holds, e.g., when x,y are non-
negative. Even when this condition is not always met, CtR-Rademacher sketches
perform similarly or better than real ones in our experiments in Section 4.3.1.

We can additionally provide the following theorem for Gaussian polynomial
sketches proved in Section C.2.

Theorem 4.2.4 (CtR-Gaussian advantage). For any x,y ∈ Rd, V[k̂R(x,y)] −
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V[k̂CtR(x,y)] yields

1

2D

p−1∑
k=0

(
p

k

)
(2k − 1)(x⊤y)2k

(
∥x∥2 ∥y∥2

)p−k ≥ 0.

Thus, regardless of the input data, ΦCtR should be preferred over ΦR when
using Gaussian polynomial sketches. The advantage again increases with p.

The results of Theorems 4.2.3 and 4.2.4 are remarkable because they show
conditions under which the CtR-Gaussian and Rademacher sketches outperform
the corresponding real analogs defined through Eq. (3.1) in Chapter 3, when both
sketches use the same feature map dimension. CtR-Rademacher can thus be more
efficient than Rademacher sketches with real-valued weights that already achieve a
variance lower bound in Theorem 3.1.1. We now give an intuition for this variance
reduction.

Intuition for the variance reduction. To obtain an intuition for the variance
reduction of CtR Product-Sketches, we look at the variance structure of complex
Product-Sketches first. We assume a single random feature D = 1 for simplicity
here. The variance of the approximate kernel k̂C(x,y) (3.11) can be written as:

V[k̂C(x,y)] = V

[
p∏

i=1

(w⊤
i x)(w

⊤
i y)

]
=

p∏
i=1

E
[
|(w⊤

i x)(w
⊤
i y)|2

]︸ ︷︷ ︸
=: µ2,C

−(x⊤y)2p (4.5)

The value of V[k̂C(x,y)] thus entirely depends on the second complex moment
µ2,C ≥ 0. As shown in Section B.1.1, this second moment is smaller for complex

Rademacher {wi}pi=1 than for real ones if
∑d

i=1

∑d
j=1 xixjyiyj ≥ 0 holds. If we thus

let µ2,C = cµ2,R for some c < 1 in this case, we get V[k̂C(x,y)] = cpµ2,R− (x⊤y)2p,
where µ2,R denotes the respective second moment when {wi}pi=1 are real-valued.
We thus obtain a variance advantage that increases with p.

This advantage is maintained for CtR-sketches because for any complex random
variable, the relationship

V[k̂C(x,y)] = V[Re{k̂C(x,y)}] + V[Im{k̂C(x,y)}]

and therefore V[k̂CtR(x,y)] ≤ V[k̂C(x,y)] hold.
Interestingly, when p = 1, CtR-sketches are equivalent to doubling the number

of random features of the analogous sketch with real-valued weights. This can be
seen when looking at Eq. (4.1) and recalling that the real and imaginary parts
of {wi}pi=1 are sampled independently in our construction. As the resulting CtR
feature map is 2D-dimensional, there is no statistical advantage w.r.t. the feature
map dimension in this case. However, the product in Eq. (4.5) increases the
variance advantage, giving CtR-sketches a variance improvement from p ≥ 2.

We study the variance reduction properties of CtR-TensorSRHT next.
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4.2.2 Variance of CtR-TensorSRHT

As we already showed in Corollary 3.5.4 for real TensorSRHT and Corollary 3.5.10
for complex TensorSRHT, we will now show that CtR-TensorSRHT can achieve a
variance reduction over their non-structured counterpart (CtR-Rademacher sketches)
for odd degrees p of the polynomial kernel. The analysis is almost the same as in
Corollary 3.5.10.

Corollary 4.2.5. Let p ∈ N be odd. Then, for all input vectors x,y ∈ Rd with∑d
i=1

∑d
j ̸=i xixjyiyj ≥ 0, the variance of the approximate kernel with the CtR-

TensorSRHT sketch in Table 4.1 is smaller or equal to the variance of the approx-
imate kernel with the corresponding unstructured polynomial sketch.

Proof. First recall from Eq. (4.3) that the variance of CtR-sketches is given by the
average 1

2
Re{V[k̂C(x,y)] + PV[k̂C(x,y)]}, where we can drop Re{·} because both

the variances and pseudo-variances in Table 4.1 are already real-valued.
Next, we identify the following reduction term

RVar./Pvar. := (1− 1/D)
(
(x⊤y)2p − (CVar./PVar.)

p
)

(4.6)

that is subtracted from the Rademacher variance V(p)
Rad. and pseudo-variance PV(p)

Rad.

in Table 4.1, respectively, where we chose upsampled TensorSRHT here. Stacked
TensorSRHT is analogous with (1− 1/D) being substituted by c(D, d)/D2.

If p is odd, we have (CVar.)
p ≤ (x⊤y)2p because V(1)

Rad. ≥ 0 and therefore
RVar. ≥ 0 holds. In this case, the variance of complex/real TensorSRHT is upper-

bounded by the complex/real Rademacher variance V(p)
Rad. ≥ 0.

If we further have PV(1)
Rad. =

∑d
i=1

∑d
j ̸=i xixjyiyj ≥ 0, the pseudo-variance of

complex TensorSRHT is also upper-bounded by the Rademacher pseudo-variance.
This is because 0 ≤ (CPVar.)

p ≤ (x⊤y)2p and RPVar. ≥ 0 hold. This completes the
proof.

The condition
∑d

i=1

∑
j ̸=i xixjyiyj ≥ 0 is the same for which CtR-Rademacher

sketches achieve lower variances than real Rademacher sketches, and we will see
empirically in the following, that CtR-TensorSRHT sketches outperform real Ten-
sorSRHT sketches under this same condition. Therefore, the conditions for struc-
tured sketches to outperform non-structured ones and CtR-sketches outperforming
their real analogs are well aligned. Moreover, CtR-TensorSRHT inherits the vari-
ance reduction of CtR-Rademacher sketches over their real analogs because the
Rademacher variance and pseudo-variance are both included in the ones of com-
plex TensorSRHT (see Table 4.1.

We now move on to comparing the variance of CtR-TensorSRHT against its
real-valued analog.
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Figure 4.1: Var(CtR-TensorSRHT) / Var(TensorSRHT). The target kernel is
(x⊤y + 1)p.

Comparing the variances of CtR-TensorSRHT against TensorSRHT.

Analyzing the variance reduction properties of CtR-TensorSRHT over its real ana-
log is very involved as it has already been the case for complex TensorSRHT as
we showed in Section 3.5.3. Therefore, we will follow the example of Section 3.5.3
and resort to an empirical comparison here.

Experimental setting. Since we obtained the variances of CtR-TensorSRHT
and real TensorSRHT in closed form as shown in Table 4.1, we can carry out an
exact empirical comparison of their variance ratio on pairs of data points contained
in four example data sets (Letter and Mocap (Dua and Graff, 2017), CIFAR-101

(Krizhevsky et al., 2009) and MNIST (Lecun et al., 1998)). All data sets except for
Mocap contain only non-negative inputs. For Mocap, we subtract the minimum
value of each input dimension {xi}di=1 of x ∈ Rd across the data set to achieve
non-negativity. We also make sure that both feature maps, CtR-TensorSRHT and
TensorSRHT use the same feature map dimension D = 2d in this comparison, and
we choose upsampled TensorSRHT here.

Results. Fig. 4.1 shows the results of the comparison through empirical cumula-
tive distribution functions of the variance ratios evaluated on all input pairs inside
1000 random samples of each dataset. We observe that CtR-TensorSRHT outper-
forms real TensorSRHT (all variance ratios < 1) and the improvement increases
with p.

Since the variance of TensorSRHT is closely related to Rademacher variances
as mentioned before, we study the importance of the non-negativity condition of

1We use the the convolutional outputs of a pretrained ResNet34 (He et al., 2016) on ImageNet
(Russakovsky et al., 2015).
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Figure 4.2: Var(CtR-TensorSRHT) / Var(TensorSRHT) on zero-centered data.
The target kernel is (x⊤y + 1)p.

the data in Theorem 4.2.3 for the case of CtR-TensorSRHT. For this purpose, we
repeat the same experiment as before for zero-centered data that breaks the non-
negativity condition. Results are shown in Fig. 4.2. We see that CtR-TensorSRHT
performs similarly as its real analog in this case (around half of the variance ratios
are above and below 1). Therefore, a variance reduction happens in particular for
non-negative data as is the case for CtR-Rademacher sketches. This makes sense
because both the variance and the pseudo-variance of TensorSRHT are closely
related to the ones of Rademacher sketches as shown in Table 4.1.

So far, we have compared both complex and Complex-to-Real Product-Sketches
against real Product-Sketches. The last open question is how Complex-to-Real
sketches compare against complex sketches. To answer this question, we do not
focus on a variance comparison between the two, but we consider studying the
implications on the downstream task to be more important. This is because
complex random feature maps require the downstream task to handle complex
data incurring higher computational costs as shown previously in Section 3.5.3 in
Chapter 3. We will therefore extend the Gaussian process classification example
from Section 3.5.3, and compare real, complex, and Complex-to-Real TensorSRHT
sketches on this downstream task.

Comparing Real, Complex and CtR-Sketches. We compare the conver-
gence of a GP classifier using real, complex and CtR-TensorSRHT towards one
using the exact kernel on MNIST under a given time budget in Fig. 4.3. We can
see that a complex GP classifier using complex TensorSRHT needs roughly the
same time for a projection dimension D as real and CtR-TensorSRHT for dimen-
sion 2D. This is because complex TensorSRHT requires solving a complex GP
model that takes more operations to solve for the same feature dimension as a real
GP as explained Appendix B.3.
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Figure 4.3: KL-divergence (left) and test error (right) for a given computation time
budget computed on MNIST (d = 1024). Projection dimensions are annotated
next to the respective measurements. We used the kernel (x⊤y + 1)6.

This gives a clear advantage to the CtR-TensorSRHT sketch that achieves the
lowest KL-divergence and test errors in the same amount of time. Therefore, we
recommend the use of CtR-TensorSRHT over real and complex TensorSRHT. Here
we used the kernel (x⊤y + 1)6 and timings were measured on an NVIDIA P100
graphics card and PyTorch 1.10 (Paszke et al., 2019) with native complex linear
algebra support.

4.3 Comparison against the State-of-the-Art

In this section, we compare our most efficient Product-Sketch, upsampled CtR-
TensorSRHT, against TensorSketch (Pham and Pagh, 2013) that we introduced in
Chapter 2. TensorSketch can be seen as the state-of-the-art unbiased2 polynomial
sketch. Unlike for CtR-TensorSRHT, the variance of TensorSketch is not available
in the literature. We will therefore carry out an empirical variance comparison
here. Furthermore, we add a feature construction time benchmark to this com-
parison, since TensorSketch leverages the fast Fourier transform and is therefore
considered to be a particularly fast sketch.

Variance Comparison. We repeat the same experiment as in Fig. 4.1, but
this time we evaluate the variance ratios of upsampled CtR-TensorSRHT against
TensorSketch. As the variance of TensorSketch is not available in closed form, we

2For high-degree polynomial kernels on the unit-sphere it is still outperformed by biased
Spherical Random Features (SRF) (Pennington et al., 2015). However, SRF require a prepro-
cessing step for every polynomial kernel parameterization and only work for data lying on the
unit-sphere, obstructing a straightforward application, e.g., in deep learning. We will carry out
empirical evaluations against SRF in Chapter 5.
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Figure 4.4: Var(CtR-TensorSRHT) / Var(TensorSketch). Empirical cumulative
distribution function of variance ratios for feature maps with equal dimension
D = 2d. The target kernel is (x⊤y + 1)p.

estimate it using 1000 Monte-Carlo samples of the kernel estimate. Fig. 4.4 shows
a comparison of the variance ratios.

In general, upsampled CtR-TensorSRHT improves over TensorSketch for p ≤ 5
(more than half of the ratios are less than one). This is an important advantage
as such degrees are commonly used in practice (Pham and Pagh, 2013; Gao et al.,
2016; Fukui et al., 2016). For p = 1, TensorSRHT always has a variance of zero as
soon as D = kd for k ∈ N, which can be derived from the TensorSRHT variance
equation in Table 4.1.

For large p, TensorSketch and upsampled CtR-TensorSRHT perform similarly
well (around half the variance ratios are smaller/greater than 1) except for some
cases with low-dimensional data where TensorSketch performs better. The ratios
would be much worse if we used the real TensorSRHT instead as shown in Fig. 4.5,
which underlines the relative improvement of the CtR-extension.

The variance comparison of CtR-TensorSRHT against TensorSketch is impres-
sive given the fact that (upsampled) CtR-TensorSRHT has a faster running time,
which we will compare next.

Feature construction time comparison. In the following, we carry out a fea-
ture construction time comparison of upsampled CtR-TensorSRHT against Ten-
sorSketch that has a time complexity O(p(D logD + D)) with D being the pro-
jection dimension.

Recall that our proposed upsampled TensorSRHT approach introduced in Sec-
tion 3.5.1 in Chapter 3 has a time complexity of O(p(d log d + D)) and is thus
faster in theory when D > d.

The left plot in Fig. 4.6 shows the results of this comparison, where we added
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Figure 4.5: Var(TensorSRHT) / Var(TensorSketch). Empirical cumulative distri-
bution function of variance ratios for feature maps with equal dimension D = 2d.
The target kernel is (x⊤y + 1)p.

real Rademacher and upsampled TensorSRHT Product-Sketches to the plot to
give a more complete picture. The construction times of real TensorSRHT and
CtR-TensorSRHT have a smaller slope with respect to D than the other sketches
leading to the lowest feature construction times, in particular when D ≫ d. There
is a small computational overhead for CtR-TensorSRHT compared to real Ten-
sorSRHT because CtR-TensorSRHT initially requires two Hadamard-projections
(real and imaginary parts), but uses the same sampling matrix leading to the same
scaling property with respect to D.

The right plot of Fig. Fig. 4.6 shows the kernel approximation error (rela-
tive Frobenius norm error) under a computational budget. We can see that our
proposed CtR-TensorSRHT gives the best kernel approximations in the shortest
amount of time when D is sufficiently large. As before, timings were measured
on an NVIDIA P100 GPU and PyTorch 1.10 (Paszke et al., 2019) with native
complex linear algebra support.

One may argue that the feature construction time is not the computational
bottleneck in downstream tasks like closed form GP regression, where the bottle-
neck is the construction and inversion of a D by D matrix. This changes however,
when using iterative solvers working with mini-batches. We carry out such a time
benchmark for iterative solvers in the following.

Time benchmark for stochastic optimization. We compare CtR-TensorSRHT
against TensorSketch for a GP classification experiment using stochastic varia-
tional inference and mini-batching. The goal is to measure the impact of the
feature construction time on the training time of the learning algorithm. The
feature construction time plays a crucial role here since every iteration of the algo-
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Figure 4.6: (Left) Feature construction time against feature map dimension D.
(Right) Kernel approximation error (rel. Frobenius norm error) against feature
construction time. We approximate the kernel k(x,y) = (x⊤y + 1)6 on 1000
random MNIST samples.

rithm carries out one forward and one backward pass through a two-layer neural
network, where the first layer corresponds to the feature extraction layer, either
TensorSRHT or TensorSketch in this case.

We choose D = 10d, where d = 1024 for the MNIST data set. We further set
p = 6 as the polynomial degree implying the use of 6 random matrix multiplica-
tions. In such a scenario, the feature construction time has a big share on the total
computation time of every iteration.

Fig. 4.7 shows the results of this stochastic variational inference experiment,
where the goal is to obtain a factorized Gaussian posterior distribution over the
weights of a GP classifier. We show the test error against the training time to
reach this error. The feature maps approximate the kernel (γx⊤y + ν)6, where
γ, ν ≥ 0 are optimized through backpropagation. The mini-batch size is chosen
to be 1000 and we use the Adam optimizer with learning rate 10−3. We further
choose 50 Monte-Carlo samples for the posterior weights at each iteration.

When using CtR-TensorSRHT, the experiments were run for 150 epochs while
the ones for TensorSketch were run for 50 epochs. We can thus see that Ten-
sorSRHT achieves a much faster convergence (in wall-clock time), which is due to
a faster computation of the feature map as shown in Fig. 4.6. CtR-TensorSRHT
outperforms TensorSRHT in terms of test error and is only slightly slower.

4.3.1 Systematic Evaluation on Different Data Sets

In this section, we carry out a systematic comparison of the CtR polynomial
sketches discussed in this work against their real-valued analogs as well as Ten-
sorSketch (Pham and Pagh, 2013) on the same four data sets that we used for
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Figure 4.7: Stochastic variational inference on MNIST (d = 1024) for D = 10d
and p = 6. Results are averaged over 10 different runs. TensorSRHT finishes 150
training epochs before TensorSketch finishes 50 epochs and thus converges earlier.

the variance comparison experiments, namely Letter and Mocap (Dua and Graff,
2017), CIFAR-10 (Krizhevsky et al., 2009) and MNIST (Lecun et al., 1998), where
we make sure that the data is positive-valued. This comparison includes the eval-
uation of kernel approximation errors as well as the downstream performance on
the task of GP classification.

Target kernel and its approximation. The target polynomial kernel is al-
ways k(x,y) = (x⊤y + 1)p3 and we unit-normalize the data to make the kernel
bounded and improve numerical stability. Since CtR polynomial sketches ΦCtR

are 2D-dimensional when sampling D random features, we compare them against
real-valued polynomial sketches ΦR with 2D random features to obtain the same
dimension of the feature map.

We measure kernel approximation quality through the relative Frobenius norm
error, which is defined as ∥K̂ − K∥F/∥K∥F , where K̂ is the random feature
approximation of the exact kernel matrix K with (K)i,j = k(xi,xj) and xi,xj ∈
X∗,sub. X∗,sub is a subset of the test data of size N∗,sub = 1000 of each dataset that
is resampled for 100 different seeds used in these experiments. We use a 90/10
train/test split for Letter and Mocap that is recomputed for every seed, while it
is provided for CIFAR-10 and MNIST.

Downstream task. We model GP classification as a multi-class GP regres-
sion problem with transformed labels (Milios et al., 2018) for which we obtain
closed-form solutions. This allows us to measure the effects of the random feature
approximations in isolation without needing to verify the convergence of iterative
solvers. To measure the convergence towards a target GP when using random

3The kernel parameters are a standard choice used in, e.g., scikit-learn (Pedregosa et al.,
2011).
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features, we use the Kullback-Leibler (KL) divergence between the GP predictive
distribution using the approximate kernel and the predictive distribution using the
target kernel. These distributions are evaluated on the test data and the GPs are
trained on a random subset of size 5000 of the training data as the reference GP
cannot be scaled to a large number of datapoints. Classification errors instead,
are obtained for the model trained on the whole training data, and evaluated on
all test data.

Results. Fig. 4.8 and Fig. 4.9 show the results of this comparison for the polyno-
mial degrees p = 3 and p = 6, respectively. We show kernel approximation errors
(relative Frobenius norm errors) along with KL-Divergences to the ground-truth
GP and test errors for each dataset. As shown in Fig. 4.4, CtR-TensorSRHT has
a lower variance than TensorSketch for p = 3, and the advantage diminishes for
larger p. At the same time, the advantage of CtR-sketches over real ones increases
with p as shown in Fig. 4.1. These two effects are reflected in the corresponding
kernel approximation errors in Fig. 4.8 and Fig. 4.9, respectively.

For p = 3, the errors are the lowest for CtR-TensorSRHT and also fluctuate
the least. TensorSRHT thus performs better than unstructured Gaussian and
Rademacher sketches as discussed in Section 3.5 in Chapter 3. The CtR extension
makes TensorSRHT perform similarly on the downstream task of GP classification
as TensorSketch (similar KL-divergence and classification error). The results are
worse for TensorSRHT without the CtR-extension.

For p = 6 (Fig. 4.9), CtR-TensorSRHT and TensorSketch perform similarly
well, while the relative advantage of CtR-TensorSRHT over TensorSRHT increases
compared to the case of p = 3 in Fig. 4.8.

We add a CtR-modification of TensorSketch4 to both comparisons in Fig. 4.8
and Fig. 4.9. However, this modification does not yield any improvements in our
experiments. CtR-extensions thus only seem to be beneficial for the Product-
Sketches discussed in this work.

Lastly, we carry out the same comparison as before for zero-centered data
to study the importance of the non-negativity condition of the data. Fig. 4.10
shows the results of this comparison. We can see that the relative advantage of
CtR-sketches over their real analogs diminishes compared to the results shown
in Fig. 4.9. However, CtR-sketches still achieve an advantage and never perform
worse.

We will now conclude the empirical campaign carried out in this chapter with
the application of our polynomial sketches to accelerate the computation of an
evaluation metric used in generative modelling, namely the Kernel Inception Dis-
tance.

4We replace sign hash function s : [d] → {1,−1} with s : [d] → {1,−1, i,−i} in (Pham and
Pagh, 2013, Def. 1) giving rise to a complex-valued TensorSketch.
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Figure 4.8: Gaussian Process classification experiments comparing different poly-
nomial sketches along with their CtR extensions for D ∈ {2d, 4d}. The target
polynomial kernel is (x⊤y + 1)3 and the data is unit-normalized.

4.3.2 Approximating the Kernel Inception Distance

The Kernel Inception Distance (KID) (Bińkowski et al., 2018) is used to measure
the similarity between two image data sets (a lower distance refers to a higher
similarity). It is especially used in generative modelling to evaluate the quality of
a set of generated images by comparing them against a set of ground-truth images.

KID corresponds to the squared maximum mean discrepancy (MMD) (Gretton
et al., 2012) using the polynomial kernel (1

d
x⊤y + 1)p, where this kernel is com-

puted on top of the convolutional features obtained from each image through the
Inception (Szegedy et al., 2016) neural network architecture.

As the computation of the MMD metric scales quadratically in the number of
data points, approximation methods have to be used for large data sets such as
CIFAR-10 that we use here. Therefore, the approximation of the KID is a great
application for the polynomial sketches discussed in this work.

Experimental setting. We follow the experiment in the original work that
introduced the KID (Bińkowski et al., 2018), which uses the average of blockwise
MMD values (Block-MMD) as an approximation. This approximation will serve
as a baseline to be compared against polynomial sketches. In this case, the exact
squared MMD is computed on a subset of size n of each of the two data sets being
compared and this process is repeated for 100 independent subset samples. The
final KID estimate is then given by the average of the squared MMDs computed on
the subsets. As the KID estimate is unbiased, we compute the standard deviation
of these samples to meausure the efficiency of the approximator. We use n ∈
{100, 1000, 5000, 10000, 15000, 20000} for the experiments in this section.
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Figure 4.9: Gaussian Process classification experiments comparing different poly-
nomial sketches along with their CtR extensions for D ∈ {2d, 4d}. The target
polynomial kernel is (x⊤y + 1)6 and the data is unit-normalized.

We compare this baseline against squared MMD estimates obtained through
polynomial sketches. We obtain unbiased squared MMD estimates using the
method described in Sutherland and Schneider (2015, Section 3). We repeat
this process 100 times as before and compute the standard deviation on the esti-
mate. We use D ∈ {64, 128, 256, 512, 1024, d, 2d, 3d, 4d} in our experiments, where
d = 2048 is the dimension of the convolutional features obtained through the
Inception neural network. The polynomial sketches being compared are CtR-
TensorSRHT, TensorSRHT and TensorSketch.

Results. Fig. 4.11 shows the standard deviations of the squared MMD (KID)
estimates computed as explained before. We see that all polynomial sketches
achieve around one order of magnitude lower standard deviations than the Block-
MMD baseline in the same computation time indicating that they estimate the
KID more efficiently. TensorSRHT and CtR-TensorSRHT perform slightly better
than TensorSketch for p = 3 and CtR-TensorSRHT performs better for p = 6.

Table 4.2 shows the same standard deviations as before but computed on 1000
instead of 100 resamples of the KID metric. The results are thus more accurate
and confirm that CtR-TensorSRHT provides the best KID estimates for a given
feature map dimension D. However, obtaining these accurate estimates is slower
and therefore less samples are used in practice.
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Figure 4.10: Gaussian Process classification experiments comparing different poly-
nomial sketches along with their CtR-extensions for D ∈ {2d, 4d}. The target
polynomial kernel is (x⊤y + 1)6 and the data is unit-normalized as well as zero-
centered.

Table 4.2: Standard deviation of the KID estimator between the CIFAR-10 train
and test sets estimated on 1000 independent samples.

p = 3 p = 6

D = 1d D = 2d D = 3d D = 4d D = 1d D = 2d D = 3d D = 4d

TensorSketch 1.363E-06 9.639E-07 7.837E-07 6.841E-07 6.974E-06 4.909E-06 4.015E-06 3.436E-06
TensorSRHT 1.435E-06 1.047E-06 7.869E-07 6.946E-07 9.476E-06 6.897E-06 5.331E-06 4.871E-06
CtR-TensorSRHT 1.312E-06 8.747E-07 7.420E-07 5.941E-07 6.697E-06 4.856E-06 3.762E-06 3.260E-06
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Figure 4.11: Standard deviation of the KID estimator between the CIFAR-10
train and test sets against computation time. Estimates are obtained using 100
independent resamples of the approximate metric. Note that the first 130 seconds
are spent on computing the Inception features (the plot starts at 120 to become
better readable).



Chapter 5

Approximating Dot Product
Kernels

We discuss in this chapter how the polynomial sketches described so far can be
used for approximating more general dot product kernels, i.e., kernels whose values
depend only on the inner product of the input vectors.

There exist alternative random feature approximations for dot product ker-
nels using Gegenbauer polynomials (Han et al., 2022) that have been concurrently
developed while we worked on the journal submission associated to the contents
of this chapter (Wacker et al., 2022a). We therefore only focus on random fea-
ture approximations via polynomial sketches and leave a comparison against ran-
dom Gegenbauer expansions for future work. We further do not make use of the
Complex-to-Real Product-Sketches developed in the previous chapter here. This is
because we developed CtR sketches after developing the contents of this chapter.
Moreover, we will see that the Maclaurin expansions in this chapter are applied to
zero-centred data, obstructing the non-negativity condition giving advantages to
CtR-sketches in Chapter 4.

In Sections 5.1 and 5.2, we first review a key result on the Maclaurin expan-
sion of dot product kernels and the resulting random sketching approach by Kar
and Karnick (2012), and show how the polynomial sketches described so far can
be used. In Section 5.3, we then introduce a data-driven optimization approach
to improving the random sketches based on the Maclaurin expansion. In Section
5.3.1, we describe how this approach can also be applied to approximate the Gaus-
sian kernel. We then carry out an empirical campaign comparing our optimized
Maclaurin method against Spherical Random Features (Pennington et al., 2015)
and random Fourier features (Rahimi and Recht, 2007) in Section 5.4. Moreover,
we identify a pathology of vanishing approximate kernels for Maclaurin-based ap-
proximations of the Gaussian kernel and we propose a cure in Section 5.5.1 with
an additional empirical evaluation.

76
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5.1 Maclaurin Expansion of Dot Product Ker-

nels

Let X ⊆ Rd be a subset, and let k : X × X :→ R be a positive definite kernel on
X . The kernel k is called dot product kernel, if there exists a function f : R → R
such that

k(x,y) = f(x⊤y) for all x,y ∈ X . (5.1)

Examples of dot product kernels include polynomial kernels k(x,y) = (x⊤y+ ν)p

with ν ≥ 0 and p ∈ N, which have been our focus in this thesis, and exponential
kernels k(x,y) = exp(x⊤y/l2) with l > 0. Other examples of dot product kernels
can be found in, e.g., Smola et al. (2000).

We focus on dot product kernels for which the function f in Eq. (5.1) is an
analytic function whose Maclaurin expansion has non-negative coefficients: f(x) =∑∞

n=0 anx
n and an ≥ 0 for n ∈ {0} ∪ N. In other words, we consider dot product

kernels that can be expanded as

k(x,y) =
∞∑
n=0

an(x
⊤y)n for all x,y ∈ X , (5.2)

with an ≥ 0 for all n ∈ {0} ∪ N.
Many dot product kernels can be expanded as Eq. (5.2). In fact, Kar and

Karnick (2012, Theorem 1) show that, if X is the unit ball of Rd, the function k
of the form of Eq. (5.1) is positive definite on X if and only if it can be written as
Eq. (5.2).

We show here a few concrete examples. The polynomial kernel k(x,y) =
(x⊤y + ν)p with p ∈ N and ν ≥ 0 can be expanded as

(x⊤y + ν)p =

p∑
n=0

(
p

n

)
νp−n(x⊤y)n, (5.3)

and thus an =
(
p
n

)
νp−n ≥ 0 for n ∈ {0, . . . , p} and an = 0 for n > p in Eq. (5.2).

The exponential kernel k(x,y) = exp(x⊤y/l2) can be expanded as

exp

(
x⊤y

l2

)
=

∞∑
n=0

1

n!l2n
(x⊤y)n (5.4)

and thus an = 1/(n!l2n) for n ∈ N in Eq. (5.2).

Gaussian kernel as a weighted dot product kernel The Gaussian kernel
defined as k(x,y) = exp(−∥x−y∥2/(2l2)) with l > 0 can be written as a weighted
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exponential kernel:

exp

(
−∥x− y∥2

2l2

)
= exp

(
−∥x∥2

2l2

)
exp

(
−∥y∥2

2l2

)
exp

(
x⊤y

l2

)
= exp

(
−∥x∥2

2l2

)
exp

(
−∥y∥2

2l2

) ∞∑
n=0

1

n!l2n
(x⊤y)n, (5.5)

where the second identity uses the Maclaurin expansion of the exponential kernel
in Eq. (5.4). For approximating the Gaussian kernel, Cotter et al. (2011) proposed
a finite dimensional feature map based on a truncation of this expansion.

5.2 Random Sketch based on the Maclaurin Ex-

pansion

We describe here the approach of Kar and Karnick (2012) on the unbiased approx-
imation of dot product kernels based on the Maclaurin expansion in Eq. (5.2). We
discuss this approach to provide a basis and motivation for our new approach for
approximating dot product kernels.

First, we define a probability measure µ on {0} ∪ N. Kar and Karnick (2012)
propose to define µ as

µ(n) ∝ c−(n+1), n ∈ {0} ∪ N, (5.6)

for a constant c > 1 (e.g., c = 2).
Using this probability measure and the Rademacher sketch, Kar and Karnick

(2012) propose a doubly stochastic approximation of the dot product kernel in
Eq. (5.2).

This approach first generates an i.i.d. sample of sizeD ∈ N from this probability
measure µ

n1, . . . , nD
i.i.d.∼ µ (5.7)

and defines Dn for n ∈ {0} ∪ N as the number of times n appears in n1, . . . , nD;
thus

∑∞
n=0Dn = D.

Then, for each n ∈ {0} ∪ N with Dn > 0, construct a random feature map
Φn : X → RDn with Dn features of the form in Eq. (3.1) in Chapter 3 that provide
an unbiased approximation of the polynomial kernel kn(x,y) := (x⊤y)n of degree
n:

E[Φn(x)
⊤Φn(y)] = (x⊤y)n. (5.8)

The original formulation of Kar and Karnick (2012) uses the Rademacher sketch
as Φn, but one can use other sketches introduced in Chapters 2, 3 and 4, such as
the Gaussian sketch and TensorSRHT.
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Finally, by defining a random variable n∗ ∼ µ, the dot product kernel in
Eq. (5.2) is rewritten and approximated as

k(x,y) =
∞∑
n=0

an(x
⊤y)n =

∞∑
n=0

an
µ(n)

µ(n)(x⊤y)n = En∗∼µ

[
an∗

µ(n∗)
(x⊤y)n

∗
]

≈ 1

D

∑
n∈{n1,...,nD}

Dn
an
µ(n)

(x⊤y)n =
1

D

∑
n:Dn>0

Dn
an
µ(n)

(x⊤y)n

≈ 1

D

∑
n:Dn>0

Dn
an
µ(n)

Φn(x)
⊤Φn(y), (5.9)

where the first approximation is the Monte Carlo approximation of the expec-
tation En∗∼µ using the i.i.d. sample in Eq. (5.7) and the second approximation is
using the random feature map in Eq. (5.8). The approximation in Eq. (5.9) is
unbiased, since the two approximations are statistically independent and both are
unbiased.

The first approximation for Eq. (5.9) can be interpreted as first selecting poly-
nomial degrees n ∈ {0} ∪ N and assigning the number of features Dn to each
selected degree, given a budget constraint D =

∑
n:Dn>0Dn. While performing

these assignments by random sampling as in Eq. (5.7) makes the approximation in
Eq. (5.9) unbiased, the resulting variance of Eq. (5.9) can be large. In the next sec-
tion, we introduce a data-driven optimization approach to this feature assignment
problem, to achieve a good balance between the bias and variance.

5.3 Optimization for a Truncated Maclaurin Ap-

proximation

We develop here an optimization algorithm for selecting the polynomial degrees n
and assigning the number of random features to each selected polynomial degree
in the Maclaurin sketch in Eq. (5.9) . The objective function is an estimate of the
expected bias and variance of the resulting approximate kernel, and we define it
using the variance formulas derived in Chapter 3.

We consider a biased approximation obtained by truncating the Maclaurin ex-
pansion in Eq. (5.2) up to the p-th degree polynomials, where p is to be determined
by optimization. Let Dtotal ∈ N be the total number of random features, which is
specified by a user. For each n = 1, . . . , p, let Dn ∈ {0} ∪N be the number of ran-
dom features for approximating the n-th term (x⊤y)n of the Maclaurin expansion
in Eq. (5.2), such that

∑p
n=1Dn = Dtotal. The numbers Dn are to be determined

by optimization. Let Φn : Rd → CDn be a (possibly complex) random feature map
defined in Chapter 3 such that E[Φn(x)

⊤Φn(y)] = (x⊤y)n for all x,y ⊂ X ⊂ Rd.
Note that Φn can be a real-valued feature map, but we use the notation for the
complex case since it subsumes the real case.
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We then define an approximation to the dot product kernel in Eq. (5.2) as

k̂(x,y) := a0 +

p∑
n=1

anΦn(x)
⊤Φn(y), x,y ∈ X (5.10)

This approximation is biased, since it ignores the polynomial terms whose degrees
are higher than p in the expansion of Eq. (5.2). One can reduce this bias by
increasing p, but this may lead to a higher variance.

Therefore, there is a bias-variance trade-off in the choice of p. We describe
below how to choose p and the number of features Dn of each random feature map
Φn(x),Φn(y) ∈ CDn for n = 1, . . . , p.

Optimization Objective

For a given learning task, we are usually provided data points generated from
an unknown probability distribution P (x) on the input domain X ⊆ Rd. The
approximate kernel k̂(x,y) in Eq. (5.10) should be an accurate approximation of
the target kernel k(x,y) for input vectors x,y drawn from this unknown data
distribution P (x). Therefore, we consider the following integrated mean squared
error as our objective function:∫ ∫

E
[(

k(x,y)− k̂(x,y)
)2]

dP (x)dP (y) (5.11)

=

∫ ∫
V[k̂(x,y)]︸ ︷︷ ︸

variance

dP (x)dP (y) +

∫ ∫ (
k(x,y)− E

[
k̂(x,y)

])2
︸ ︷︷ ︸

bias2

dP (x)dP (y)

(5.12)

where the expectation E[·] and variance V[·] are taken with respect to the random
feature maps in the approximate kernel in Eq. (5.10), and the identity follows from
the standard bias-variance decomposition.

We study the variance and bias terms in Eq. (5.12). Let δ[Dn > 0] be an
indicator such that δ[Dn > 0] = 1 if Dn > 0 and δ[Dn > 0] = 0 otherwise. Using
this indicator, and since the p random feature maps Φ1, . . . ,Φp in Eq. (5.10) are
statistically independent, the variance term in Eq. (5.12) can be written as

V
[
k̂(x,y)

]
=

p∑
n=1

δ[Dn > 0] a2nV
[
Φn(x)

⊤Φn(y)
]
. (5.13)

Each individual term V[Φn(x)
⊤Φn(y)] in Eq. (5.13) is the variance of the approx-

imate kernel k̂n(x,y) := Φn(x)
⊤Φn(y) for approximating the polynomial kernel

kn(x,y) := (x⊤y)n of degree n = 1, . . . , p. Therefore, one can explicitly compute
V[Φn(x)

⊤Φn(y)] for any given x,y ∈ Rd using the variance formulas derived Chap-
ter 3. For the convenience of the reader, we summarize the variance formulas for
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Sketch Variance

Real Gaussian
D−1

[(
∥x∥2∥y∥2 + 2(x⊤y)2

)n
− (x⊤y)2n

]
Complex Gaussian

D−1
[(

∥x∥2∥y∥2 + (x⊤y)2
)n

− (x⊤y)2n
]

Real Rademacher
D−1

[(
∥x∥2∥y∥2 + 2

(
(x⊤y)2 −

∑d
k=1 x

2
ky

2
k

))n
− (x⊤y)2n

]
Complex Rademacher

D−1
[(

∥x∥2∥y∥2 + (x⊤y)2 −
∑d

k=1 x
2
ky

2
k

)n
− (x⊤y)2n

]
Real stacked TensorSRHT Real Rademacher Variance

− c(D,d)
D2

[
(x⊤y)2n −

(
(x⊤y)2 − 1

d−1

(
∥x∥2∥y∥2 + (x⊤y)2 − 2

∑d
k=1 x

2
ky

2
k

))n]
Comp. stacked TensorSRHT Complex Rademacher Variance

− c(D,d)
D2

[
(x⊤y)2n −

(
(x⊤y)2 − 1

d−1

(
∥x∥2∥y∥2 −

∑d
k=1 x

2
ky

2
k

))n]
Conv. Sur. TensorSRHT

 D−1
(
V

(n)
q + (d− 1)Cov(n)q

)
if Cov(n)q > 0 or D > d,

D−1
(
V

(n)
q − Cov(n)q

)
+ Cov(n)q otherwise.

(Real case: q = 1) V
(n)
q =

(
∥x∥2 ∥y∥2 + ((2q − 1)2 + 1)((x⊤y)2 −

∑d
k=1 x

2
ky

2
k)
)n

− (x⊤y)2n

(Complex case: q = 1/2) Cov(n)q =
(
(x⊤y)2 − V

(1)
q

d−1

)n
− (x⊤y)2n

Table 5.1: Closed-form expressions for the variance V
[
Φn(x)

⊤Φn(y)
]
for different

random feature maps Φn : Rd → CD to approximate polynomial kernel of order
n ∈ N. Here, D ∈ N is the number of random features and c(D, d) := ⌊D/d⌋d(d−
1)+(D mod d)(D mod d−1). See Chapter 3 for details and more generic results.
We also show convex surrogate functions in Eq. (D.4) and Eq. (D.5) for the variance
of stacked TensorSRHT derived in Appendix D.1.

specific cases in Table 5.11. Regarding the bias term in Eq. (5.12), the expectation
of the approximate kernel (5.10) is given by

E
[
k̂(x,y)

]
=

p∑
n=0

δ[Dn > 0] an(x
⊤y)n, (5.14)

since E
[
Φn(x)

⊤Φn(y)
]
= (x⊤y)n for n = 1, . . . , p with Dn > 0.

Note that the integrals in Eq. (5.12) with respect to P are not available in
practice, as P is the unknown data distribution. We instead assume that an
i.i.d. sample x1, . . . ,xm of size m ∈ N from P is available. This sample may be
a subsample of a larger dataset from P . For example, in a supervised learning
problem, x1, . . . ,xm may be a random subsample of training input points.

Using the i.i.d. sample x1, . . . ,xm, the objective function in Eq. (5.12) can then

1We omit the variance formulas of CtR-sketches (Chapter 4), since the contents of Chapter 4
were developed after we developed the contents of this chapter. CtR-sketches are thus not
included in the empirical evaluations that follow. We also only use stacked TensorSRHT here
because we are able to derive a convex surrogate function for it.
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be unbiasedly approximated in a U-statistics form as

1

m(m− 1)

∑
i ̸=j

V[k̂(xi,xj)] +
1

m(m− 1)

∑
i ̸=j

(
k(xi,xj)− E[k̂(xi,xj)]

)2
=

1

m(m− 1)

p∑
n=1

δ[Dn > 0] a2n
∑
i ̸=j

V
[
Φn(xi)

⊤Φn(xj)
]

(5.15)

+
1

m(m− 1)

∑
i ̸=j

(
k(xi,xj)−

p∑
n=0

δ[Dn > 0] an(x
⊤
i xj)

n

)2

, (5.16)

=: g(p, (Dn)
p
n=1) (5.17)

where we used Eq. (5.13) and Eq. (5.14).
Finally, we formulate our optimization problem. To make the problem tractable,

we search for the degree p of the approximate kernel in Eq. (5.10) from the range
{p∗min, p

∗
min + 1, . . . , p∗max}, where p∗min, p

∗
max ∈ N with p∗min < p∗max are lower and

upper bounds of p selected by the user. We then define our optimization problem
as follows:

min
p,(Dn)

p
n=1

g(p, (Dn)
p
n=1), (5.18)

subject to: p ∈ {p∗min, p
∗
min + 1, . . . , p∗max}, Dn ∈ {0, . . . Dtotal},

p∑
n=1

Dn = Dtotal, and Dn ≥ 1 if and only if an > 0 (n = 1, . . . , p),

where g(p, (Dn)
p
n=1) is defined in Eq. (5.17).

To present our approach to solving Eq. (5.18), we will first define a simplified
optimization problem and describe an algorithm for solving it. We will then use
this simplified problem and its solver to develop a solver for the full problem in
Eq. (5.18).

Solving a Simplified Problem

We consider a simplified problem of Eq. (5.18) in which the polynomial degree
p ∈ N is fixed and given, and the number of random features Dn is positive,
Dn ≥ 1, for every polynomial degree n = 1, . . . , p with an > 0. Note that the
bias term of the objective function g(p, (Dn)

n
n=1), i.e. Eq. (5.16), only depends on

(Dn)
n
n=1 through the indicator function δ[Dn > 0]. Therefore, under the constraint

that Dn ≥ 1 for all n = 1, . . . , p with an > 0, Eq. (5.16) becomes constant with
respect to (Dn)

p
n=1.

Thus, the optimization problem Eq. (5.18) under the additional constraint of
p being fixed and Dn ≥ 1 for all n = 1, . . . , p with an > 0 is equivalent to the
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following optimization problem:

min
(Dn)

p
n=1

1

m(m− 1)

p∑
n=1

a2n
∑
i ̸=j

V
[
Φn(xi)

⊤Φn(xj)
]

(5.19)

subject to Dn ∈ {0, . . . Dtotal},
p∑

n=1

Dn = Dtotal,

Dn ≥ 1 if and only if an > 0 (n = 1, . . . , p).

This is a discrete optimization problem with one equality constraint, and it is
an instance of the so-called Resource Allocation Problem (Floudas and Pardalos,
2009).

We discuss properties of the objective function in Eq. (5.19) and describe a
solver. To this end, we first consider the case where Φn : Rd → CDn is one of the
unstructured polynomial sketches in Chapter 3; we will later explain its extension

to structured sketches from Section 3.5. In this case, we have V
[
Φn(x)

⊤Φn(y)
]
=

C
(n)
x,y/Dn for a constant C

(n)
x,y depending on x,y ∈ Rd and the polynomial degree

n ∈ N but not on Dn, as summarized in Table 5.1. Therefore,

a2n
∑
i ̸=j

V
[
Φn(xi)

⊤Φn(xj)
]
=

a2n
Dn

∑
i ̸=j

C(n)
xi,xj

(5.20)

is convex and monotonically decreasing with respect to Dn. From this property,
one can use the Incremental Algorithm (Floudas and Pardalos, 2009, p. 384) to
directly solve the optimization problem (5.19).

Algorithm 4 describes the Incremental Algorithm for solving the simplified
problem in Eq. (5.19). At every iteration, the algorithm finds n ∈ {1, . . . , p} such
that adding one more feature to the feature map Φn (i.e., Dn = Dn +1) decreases
the objective function most, and sets Dn = Dn +1. Note again that a closed form

expression for V
[
Φn(xi)

⊤Φn(xj)
]
is available from Table 5.1.

Time and space complexities. The time and space complexities of Algo-
rithm 4 are O(pDtotal) and O(p), respectively. Note that from Eq. (5.20), the
objective function can be written as

f(D1, . . . , Dp) :=

p∑
n=1

a2n
∑
i ̸=j

V
[
Φn(xi)

⊤Φn(xj)
]
=

p∑
n=1

a2n
Dn

∑
i ̸=j

C(n)
xi,xj

with an and C
(n)
xi,xj not depending on the optimizing variable Dn. Therefore, one

can precompute the term
∑

i ̸=j C
(n)
xi,xj for each n = 1, . . . , p before starting the

iterations in Algorithm 4, and during the iterations one can use the precomputed
values of

∑
i ̸=j C

(n)
xi,xj . Thus, while the complexity of precomputing

∑
i ̸=j C

(n)
xi,xj is

O(m2), where m is size of the dataset x1, . . . ,xm defining the objective function
(5.19), the time and space complexities of Algorithm 4 do not depend on m.
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Algorithm 4: Incremental Algorithm

Result: Optimal solution D1, . . . , Dp ≥ 1 to the optimization problem
(5.19).

Input: Dot product kernel k(x,y) =
∑∞

n=0 an(x
⊤y)n with an ≥ 0,

truncation order p ∈ N, the total number of random features Dtotal ∈ N ;
Initialize D1 = · · · = Dp = 1 and t = 0 ;

Let f(D1, . . . , Dp) :=
∑p

n=1 a2n
∑

i ̸=j V
[
Φn(xi)

⊤Φn(xj)
]
.

while t < Dtotal do
Find j∗ = argminj∈{1,...,p} f(D1, . . . , Dj + 1, . . . , Dp) ;

Dj∗ = Dj∗ + 1 ;
t = t+ 1 ;

end

Structured case. We assumed here that Φn is one of the unstructured sketches
studied in Chapter 3. This choice of Φn makes Eq. (5.20) convex and monotonically
decreasing with respect to Dn, which enables the Incremental Algorithm to solve
the optimization problem in Eq. (5.19).

However, if Φn is a structured sketch (i.e., either real or complex TensorSRHT)
in Section 3.5, Eq. (5.20) is not convex with respect to Dn, and the Incremental
Algorithm is not directly applicable. To overcome this problem, we propose to
use stacked TensorSRHT along with the convex surrogate functions in Eq. (D.4)

and Eq. (D.5) derived in Appendix D.1 to replace V
[
Φn(xi)

⊤Φn(xj)
]
in the ob-

jective function (5.19), and then apply the Incremental Algorithm. We summarize
the concrete form of the convex surrogate function in Table 5.1. For details, see
Appendix D.1.

Solving the Full Problem

We now address the full problem in Eq. (5.18) using Algorithm 4 developed for
the simplified problem in Eq. (5.19). Recall that, by fixing p ∈ {p∗min, . . . , p

∗
max}

and constraining Dn ≥ 1 for all n = 1, . . . , p, the full problem in Eq. (5.18)
becomes equivalent to the simplified problem in Eq. (5.19), which can be solved
by Algorithm 4. Thus, we propose to solve the full problem in Eq. (5.18) by i)
first performing Algorithm 4 for each p ∈ {pmin, . . . , pmax}, ii) then evaluate each
solution (Dn)

p
n=1 by computing the objective function g(p, (Dn)

p
n=1) in Eq. (5.17),

and finally pick up p that gives the smallest objective function value.
Algorithm 5 summarizes the whole procedure for solving the full optimization

problem in Eq. (5.18). Algorithm 5 returns the optimal truncation order p∗ ∈
{pmin, . . . , pmax} with the corresponding feature cardinalities D∗ = (D1, . . . , Dp∗).
Given these values, one can construct a feature map as summarized in Algorithm 6.
Note that the U-statistics in the empirical objective (5.17) can be precomputed for
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Algorithm 5: Extended Incremental Algorithm

Result: Optimal polynomial degree p∗ ∈ {pmin, . . . , pmax} and feature
cardinalities D∗ = (D1, . . . , Dp∗) ∈ Np∗ to the full optimization
problem (5.18).

Input: Dot product kernel k(x,y) =
∑∞

n=0 an(x
⊤y)n with an ≥ 0, upper

and lower bounds pmin, pmax ∈ N, the total number of random features
Dtotal ∈ N ;
Set g∗ = ∞, p∗ = pmin and D∗ = {} ;
forall p ∈ {pmin, . . . , pmax} do

Solve Algorithm 4 to obtain D1, . . . , Dp ;
Compute g(p, (Dn)

p
n=1) in Eq. (5.17) ;

if g(p, (Dn)
p
n=1) < g∗ then

g∗ = g(p, (Dn)
p
n=1) ;

D∗ = (Dn)
p
n=1 ;

p∗ = p ;

end

Algorithm 6: Improved Random Maclaurin (RM) Features

Result: Feature map Φ(x) ∈ CDtotal+1

Input: Dot product kernel k(x,y) =
∑∞

n=0 an(x
⊤y)n with an ≥ 0,

polynomial degree p∗ ∈ N and feature cardinalities D1, . . . , Dp∗ from
Algorithm 5 ;
Initialize Φ(x) := [

√
a0]

forall n ∈ {1, . . . , p∗} do
Let Φn(x) ∈ CDn be an unbiased polynomial sketch of degree n with
Dn features (see Chapter 3) ;
Append

√
an Φn(x) to Φ(x) ;

end

all pmin, . . . , pmax before running any optimization algorithm. They do not need to
be re-evaluated for every execution of Algorithm 4.

5.3.1 Approximating a Gaussian Kernel

Here we describe how to adapt Algorithm 4 and Algorithm 5 for approximating
a Gaussian kernel of the form k(x,y) = exp(−∥x − y∥2/(2l2)) with l > 0. By
Eq. (5.5), this Gaussian kernel can be written as

k(x,y) = exp

(
−∥x∥2

2l2

)
exp

(
−∥y∥2

2l2

) ∞∑
n=0

an(x
⊤y)n,
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where an := 1/(n!l2n) for n ∈ N ∪ {0}. Notice that
(
−∥x∥2

2l2

)
and

(
−∥y∥2

2l2

)
are

scalar values and can be computed for any given input vectors x,y ∈ Rd.
Thus, the objective function g(p, (Dn)

p
n=1) in Eq. (5.17), which is an empirical

approximation of the bias-variance decomposition of the mean squared error in

Eq. (5.12) using an i.i.d. sample x1, . . . ,xm
i.i.d.∼ P , can be adapted as

g(p, (Dn)
p
n=1) (5.21)

=
1

m(m− 1)

p∑
n=1

δ[Dn > 0] a2n
∑
i ̸=j

exp

(
−∥xi∥2

l2

)
exp

(
−∥xj∥2

l2

)
V
[
Φn(xi)

⊤Φn(xj)
]

+
1

m(m− 1)

∑
i ̸=j

(
k(xi,xj)−

p∑
n=0

δ[Dn > 0] an exp

(
−∥xi∥2

2l2

)
exp

(
−∥xj∥2

2l2

)
(x⊤

i xj)
n

)2

.

Accordingly, the objective function of the simplified problem in Eq. (5.19) is
adapted as

f(D1, . . . , Dp) :=
1

m(m− 1)

p∑
n=1

a2n
∑
i ̸=j

exp

(
−∥xi∥2

l2

)
exp

(
−∥xj∥2

l2

)
V
[
Φn(xi)

⊤Φn(xj)
]
.

By these modifications, Algorithm 4 and Algorithm 5 can be used to obtain
the optimal truncation order p∗ ∈ {pmin, . . . , pmax} and the corresponding feature
cardinalities D1, . . . , Dp∗ . Lastly, Algorithm 6 can be adapted by multiplying the

scalar value exp
(
−∥x∥2

2l2

)
to the feature map Φ(x) obtained from Algorithm 6: the

new feature map is defined as Φ′(x) := exp
(
−∥x∥2

2l2

)
Φ(x).

5.3.2 Numerical Illustration of the Objective Function

To gain an insight about the behavior of Algorithm 5, we provide a numerical
illustration of the bias and variance terms in the objective function g(p, (Dn)

p
n=1)

in Eq. (5.17) (or its version adapted for the Gaussian kernel in Eq. (5.21)). To
this end, we used the Fashion MNIST dataset (Xiao et al., 2017) and randomly
sampled data points x1, . . . ,xm with m = 500 from the entire dataset of size
60, 000. As a target kernel to approximate, we consider (i) a polynomial kernel
k(x,y) = (x⊤y/8+7/8)20 of degree p = 20; and (ii) the Gaussian kernel k(x,y) =
exp(−∥x−y∥2/(2l2)), where the length scale l > 0 is given by the median heuristic
(Garreau et al., 2017), i.e., the median of the pairwise Euclidean distances of
x1, . . . ,xm.

For the polynomial kernel (i), we computed (a) a2n
m(m−1)

∑
i ̸=j V

[
Φn(xi)

⊤Φn(xj)
]

for each n = 1, . . . , p (= 20), which is the variance component of the objective func-

tion in Eq. (5.17); and (b) 1
m(m−1)

∑
i ̸=j

(
k(xi,xj)−

∑n
ν=0 aµ(x

⊤
i xj)

ν
)2

for each

n = 1, . . . , p (= 20), which is the bias component in Eq. (5.17) computed up to
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Figure 5.1: Numerical illustration of Section 5.3.2. The left two figures are box
plots for the Gaussian kernel (i), and the right two figures are those for the poly-
nomial kernel (ii). The top figures show the variance terms (a), and the bottom
figures show the bias terms (b). See Section 5.3.2 for details.

n-th order. For the Gaussian kernel (ii), we computed corresponding quantities
from the objective function in Eq. (5.21):

(a) a2n
m(m−1)

∑
i ̸=j exp

(
−∥xi∥2

l2

)
exp

(
−∥xj∥2

l2

)
V
[
Φn(xi)

⊤Φn(xj)
]
and

(b) 1
m(m−1)

∑
i ̸=j

(
k(xi,xj)−

∑n
ν=0 aν exp

(
−∥xi∥2

2l2

)
exp

(
−∥xj∥2

2l2

)
(x⊤

i xj)
ν
)2

for n = 1, . . . , 10.
We used the real Gaussian sketch for the feature map Φn, for which Eq. (3.8)

in Chapter 3 gives a closed form expression of the variance V
[
Φn(xi)

⊤Φn(xj)
]
;

see also Table 5.1. We set Dn = 1 for each n to be evaluated (i.e., Φn(x) ∈ R.)
To compute the means and standard deviations of the above quantities (a)

and (b), we repeated this experiment 100 times by independently subsampling
x1, . . . ,xm with m = 500 from the entire dataset each time. Fig. 5.1 describes the
results. First, we can see that the standard deviations of the quantities (a) and (b)
are relatively small, and thus a subsample x1, . . . ,xm of size m = 500 is sufficient
for providing accurate approximations of the respective population quantities of
(a) and (b) (where the empirical average with respect to x1, . . . ,xm is replaced by
the corresponding expectation) in this setting.

Regarding the polynomial kernel (i), the variance terms (a) for polynomial
degrees up to n = 3 have similar magnitudes, and they decay exponentially fast
for polynomial degrees larger than n = 3 (notice that the vertical axis of the
plot is in log scale). On the other hand, the bias term (b) decays exponentially
fast as the polynomial degree n increases. These trends suggest that Algorithm 5
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would assign more features to lower order degrees n, in particular to the degree
3 or less. One explanation of these trends is that the parametrization of the
kernel k(x,y) = (x⊤y/8 + 7/8)20 gives larger coefficients to lower polynomial
degrees in the the Maclaurin expansion (see Eq. (5.3)), and that the distribution
of pairwise inner products of the data points x1, . . .xm is centered around zero in
this experiment.

Regarding the Gaussian kernel (ii), both the variance term (a) and the bias
term (b) decay exponentially fast as the polynomial degree n increases. This trend
suggests that Algorithm 5 would assign more features to lower order polynomial
degrees n.

To summarize, these observations suggest that, to minimize the mean squared
error of the approximate kernel, it is more advantageous to assign more features
to lower degree polynomial approximations. Algorithm 5 automatically achieves
such feature assignments.

We will show later in this chapter for the Gaussian kernel that Algorithm 5
assigns more random features to higher polynomial degrees instead when the length
scale l > 0 is small in comparison to the scaling of the data, i.e., when modelling
high-frequency data and choosing l without the median heuristic. This is because
the variances of approximate polynomial kernels of high degrees increase in this
case. In the following experiments we stick to the median heuristic for now.

5.3.3 Gaussian Process Regression Toy Example

We performed a toy experiment on one-dimensional Gaussian process (GP) re-
gression, whose results are described in Fig. 5.2. The purpose is to gain a qual-
itative understanding of the optimized Maclaurin approximation in Section 5.3
(Algorithm 5). For comparison, we also used Random Fourier Features (RFF) of
Rahimi and Recht (2007) described in Chapter 2 in this experiment. We use the
real Rademacher sketch in the optimized Maclaurin approach.

We define the ground-truth function as a sinc function, f(x) = sin(ax)/x,
with a > 0 for which we consider three settings: a ∈ {5, 2, 0.5}. We generated
training data by adding independent Gaussian noise of variance σ2

noise = 0.01 to
the ground-truth function f(x). With this value of noise variance σ2

noise, we then fit
a GP regressor (see Chapter 1) using the Gaussian kernel k(x, y) = σ2 exp(−(x−
y)2/(2l2)) to the training data, where we determined the hyperparameters l, σ2 > 0
by maximizing the log marginal likelihood (e.g., Rasmussen and Williams, 2006,
Chapter 2). We used the resulting posterior GP as a ground-truth and call it “full
GP”, treating it as a reference for assessing the quality of approximate GPs. As
such, we used the same hyperparameters as the full GP in approximate GPs; this
enables evaluating the effects of the approximation in the resulting GP predictive
distributions.

We set the number of random features as D = 10. In this case, the optimized
Maclaurin approach in Algorithm 5 selects the truncation degree p∗ = 9 and simply
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Figure 5.2: One-dimensional GP regression experiment in Section 5.3.3. The top
row are the results of random Fourier features (Gaussian RFF) and the bottom
row are those of the optimized Maclaurin approach. The left, middle, and right
columns correspond to the ground-truth sinc functions with frequency 5, 2, and
0.5, respectively. The values of l and σ2 are the kernel hyperparameters obtained
by maximizing the log likelihood of training data in the full GP (i.e., without
approximation). Dashed blue curves represent approximate GP posterior mean
functions; blue curves represent the posterior means plus and minus 2 times ap-
proximate posterior standard deviations; black curves represent the posterior mean
functions of the full GP; and the shaded ares are the full GP posterior means plus
and minus 2 times the full GP posterior deviations.

allocates the feature cardinalities as D1 = · · · = D9 = 1. (Note that one feature
is always allocated to the degree n = 0). This behavior is expected because the
variance of the Rademacher sketch (see Table 5.1) is zero for all polynomial degrees
n, as the input dimension is one (d = 1) in this experiment.2

We can make the following observations from Fig. 5.2. First, with the optimized
Maclaurin approach, the approximate GP posterior mean function approximates
the full GP posterior mean function around x = 0 more accurately than RFF.
Moreover, the range of x on which the Maclaurin approach is accurate becomes
wider for a lower frequency a of the ground-truth sinc function (for which the length
scale l is larger). This tendency suggests that the Maclaurin approach may be more
advantageous than RFF in approximating around x = 0 and when the length scale
l is relatively large. Experiments in the next section, in particular those with high
dimensional datasets, provide a further support for this observation.

One issue with the Maclaurin approximation is that, as can be seen from

2Thus, the error of the optimized Maclaurin approach stems solely from the finite truncation
of the Maclaurin expansion in Eq. (5.10).
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Fig. 5.2, the approximate GP posterior tends to collapse for an input location
x far from 0. We will study this issue at the end of this chapter, and show that the
collapsing GP posterior approximation is due to the vanishing of the approximate
kernel k̂(x,y) when ∥x∥ /l+∥y∥ /l becomes large. We will also propose a cure for
this pathology that is relevant in particular when modelling data of high frequency,
i.e., when l is short relative to the scaling of the data.

For now, we focus on a set of high-dimensional experiments, where we can
make use of the median heuristic and approximations are well-behaved.

5.4 Empirical Evaluation of the Optimized Maclau-

rin Method

In this section, we perform systematic experiments to evaluate the optimized
Maclaurin method proposed in this chapter. We use it in conjunction with the
real and complex polynomial sketches introduced in Chapter 3, and we consider
approximations of both polynomial kernels and Gaussian kernels. We do not make
use of the Complex-to-Real sketches presented in Chapter 4 here, since we devel-
oped them independently from the methods discussed in this chapter, as mentioned
at the beginning of this chapter.

We evaluate the performance of each approximation approach in terms of both
i) the accuracy in kernel approximation and ii) the performance in downstream
tasks. The downstream tasks we consider are Gaussian process regression and
classification. For completeness, we explain how to use complex-valued random
features in Gaussian process inference and discuss the resulting computational
costs in Appendix B.3.

In Section 5.4.1, we first explain the setup of the experiments. In Section 5.4.2,
we describe experiments on polynomial kernel approximation, comparing various
approximation approaches. In Section 3.5.4, we report the results of wall-clock
time comparison of real and complex random features, focusing on the downstream
task performance of GP classification. In Section 5.4.3, we present detailed eval-
uations of the optimized Maclaurin approach for polynomial and Gaussian kernel
approximations in GP classification and regression.

5.4.1 Experimental Setup

We explain here the common setup for the experiments in this section.

Datasets

Table 5.2 shows an overview of the datasets used in the experiments. All the
datasets come from the UCI benchmark (Dua and Graff, 2017) except for Cod rna
(Uzilov et al., 2006), FashionMNIST (Xiao et al., 2017), and MNIST (Lecun et al.,
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Classification Num. data points N Dimensionality d Regression Num. data points N Dimensionality d

Cod rna 331,152 8 Boston 506 16
Covertype 581,012 64 Concrete 1,030 8
FashionMNIST 70,000 1,024 Energy 768 8
Magic 19,020 16 kin8nm 8,192 8
Miniboo 130,064 64 Naval 11,934 16
MNIST 70,000 1,024 Powerplant 9,568 4
Mocap 78,095 64 Protein 45,730 16

Table 5.2: Datasets used in the experiments. The left and right columns are
datasets for classification and regression, respectively.

1998). We pad input vectors with zeros so that the input dimensionality d becomes
a power of two to support Hadamard projections in TensorSRHT. The train/test
split is 90/10 and is recomputed for every random seed for the UCI datasets;
otherwise it is predefined.

For each dataset, we use its random subsets of size m = min(5000, Ntrain)
and m∗ = min(5000, Ntest) to define training and test data in an experiment,
respectively, where Ntrain and Ntest are the sizes of the original training and test
datasets. Denote by Xsub = {x1, . . . ,xm} and X∗,sub = {x∗,1, . . . ,x∗,m∗} those
subsets for training and test, respectively. We repeat each experiment 10 times
independently using 10 different random seeds, and hence with 10 different subset
partitions.

Target Kernels to Approximate

We consider the approximation of (i) polynomial kernels and (ii) Gaussian kernels.

(i) Polynomial kernel approximation. We consider a polynomial kernel of
the form

k(x,y) = σ2

((
1− 2

a2

)
+

2

a2
x⊤y

)p

= σ2

(
1− ∥x− y∥2

a2

)p

(5.22)

with p ∈ N, a ≥ 2, σ2 > 0, and ∥x∥ = ∥y∥ = 1. We choose this form of polynomial
kernels because we use Spherical Random Features (SRF) of Pennington et al.
(2015) as one of our baselines, and because SRF approximates the polynomial
kernel in Eq. (5.22) defined on the unit sphere of Rd. Following the experimental
setup of Pennington et al. (2015), we set a = 4 and p ∈ {3, 7, 10, 20} in Eq. (5.22).
We set σ2 as the variance of the labels of training subset Xsub.

To make SRF applicable, we unit-normalize the input vectors in each dataset
so that they lie on the unit sphere in Rd. In an experiment where we zero-centralize
the input vectors, we unit-normalize after applying the zero-centering.

(ii) Gaussian kernel approximation. We consider the approximation of the
Gaussian kernel k(x,y) = σ2 exp(−∥x − y∥2/(2l2)), where we choose the length



Chapter 5. Approximating Dot Product Kernels 92

scale l > 0 by the median heuristic (Garreau et al., 2017), i.e., as the median of
pairwise Euclidean distances of input vectors in the training subset Xsub; we set
σ2 > 0 as the variance of the labels of Xsub.

Error Metrics

We define several error metrics for studying the quality of each approximation
approach.

Relative Frobenius norm error. To define this error metric, we need to define
some notation. Let Φ : Rd → CD be the (either real or complex) feature map of
a given approximation method. For test input vectors X∗,sub = {x∗,1, . . . ,x∗,m∗},
let K̂ ∈ Cm∗×m∗ be the approximate kernel matrix such that K̂i,j = Φ(xi)

⊤Φ(xj).
Similarly, letK ∈ Rm∗×m∗ be the exact kernel matrix such thatKi,j = k(x∗,i,x∗,j)
with k being the target kernel.

We then define the relative Frobenius norm error of K̂ against K as:

∥K − K̂∥F/∥K∥F :=

√√√√ m∑
i=1

m∑
j=1

|Ki,j − K̂i,j|2
/√√√√ m∑

i=1

m∑
j=1

K2
i,j. (5.23)

This error quantifies the quality of the feature map Φ in terms of the resulting
approximation accuracy of the kernel matrix. As the target kernel matrix K is
real-valued, we discard the imaginary part of K̂ if it is is complex-valued, unless
otherwise specified.

We define other error metrics in terms of two downstream tasks: Gaussian
process (GP) regression and classification (see Appendix B.3 for details of these
GP tasks).

Kullback-Leibler (KL) divergence. We measure the KL divergence between
two posterior predictive distributions at test input points: one is that of an ap-
proximate GP and the other is that of the exact GP without approximation; see
Eq. (B.23) in Appendix B.3 for details. For GP classification, we measure the KL
divergence between the corresponding latent GPs before transformation. Since
there are as many GPs as the number of classes, we report the KL divergence
averaged over those classes.

Prediction performance. For GP classification, we use the test error rate
(i.e., the percentage of misclassified examples) for measuring the prediction perfor-
mance. For GP regression, we report the normalized mean squared error (norm. MSE)
between the posterior predictive outputs and true outputs, normalized by the vari-
ance of the test outputs. Here, we use the full training data of size Ntrain for
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computing the approximate GP posterior and the full test data of size Ntest for
evaluating the prediction performance.3

Mean negative log likelihood (MNLL). We compute the mean negative log
likelihood (MNLL) of the test data for the approximate GP predictive distribution.
MNLL can capture the quality of prediction uncertainties of the approximate GP
model (e.g. Rasmussen and Williams, 2006, p. 23). We use the full training and
test data for computing the MNLL, as for the prediction performance.

Other Settings

Optimized Maclaurin approach. For the optimized Maclaurin approach in
Algorithm 5, we set pmin = 2 and pmax = 10. We use the training subset Xsub =
{x1, . . . ,xm} to precompute the U-statistics in Eq. (5.15) and Eq. (5.16).

Regularization parameters. We select the regularization parameter in GP
classification and regression by a training-validation procedure. That is, we use the
90 % of training data for training and the remaining 10 % for validation, and select
the regularization parameter that maximizes the MNLL on the validation set. For
GP classification, we choose the regularization parameter from the range α ∈
{10−5, . . . , 10−0}. For GP regression, we choose the noise variance from the range
σ2
noise ∈ {2−15, . . . , 215}. See Appendix B.3 for the definition of these parameters.
Importantly, we perform this selection procedure using a baseline approach,4

and after selecting the regularization parameter, we set the same regularization
parameter for all the approaches (including our optimized Maclaurin approach) for
computing error metrics. In this way, we make sure that the selected regularization
parameter is not in favour of our approaches (and in this sense we give an advantage
to the baseline).

5.4.2 Polynomial Kernel Approximation

We first study the approximation of the polynomial kernels in Eq. (5.22), compar-
ing different polynomial sketches and the optimized Maclaurin method in terms
of the relative Frobenius norm error in Eq. (5.23) on FashionMNIST. Fig. 5.3
describes the results. We consider the following polynomial sketches in this exper-
iment:

3We did not use the full training and test datasets for evaluating the KL divergence, since it
requires computing the exact GP posterior on the full training data of size Ntrain, which costs
O(N3

train) and is not feasible for datasets with large Ntrain.
4More specifically, we use the Spherical Random Features (SRF) (Pennington et al., 2015)

when the target kernel is a polynomial kernel, and Random Fourier Features (Rahimi and Recht,
2007) when the target kernel is Gaussian, for selecting the regularization parameter.
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(i) Rademacher Product-Sketch (Chapter 3). We use the real Rademacher
sketch, i.e., the unstructured polynomial sketch in Eq. (3.1) with Rademacher
weights (“Radem.” in Fig. 5.3).

(ii) Stacked TensorSRHT (Section 3.5). We consider the real stacked Ten-
sorSRHT in Eq. (3.27) with Rademacher weights (“TensorSRHT” in Fig. 5.3),
and the complex TensorSRHT in Eq. (3.34) with complex Rademacher weights;
see also Algorithm 2. We consider two versions of the complex TensorSRHT: one
that keeps the imaginary part in the approximate kernel matrix (“TensorSRHT
Comp. (Keep imag.)” in Fig. 5.3), and one that discards the imaginary part
(“TensorSRHT Comp. (Disc. imag.)” in Fig. 5.3).

(iii) Random Maclaurin (Section 5.2). We use the Random Maclaurin ap-
proach by Kar and Karnick (2012) explained in Section 5.2. To improve its per-
formance, we truncate the support of the importance sampling measure µ(n) =
2−(n+1) in Eq. (5.6) to degrees n ∈ {1, . . . , p}.5 Note that the term n = 0 in
Eq. (5.2) associated with coefficient a0 does not need to be approximated, as we
append

√
a0 to the feature map. We consider two versions of the Random Maclau-

rin approach: one using the real Rademacher sketch (“Rand. Macl. Radem.” in
Fig. 5.3) and one using the real TensorSRHT (“Rand. Macl. TensorSRHT” in
Fig. 5.3).

(iv) Optimized Maclaurin (Section 5.3). We consider our optimized Maclau-
rin approach introduced in this chapter using the real TensorSRHT (“Opt. Macl. Ten-
sorSRHT” in Fig. 5.3) and using the complex TensorSRHT. We consider two ver-
sions of the latter: one keeping the imaginary part of the approximate kernel
matrix (“Opt. Macl. TensorSRHT Comp. (Keep imag. )” in Fig. 5.3) and one
discarding the imaginary part (“Opt. Macl. TensorSRHT Comp. (Disc. imag. )”
in Fig. 5.3).

(v) TensorSketch For completeness, we also include in this experiment Ten-
sorSketch of Pham and Pagh (2013), a state-of-the-art polynomial sketch (“Ten-
sorSketch” in Fig. 5.3).

Setting. We perform the experiments using FashionMNIST (“Non-centered data”
in Fig. 5.3) and its centered version for which we subtract the mean of the input
vectors from each input vector (“Centered data” in Fig. 5.3). For each approach,
the number of random features isD ∈ {d, 2d}, where d = 1, 024 for FashionMNIST.

5Without this restriction of the support, the randomized Maclaurin approach may sample
polynomial degrees n such that n > p from µ(n), for which the associated coefficient in the
Maclaurin expansion in Eq. (5.3) is zero. Therefore, the resulting feature maps may contain
zeros, which are redundant and makes the kernel approximation inefficient.
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Figure 5.3: Results of the experiments in Section 5.4.2 using FashionMNIST. Each
plot shows the relative Frobenius norm errors in Eq. (5.23) of different sketches
for approximating the polynomial kernel in Eq. (5.22) with p ∈ {3, 7, 10, 20} and
D ∈ {1d, 2d}. The top and bottom rows show results with the data without and
with zero-centring, respectively.

From the results in Fig. 5.3, we can make the following observations.

Effectiveness of the optimization approach. The optimized Maclaurin ap-
proach with the real TensorSRHT (“Opt. Mac. TensorSRHT”) achieves smaller
errors than the corresponding random Maclaurin approach (“Rand. Macl. Ten-
sorSRHT”) for almost all cases, and with a large margin for p = 3 and p = 20.
This improvement demonstrates the effectiveness of the proposed optimization
approach that allocates more features to polynomial degrees with larger variance
reduction.

Variance reduction by complex features. Complex TenorSRHT (“TensorSRHT
Comp.”) achieves significantly smaller errors than the real TensorSRHT (“Ten-
sorSRHT”), in particular for higher polynomial degrees p. Observe that even
the complex TensorSRHT with D = d achieves smaller errors than the real Ten-
sorSRHT with D = 2d for the non-centered data. These improvements show the
effectiveness of complex features in variance reduction, corroborating the prelimi-
nary results shown in Figures 3.2 and 3.3.

The optimized Maclaurin approach using complex features (“Opt. Macl. Ten-
sorSRHT Comp”) also achieves smaller errors than the optimized Maclaurin ap-
proach using real features (“Opt. Macl. TensorSRHT”), but the improvements are
relatively smaller than those for TensorSRHT. These milder improvements would
be because the optimized Maclaurin approach tends to assign more features to
lower degree polynomials, but the improvements for these lower degree polynomi-
als by complex features are relatively smaller than for higher degree polynomials.
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Effectiveness of complex features on non-negative data. The improve-
ments by complex features are more significant for the non-centered data than
those for the centered-data. The non-centered data here consist of non-negative
input vectors, as FashionMNIST consists of such vectors. This observation agrees
with the discussion in Section 3.3 in Chapter 3 suggesting that complex features
yield an approximate kernel whose variance is smaller than that of real features,
if the input vectors are non-negative.

TensorSRHT v.s. TensorSketch. While the real TensorSRHT produces larger
errors than TensorSketch for all the cases except p = 3, the complex TensorSRHT
outperforms TensorSketch for all the cases. This comparison shows the use of
complex features can make TensorSRHT competitive to the state-of-the-art (and
one can further improve its performance by using it in the optimized Maclaurin
approach).

5.4.3 Systematic Evaluation of the Optimized Maclaurin
Approach

Lastly, we systematically evaluate the performance of the optimized Maclaurin ap-
proach against Spherical Random Features (Pennington et al., 2015) and random
Fourier features (Rahimi and Recht, 2007). We run experiments on approximate
GP classification and regression on a variety of datasets, using a high-degree poly-
nomial kernel and the Gaussian kernel.

Optimized Maclaurin approach. We consider the optimized Maclaurin ap-
proach in Section 5.3 using the real Rademacher sketch (“Opt. Macl. Radem.”),
one using the real TensorSRHT (“Opt. Macl. TensorSRHT”) and its complex ex-
tension (“Opt. Macl. TensorSRHT Comp. ”).

Baselines. We use here approximation approaches based on Random Fourier
Features (RFF) (Rahimi and Recht, 2007) and their extensions such as Spherical
Random Features (SRF) (Pennington et al., 2015) and Structured Orthogonal Ran-
dom Features (SORF) (Yu et al., 2016) as baselines. The latter two approaches
constitute the state-of-the-art and we refer the reader to Chapter 2 for an expla-
nation.

These approaches generate a set of frequency samples ω1, . . . , ωD/2 ∈ Rd (sup-
pose D is even for simplicity) from a certain spectral density, and construct a
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feature map6 of dimension D as, for any x ∈ Rd,

ΦR(x) =

√
2

D

[
cos(w⊤

1 x), . . . , cos(w
⊤
D/2x), sin(w

⊤
1 x), . . . , sin(w

⊤
D/2x)

]⊤ ∈ RD.

(5.24)
Each approach has its own way of generating the frequency samples ω1, . . . ,ωD/2:
the original RFF generates them in an i.i.d. manner from the spectral density of
a kernel, SORF uses structured orthogonal matrices (thus we may call it “RFF
Orth.”), and SRF uses a certain optimized spectral density.

For a thorough comparison, we also consider a complex version of these RFF-
based approaches. By generating frequency samples ω1, . . . ,ωD ∈ Rd in the spe-
cific way of each approach, one can define a corresponding complex feature map
as, for any x ∈ Rd,

ΦC(x) :=

√
1

D

[
exp(iω⊤

1 x), . . . , exp(iω
⊤
Dx)

]⊤ ∈ CD. (5.25)

One can see7 that Eq. (5.25) is a complex version of Eq. (5.24) by defining an
approximate kernel with ΦC(x) and taking its real part, which recovers Eq. (5.24)
of dimension 2D.

Approximate GP Inference with a High-degree Polynomial Kernel

We first consider approximate GP classification and regression with a high-degree
polynomial kernel.

Setting. We set the polynomial degree as p = 20, to make it challenging to
approximate the polynomial kernel. We apply zero-centering to each dataset (i.e.,
we substract the mean of input vectors from each input vector), as it improves the
MNLL values on most datasets (see Appendix D.2 for supplementary experiments).
We evaluate all the four error metrics in Section 5.4.1, including the relative Frobe-
nius norm error in Eq. (5.23). For each approach, the number of random features
is D ∈ {d, 3d, 5d} with d being the dimensionality of input vectors.

6There is another popular version of the feature map in Eq. (5.24) defined as ΦR(x) =√
2
D

[
cos(w⊤

1 x+ b1), . . . , cos(w
⊤
Dx+ bD)

]⊤ ∈ RD with b1, . . . , bD uniformly sampled on [0, 2π].

Following Sutherland and Schneider (2015) who suggested the superiority of Eq. (5.24), we use
Eq. (5.24) here in all the methods using RFF, including SRF and SORF.

7Define an approximate kernel with Eq. (5.25) as k̂(x,y) := ΦC(x)
⊤ΦC(y) =

1
D

∑D
i=1 exp(iω

⊤
i (x − y)) = 1

D

∑D
i=1 exp(iω

⊤
i x)exp(iω

⊤
i y). By tak-

ing its real part, we have Re{k̂(x,y)} = 1
D

∑D
i=1 cos(w

⊤
i (x − y)) =

1
D

∑D
i=1

(
cos(w⊤

i x) cos(w
⊤
i y) + sin(w⊤

i x) sin(w
⊤
i y)

)
=: ΦR(x)⊤ΦR(y), where ΦR(x) :=√

1
D

[
cos(w⊤

1 x), . . . , cos(w
⊤
Dx), sin(w⊤

1 x), . . . , sin(w
⊤
Dx)

]⊤ ∈ R2D is the 2D-dim. version of

Eq. (5.24).
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Baselines. As a baseline, we use SRF (Pennington et al., 2015), a state-of-the-
art approach to approximating polynomial kernels defined on the unit sphere in
Rd. Pennington et al. (2015) show that SRF works particularly well for approxi-
mating high degree polynomial kernels, and significantly outperforms the Random
Maclaurin approach (Kar and Karnick, 2012) and TensorSketch (Pham and Pagh,
2013) for such kernels.

We also consider two other extensions of SRF for baselines. SRF generates
the frequency samples ω1, . . . ,ωD/2 in Eq. (5.24) from an optimized spectral den-
sity, by first drawing samples from the unit sphere in Rd. Therefore, by replacing
these samples on the unit sphere by structured orthogonal projections of SORF
(Yu et al., 2016), one can construct a structured version of SRF. We use this
structured SRF as another baseline (“SRF Orth.” in Fig. 5.4). Moreover, we
consider a complex extension of the structured SRF in the form of Eq. (5.25) (
“SRF Orth. Comp.” in Fig. 5.4). While these extensions are themselves novel, we
include them in the experiments, as they improve over the vanilla SRF and make
the experiments more competitive.

Fig. 5.4 describes the results of approximate GP classification on four datasets
from Table 5.2. We present the results on the other four datasets as well as the
results of GP regression in Appendix D.2 to save the space. We can make the
following observations from these results.

Relative Frobenius norm error. For most cases, the optimized Maclaurin
approaches with TensorSRHT achieve lower relative Frobenius norm errors than
the SRF approaches. Specifically, “Opt. Macl. TensorSRHT” outperforms “SRF”
and “SRF Orth.”, and “Opt. Macl. TensorSRHT Comp.” outperforms “SRF
Orth. Comp.”

KL divergence. While the optimized Maclaurin approaches achieve lower KL
divergences than the SRF approaches for most cases, the margins are smaller than
those for the relative Frobenius norm errors. One possible reason is that the
Maclaurin approaches in general (either random or optimized) can be inaccurate
in approximating the GP posterior variances at test inputs far from x = 0, as
discussed in Section 5.3.3.

Classification errors and mean negative log likelihood (MNLL). The
optimized Maclaurin approaches with TensorSRHT achieve equal or lower classifi-
cation errors and MNLL than the SRF approaches. These results suggest that the
optimized Maclaurin approaches are promising not only in kernel approximation
accuracy but also in downstream task performance. Recall that we selected the
regularization parameter in GP classification by maximizing the MNLL of SRF
(on the validation set), and used the same regularization parameter in the other
approaches (See Section 5.4.1). Therefore, the results of Fig. 5.4 are in favor of
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Figure 5.4: Results of the experiments in Section 5.4.3 on approximate GP classi-
fication with a high-degree polynomial kernel. Lower values are better for all the
metrics. For each dataset, we show the number of random featuresD ∈ {1d, 3d, 5d}
used in each method on the horizontal axis, with d being the input dimensionality
of the dataset. We put the legend labels and the bars in the same order.

the SRF approaches, and the optimized Maclaurin approaches may perform even
better if we choose the regularization parameter for them separately.

Approximate GP Inference with a Gaussian kernel

We next consider GP classification using a Gaussian kernel. As in Section 5.4.3,
we apply zero-centring to the input vectors of each dataset.

Baselines. We use RFF, SORF (“RFF Orth.”) and a complex extension of
SORF (“RFF Orth. Comp.”) as baselines (see the beginning of Section 5.4.3 for
details). SORF is a state-of-the-art approach to approximating a Gaussian kernel
(e.g. Choromanski et al., 2018). As in Section 5.4.3, we consider its complex
extension to make the experiments more competitive.

Results. Fig. 5.5 summarizes the results on four datasets from Table 5.2. We
show the results on the rest of datasets as well as the results of GP regression
in Appendix D.2. We can make similar observations for Fig. 5.5 as for the poly-
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Figure 5.5: Results of the experiments in Section 5.4.3 on approximate GP clas-
sification with a Gaussian kernel. Lower values are better for all the metrics. For
each dataset, we show the number of random features D ∈ {1d, 3d, 5d} used in
each method on the horizontal axis, with d being the input dimensionality of the
dataset. We put the legend labels and the bars in the same order.

nomial kernel experiments in Section 5.4.3 (and thus we omit explaining them).
The results suggest the effectiveness of the optimized Maclaurin approach with
TensorSRHT in approximating the Gaussian kernel.

Influence of the Data Distribution on the Kernel Approximation

Lastly, we investigate a characterization of datasets for which the optimized Maclau-
rin approach performs well. We focus on polynomial kernel approximation, and
make a comparison with SRF as in Section 5.4.3.

Fig. 5.6 describes a histogram of pairwise distances {∥x∗,i − x∗,j∥}i ̸=j of the
input vectors in a test subset X∗,sub = {x∗,1, . . . ,x∗,m∗}, obtained after zero-
centering and unit-normalization, of each of four representative datasets (kin8nm,
Cod rna, Naval, and Protein). For these datasets, the optimized Macluarin ap-
proach and SRF show stark contrasts in their performances; see Section 5.4.3 and
Appendix D.2. Note that the polynomial kernel in Eq. (5.22) is a shift-invariant
kernel on the unit sphere of Rd, and thus its value depends only on the distance
τ := ∥x − y∥ between the input vectors x,y as long as ∥x∥ = ∥y∥ = 1. This
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Figure 5.6: Histograms of pairwise Euclidean distances {∥x∗,i − x∗,j∥}i ̸=j for test
subsets of four datasets (Section 5.4.3). On the top of each figure, we show the
relative Frobenius norm errors (5.23) of the optimized Maclaurin approach with
real TensorSRHT and of SRF with structured orthogonal projections. The black
curve represents the polynomial kernel in Eq. (5.22) with p = 20 as a function
of τ := ∥x − y∥ (the horizontal axis); the orange curves describe its degree n ∈
{1, 2, 3, 4} approximations (i.e., the truncation of the Maclaurin expansion (5.3) of
the polynomial kernel up to the n-th degree terms.). The dashed curve represents
the variance of the SRF approximation as a function of τ = ∥x − y∥. The green
vertical line shows the value of τ = ∥x−y∥ =

√
2 for which the input vectors x,y

are orthogonal, x⊤y = 0.

motivates us studying here the distribution of pairwise distances and its effects on
approximating the polynomial kernel in Eq. (5.22).

In Fig. 5.6, the optimized Maclaurin approach yields lower relative Frobenius
norm errors (5.23) than SRF for the left two plots, while the optimized Maclaurin
approach is less accurate than SRF for the right two plots. For the datasets of the
right two plots (Naval and Protein), the pairwise distances {∥x∗,i −x∗,j∥}i ̸=j con-
centrate around τ = 0 (and there is a smaller mass around τ = 2). In comparison,
for the datasets of the left two plots (kin8nm and Cod rna), the pairwise distances
are relatively more evenly distributed across the possible range τ ∈ [0, 2].

The above observation suggests that the optimized Maclaurin approach is more
suitable for datasets in which the pairwise distances {∥x∗,i − x∗,j∥}i ̸=j are not
concentrating around 0, i.e., datasets in which there is a diversity in the input
vectors {x∗,1, . . . ,x∗,m∗}. In fact, for approximating the polynomial kernel (black
curve in Fig. 5.6), the finite-degree Maclaurin approximations (orange curves) tend
to be less accurate for input vectors x,y close to each other, τ = ∥x−y∥ ≈ 0, and
become relatively more accurate as input vectors x,y approach orthogonality, i.e.
x⊤y = 0 (or τ = ∥x − y∥ =

√
2; the vertical green line); see also the Maclaurin

expansion (5.3) of the polynomial kernel. On the other hand, the variance of SRF
is the lowest around τ = ∥x−y∥ = 0 and increases as τ tends to 2. Therefore, the
SRF performs well if the pairwise distances {∥x∗,i − x∗,j∥}i ̸=j concentrate around
0, and may become inaccurate if they do not.
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5.5 Pathology when Approximating the Gaus-

sian Kernel

In this section, we uncover a pathology related to Maclaurin-based approximations
of the Gaussian kernel that arises in particular when modelling high-frequency data
characterized by a short length scale. This pathology causes the approximate GPR
predictor in Section 5.3.3 to collapse away from x = 0 (see especially the left plot of
Fig. 5.2). We will later on propose a cure for this pathology avoiding the collapsing
GP predictions.

For ease of notation, we now absorb the length scale parameter l > 0 of the
Gaussian kernel k(x,y) = exp(−∥x− y∥2/(2l2)) in the input data, i.e., we define
x̃ := x/l and ỹ := y/l. In the following theorem, we show that Maclaurin-based
kernel approximations vanish when the norms of the inputs become large. Since
this effect is only related to the truncation of the Maclaurin series, it happens also
without random feature approximations. The vanishing kernels in turn cause GP
predictions to collapse, as we discuss later.

Theorem 5.5.1 (Vanishing Maclaurin approximation of Gaussian kernels). The
magnitude of the finite Maclaurin approximation kp(x,y) := σ2 exp(−(∥x̃∥2 +
∥ỹ∥2)/2)

∑p
n=0 1/n!(x̃

⊤ỹ)n of the Gaussian kernel approaches zero as ∥x̃∥2+∥ỹ∥2
increases. The error |k(x,y)−kp(x,y)| between the exact kernel k and its approx-
imation kp is the largest for parallel x,y and zero when they are orthogonal.

Proof. We start by deriving an upper bound for |kp(x,y)|. We leave out the length
scale here for ease of notation:

|kp(x,y)| = σ2 exp(−(∥x∥2 + ∥y∥2)/2)

∣∣∣∣∣
p∑

n=0

1

n!
(x⊤y)n

∣∣∣∣∣
≤ σ2 exp(−(∥x∥2 + ∥y∥2)/2)

p∑
n=0

1

n!
(∥x∥ ∥y∥)n (5.26)

Next, we notice that ∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2x⊤y ≥ 0 for any x,y. Thus,
we can choose them to be parallel. So ∥x∥ ∥y∥ ≤ (∥x∥2 + ∥y∥2)/2. From this
inequality, it follows

p∑
n=0

1

n!
(∥x∥ ∥y∥)n︸ ︷︷ ︸
(A)

≤
p∑

n=0

1

n!
((∥x∥2 + ∥y∥2)/2)n︸ ︷︷ ︸

(B)

≤ exp((∥x∥2 + ∥y∥2)/2)︸ ︷︷ ︸
(C)

.

Now, the gap (C)− (B) =
∑∞

n=p+1
1
n!
((∥x∥2 + ∥y∥2)/2)n increases as ∥x∥2 + ∥y∥2

increases, which must decreases the ratio (A)/(C) and thus the upper bound of
|kp(x,y)| (5.26) goes to zero as ∥x∥2 + ∥y∥2 increases.
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Figure 5.7: kp(x,y) (dashed) vs. k(x,y) (transparent and solid) for fixed p = 3
and σ2 = l = 1, where we use the relationship x̃⊤ỹ = ∥x̃∥ ∥ỹ∥ cos(θxy).

Next, we look at the approximation error related to the truncation of the
Maclaurin series:

|k(x,y)− kp(x,y)| = σ2 exp(−(∥x∥2 + ∥y∥2)/2)

∣∣∣∣∣
∞∑

n=p+1

1

n!
(x⊤y)n

∣∣∣∣∣
If the angle between x and y is zero such that x⊤y = ∥x∥ ∥y∥, all addends in the
infinite sum are maximized. The error thus becomes the largest. The error is zero
when they are orthogonal.

We visualize the implications of Theorem 5.5.1 in Fig. 5.7, where we compare
the approximation kp(x,y) with the exact Gaussian kernel k(x,y) for p = 3 over
a range of values ∥x̃∥ , ∥ỹ∥ as well as the angle θxy between x and y. One can
see that kp(x,y) approaches zero with increasing ∥x̃∥2 + ∥ỹ∥2 regardless of θxy.
This deteriorates the approximation quality, in particular as θxy goes to zero. This
development accelerates when choosing a shorter length scale l.

We now discuss the implications of Theorem 5.5.1 for the case of Gaussian
process regression. Recall from Chapter 1 that the GPR predictor is given through

µ∗ := k⊤
f∗(Kff + σ2

noiseI)
−1y and σ2

∗ := k∗∗ − k⊤
f∗(Kff + σ2

noiseI)
−1kf∗, (5.27)

where Kff is the kernel matrix evaluated on the training data {x1, . . . ,xN},
kf∗ = (k(x1,x∗), . . . , k(xN ,x∗))

⊤, k∗∗ = k(x∗,x∗) and I ∈ RN×N is the identity
matrix.

When using kp, the GPR predictive means µ∗ and variances σ2
∗ in Eq. (5.27)

collapse to zero for test points x̃∗ with large ∥x̃∗∥ since kp(x
∗,x) goes to zero for

any x ∈ Rd in this case. This effect is shown in the left plot of Fig. 5.2. We will
discuss this example in greater detail in Section 5.5.3.

A similar pathology was identified for the Relevance Vector Machine (Tipping,
1999) that was solved by adding new basis functions centered on the test points
(Rasmussen and Quiñonero Candela, 2005). In the following, we present a similar
strategy by centering our entire approximation around individual test points.
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5.5.1 Curing the Pathology

We will now exploit a property of the Gaussian kernel that allows us to cure the
aforementioned pathology.

The Gaussian kernel is shift-invariant, i.e., k(x + δ,y + δ) = k(x,y) for any
δ ∈ Rd, because ∥(x+ δ)− (y + δ)∥ = ∥x− y∥. Thus, when making a prediction
at a test input x∗, one can subtract x∗ from all inputs used in Eq. (5.27) without
changing the result of the prediction. More specifically, the values µ∗ and σ2

∗ in
Eq. (5.27) do not change if we substitute k(x,y) by k(x − x∗,y − x∗) for the
computation of kf∗,Kff and k∗∗.

Now we consider an approximate Gaussian kernel with random features k̂p(x,y) =
Φ(x)⊤Φ(y) with truncation degree p of the Maclaurin series as defined in Sec-
tion 5.3.1. Thus, for a set of polynomial sketches {Φn(x)}pn=1 of dimensions
{Dn}pn=1, the approximate kernel yields

k̂p(x,y) = σ2 exp

(
−∥x∥2

2l2

)
exp

(
−∥y∥2

2l2

)(
1 +

p∑
n=1

1

n!l2n
Φn(x)

⊤Φn(y)

)
(5.28)

and we have E[k̂p(x,y)] = kp(x,y). The dimension of the feature map Φ(x) here
is thus D = 1 +D1 + · · ·+Dp.

The approximate kernel k̂p (5.28) is greatly affected by the subtraction of the

test point x∗. To see this, we define k̂∗
p(x,y) := k̂p(x− x∗,y − x∗) with:

k̂∗
p(x,y) = σ2 exp

(
−∥x− x∗∥2 + ∥y − x∗∥2

2l2

) p∑
n=1

1

n!
Φn

(
x− x∗

l

)⊤

Φn

(
y − x∗

l

)
(5.29)

where E[k̂∗
p(x,y)] = kp(x − x∗,y − x∗) =: k∗

p(x,y). As all {Φn}pn=1 are sampled

independently, the variance of k̂∗
p(x,y) (5.29) can be written as

V[k̂∗
p(x,y)] ∝

p∑
n=1

(
1

n!

)2

V

[
Φn

(
x− x∗

l

)⊤

Φn

(
y − x∗

l

)]
, (5.30)

When setting x = x∗ or y = x∗, the variance terms in Eq. (5.30) become zero
for any of the polynomial sketches discussed in Chapter 3 as can be seen from
Table 5.1. k̂∗

p(x
∗,y), k̂∗

p(x,x
∗) and k̂∗

p(x
∗,x∗) thus become deterministic.

We further have k̂∗
p(x

∗,y) = σ2 exp(−∥x∗−y∥2/(2l)2), k̂∗
p(x,x

∗) = σ2 exp(−∥x−
x∗∥2/(2l)2) and k̂∗

p(x
∗,x∗) = σ2, which are all equal to the exact kernel k evalu-

ated at these points. Therefore, kf∗ and k∗∗ in Eq. (5.27) become exact for our
Maclaurin approximation. Kff unfortunately remains affected by the vanishing
approximate kernels described by Theorem 5.5.1 and by non-zero random feature
variances. A crucial advantage of using k̂∗

p instead of k̂p is that the GP predic-

tive distribution Eq. (5.27) does not collapse to zero anymore as ∥x̃∗∥ grows. We
illustrate this effect on the same synthetic example that we used in Fig. 5.2.
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Figure 5.8: Approximating the predictive distribution of a reference GPR using
different approximation methods and D = 10.

As before, we show the reference GPR along with three different approximation
schemes in Fig. 5.8. The baseline Random Fourier features (RFF) Rahimi and
Recht (2007) (left) struggles to recover the reference GPR for D = 10 random
features. The dimension D of the feature map here is equal to p + 1 for the
optimized Maclaurin approximation, since the example is one-dimensional and a
single random feature perfectly approximates a degree-p polynomial kernel for the
Rademacher sketch in this case. So p = 9 with D1 = · · · = Dp = 1 is chosen by
the optimized Maclaurin method.

The Maclaurin approach using k̂∗
p (right) gives the best approximations while

the predictive distribution of the one using k̂p (middle) collapses to zero very
quickly at points x∗ ∈ R away from zero. This is because ∥x̃∗∥ becomes large very
quickly and k̂p vanishes when being evaluated at these points. For values x∗ far
away from the training data, the GP predictor (5.27) using k∗

p even recovers the
GPR prior distribution as desired, which can be explained as follows. When x∗ is
far from the training data, kf∗ becomes zero. Then µ∗ = 0 and σ2

∗ = k∗∗ = σ2 in
Eq. (5.27). Since k∗∗ and kf∗ in Eq. (5.27) are accurate when using k∗

p as explained
earlier, the convergence to the prior is kept for k∗

p.

5.5.2 Reducing Computational Costs through Clustering

A caveat of using the approximate kernel k̂∗
p(x,y) (5.29) described in Section 5.5.1

is that we need to recompute the GPR predictor (5.27) for every test point x∗

separately, which becomes expensive when many test points need to be predicted,
even when using random features.

Recall from Chapter 1 that the GPR predictor using random features can be
written as

µ∗ := Φ(x∗)
⊤A−1Φ(X)⊤y/σ2

noise and σ2
∗ := Φ(x∗)

⊤A−1Φ(x∗), (5.31)

with A := Φ(X)⊤Φ(X)/σ2
noise + I and Φ(X) = (Φ(x1), . . . ,Φ(xN))

⊤ ∈ RN×D.
We denote the number of test inputs by N∗. A direct computation of Eq. (5.31)

now costs a total of O(N∗ND2) for all test points.
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Algorithm 7: Precomputing Localized Maclaurin Features for the Gaus-
sian Kernel
Input: Hyperparameters l, σ2, σ2

noise > 0; training data {xi}Ni=1; test data
{x∗

i }N∗
i=1; number of features D ≥ 1;

// 1) Training

if d > 1 then // We use random features

Center the training data by subtracting the training mean ;
Find (p∗, D1, . . . , Dp∗), the optimal feature allocation for the random
Maclaurin method (see Algorithm 5) ;

end

C := {(
∑N

i=1 xi)/N} // Initialize centroids with training mean ;
while True do // Farthest point clustering

Let δi = min{∥xi − c∥ | c ∈ C} for i = 1, . . . , N ;
// Check if training Max.-Min.-Distance is below threshold

if max{δi}Ni=1 < θ then
break;

end
Add xi with i = argmaxi{δi}Ni=1 to C ;

Precompute A−1
c :=

(
Φ(X − c)⊤Φ(X − c)/σ2

noise + I
)−1

with Φ
defined as in Section 5.3.1 ;

end

forall {x∗
i }N∗

i=1 do // 2) Inference

Assign x∗
i to closest centroid c ∈ C ;

Compute µ∗ and σ2
∗ in Eq. (5.31) by setting A−1 = A−1

c , x∗ = x∗
i − c

and X = X − c ;

end

The problem is “embarrassingly parallel” and the computation of Eq. (5.31) for
every x∗ could be easily distributed on a cluster of compute nodes or parallelized
using a single GPU, e.g., using JAX (Bradbury et al., 2018). However, we propose
a different approach here that requires no separate training at test time while
staying as close as possible to the training time of O(ND2) as is generally desired
for random feature approximations.

Our approach is to cluster the training data into NC clusters and to use the
centroids of these clusters as pseudo test inputs. We choose a farthest point clus-
tering for simplicity as it does not require convergence verification and determines
the number of clusters using a threshold θ > 0, but any clustering algorithm can
be used instead (even a random selection of training points). As the centroids are
known during training, we can pretrain a set of NC predictors using Eq. (5.31)
and assign a new test point x∗ to the closest centroid at prediction time. We sum-
marize the complete procedure in Algorithm 7. The computational cost is now
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O(NCND2) and is thus much lower than O(N∗ND2) if NC ≪ N∗.

5.5.3 Empirical Evaluation on Real-World Data

In this section, we evaluate our proposed method on real-world data of different
dimensions for which we employ the real-valued polynomial sketches summarized in
Table 5.1. As for the synthetic example in Fig. 5.8, we use the Gaussian kernel with
hyperparameters l and σ2 > 0 that are found through gradient based optimization
of the log marginal likelihood of a reference GPR, along with σ2

noise.
We compare our method against a random Fourier features baseline Rahimi

and Recht (2007) as well as its structured extension Yu et al. (2016) when the
data is sufficiently high dimensional8. We also add the vanilla optimized Maclau-
rin method without recentering the data to this comparison. It is equivalent to
Algorithm 7 using only a single cluster with its centroid being the training mean.
We measure the approximation quality with respect to the reference GPR using
the KL-divergence between the predictive means and variances in Eq. (5.27) and
Eq. (5.31). We measure downstream regression performance using the root mean
squared error (RMSE).

UK Apartment Price Data

We downloaded the monthly property sales data for England and Wales from the
HM land registry9. We filtered for sold apartments for the month of January 2022
leading to a data set with 24 553 observations. Matching the post codes for each
apartment sold with a database of latitudes and longitudes10 allowed us to obtain
a two-dimensional data set (latitude, longitude) that we could regress against the
logarithm of the sales prices. We randomly split the data into 10 000 training
points and kept the rest for testing.

In our first experiment, we aim to recover the reference GPR predictive dis-
tribution on a regular grid of latitudes (between +50◦ and +55◦) and longitudes
(between −6◦ and +2◦) of size 100 by 100. Fig. 5.9 shows the results of this ex-
periment. As for the sinc-example in Fig. 5.8, random Fourier features struggle to
recover the predictive distribution using D = 100 random features and the vanilla
Maclaurin method using k̂p (5.28) suffers from vanishing kernels due to the short
(compared to the scaling of the data) length scale of l = 0.25. Our proposed kernel
k̂∗
p (5.29) improves predictions considerably leading to the lowest KL divergence

with respect to the reference GP predictive distribution. It also converges to the
prior for test points far from the training data.

In our second experiment, we evaluate the use of Algorithm 7 to precompute
the matrix inversion in Eq. (5.31) on a set of pseudo test inputs. This time we

8Otherwise, the structured random Fourier features induce a large bias.
9https://www.gov.uk/government/statistical-data-sets/

price-paid-data-downloads
10https://www.freemaptools.com/download-uk-postcode-lat-lng.htm

https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.freemaptools.com/download-uk-postcode-lat-lng.htm
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Figure 5.9: Approximating the predictive mean of a reference GP using different
approximation methods and D = 100. KL Divergences also include predictive
variances. The Maclaurin method using k̂p makes predictions centered around the
mean of the training data (close to London).

report results on the left-out test data instead of a regular grid. The left part
of Fig. 5.10 shows these results. We can see that the KL divergence falls off
considerably (top plot) as we add more clusters until reaching 57 clusters. From
then on the KL divergence remains roughly the same indicating that 57 clusters
give a good trade-off between efficiency and performance. In the bottom plot we
show a comparison of RMSE values for these 57 clusters, where the Maclaurin
method outperforms random Fourier features, in particular for small D.

UCI Data Sets: Yacht and kin8nm

In the following, we repeat the evaluation of Algorithm 7 for two higher dimensional
data sets that are taken from the UCI machine learning repository (Dua and Graff,
2017) in Fig. 5.10.

We obtain very similar results for the UCI Yacht data set as for the UK apart-
ment price data set. Adding more clusters gives large gains initially but these
diminish when setting θ > 2.0l in Algorithm 7 determining a good trade-off be-
tween performance and computational cost. This time we included structured
orthogonal random Fourier features (Yu et al., 2016) that are also outperformed
by the Maclaurin method.

For the UCI kin8nm data set, results look quite different. Adding more clusters
increases the KL divergence towards the reference GP predictor, which is why only
a single centroid, the mean of the training data, is chosen for the RMSE comparison
in the plot below. This corresponds to the vanilla optimized Maclaurin method
(Algorithm 5).

We explain this observation as follows. The length scales obtained for the sinc
example, the UK apartment price data and for UCI Yacht are short. For the UCI
Yacht data set it is 0.32, i.e., much less than 3.28, the median pairwise Euclidean
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Figure 5.10: (Top) Test KL Divergence for a given number of clusters obtained
from the training data using Algorithm 7 with threshold θ. (Bottom) RMSE over
feature map dimension D for a fixed number of clusters.

distance of the training data, indicating that the data is fit by a reference GP of
high frequency. For kin8nm the length scale is 2.15 compared to 3.93 (median
heuristic) indicating a much smoother GP than the ones before.

In this case, the values of kf∗ and k∗∗ in Eq. (5.27) are less affected by the
vanishing kernels Theorem 5.5.1 due to a longer length scale. However, the ap-
proximation ofKff in Eq. (5.27) is more accurate when using the vanilla Maclaurin
approximation (5.28) because the data is centered around the training mean. This
shows that the clusters need to be chosen depending on the smoothness of the
target GP. In this work, we have provided a generalization of the vanilla Maclau-
rin method that (with an appropriate choice of clusters) can fit both, high and
low-frequency data.

5.6 Discussion

Based on the derived variance formulas in Chapter 3, we developed a novel op-
timization algorithm for data-driven random feature approximations of dot prod-
uct kernels in this chapter, which is also applicable to the Gaussian kernel. Our
approach uses a truncated Maclaurin approximation of the kernel, which approx-
imates the kernel as a finite sum of polynomial kernels of different degrees. Given
a total number of random features, our optimization algorithm determines how
many random features should be used for each polynomial degree in the Maclau-
rin approximation. We defined the objective function of this optimization algo-
rithm as the mean squared error w.r.t. data distribution, and used the variance
formulas derived in Chapter 3 to evaluate the objective in closed form. We empir-
ically demonstrated that our optimized Maclaurin approach achieves state-of-the-
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art performance on a variety of data sets both in terms of the kernel approximation
accuracy and downstream task performance.

However, we also showed that Maclaurin approximations suffer from a pathol-
ogy when approximating the Gaussian kernel. In this case, the GP predictive
distribution collapses at locations with large input norms, which happens particu-
larly fast if the length scale is set to a small value relative to the scaling of the data,
leading to poor predictions. We proposed a cure for this pathology by recenter-
ing the data around the test point to predict, yielding once again state-of-the-art
performance on a variety of data sets.

The methods presented in this chapter improve the empirical performance of
Maclaurin approximations of dot product kernels and Gaussian kernels consider-
ably (e.g. compared to the random Maclaurin approach (Kar and Karnick, 2012)).
However, Algorithm 5 requires the evaluation of the exact kernel on a subset of the
training data, where the size of the subset needs to be specified by the user. More-
over, the scaling of the data, or its rescaling via a length scale parameter, has a
significant impact on the quality of the Maclaurin approximation. Future research
could therefore investigate how the random feature allocation between polynomial
degrees can be derived from the scale of the input data alone, without requiring
pairwise kernel evaluations. Similarly, the number of clusters and their positions
in Algorithm 7 could be further improved with such considerations, leading to a
simpler implementation of the methods described in this chapter.



Chapter 6

The Optical Processing Unit

So far, the contents of this thesis have revolved around random feature approxima-
tions for polynomial kernels and more general dot product kernels. This research
was originally inspired by working with an optical hardware, the so-called Optical
Processing Unit (OPU).

The OPU (Saade et al., 2016; Ohana et al., 2020) computes random projections
literally at the speed of light and without having to store the projection matrix in
memory, and it does so at a low power consumption. Therefore, applying the OPU
in machine learning applications could potentially contribute to a more ecologically
responsible data science infrastructure by saving time and energy. The OPU has
already been applied in applications like reservoir computing (Dong et al., 2018,
2019) and anomaly detection (Keriven et al., 2018) demonstrating its usefulness
in practice.

Building on the milestone work of Saade et al. (2016), the goal of this chap-
ter is threefold: a) we derive in full generality the kernel to which the random
features computed by the OPU converge, generalizing the earlier computation of
Saade et al. (2016) to a larger class of kernels; b) we present new examples and
a benchmark of applications for the kernel of the OPU; and c) we give a detailed
comparison of the running time and energy consumption between the OPU and a
last generation GPU.

In fact, we show in this chapter that the kernel implicitly computed by the
OPU has a close relation to the polynomial kernel, making its derivation closely
related to the previous contents of this thesis.

6.1 The Optical Processing Unit (OPU)

We begin by describing the inner workings of the OPU giving rise to the random
features it computes. Fig. 6.1 shows a schematic drawing of the physical apparatus.

The principle of the random projections performed by the OPU is based on
the use of a semi-transparent “scattering” material that refracts the laser light
passing through it. As discussed in Liutkus et al. (2014), light passing through such

111
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Figure 6.1: Experimental setup of the Optical Processing Unit (modified with
permission from Saade et al. (2016)). The data vector is encoded in the coherent
light from a laser using a DMD. Light then goes through a scattering medium and
a speckle pattern is measured by a camera.

a scattering medium follows many complex paths that depend on the refractive
index inhomogeneities at random positions. For a fixed scattering medium, the
resulting process is still linear, deterministic, and reproducible.

We thus obtain linear projections of a numerical data vector x ∈ Rd by filtering
the light beam at different positions using a digital micromirror device (DMD).
This encoded light then passes through the heterogeneous medium, implicitly per-
forming a random matrix multiplication, where the random matrix is inherently
determined by the scattering medium. The scattered light results in a so-called
speckle pattern that is recorded by a camera, where the light intensity at each
measuring point is the result of a superposition of the light beams filtered by the
DMD. This superposition is modelled mathematically by a sum of the components
of x weighted by random coefficients. Measuring the intensity of light at an ar-
bitrary pixel location recorded by the camera induces a non-linear transformation
of this sum. D arbitrary pixel values taken together then constitute the random
feature map

Φ(x) = |Ux|2/
√
D, with U ∈ CD×d and (U)i,j

i.i.d.∼ CN (0, 1), (6.1)

where | · |2 is the squared absolute value taken element-wise.

6.2 Computing the Kernel

In this section, we compute the kernel associated with the random feature map Φ
(6.1), which is our first contribution. The goal is to derive the limiting kernel that
the inner product k̂2(x,y) := Φ(x)⊤Φ(y) for two data points x,y ∈ Rd converges
to as D goes to infinity.



Chapter 6. The Optical Processing Unit 113

Let U = (u1, . . . ,uD)
⊤. We then write

k̂2(x,y) =
1

D

D∑
ℓ=1

|u⊤
ℓ x|2|u⊤

ℓ y|2 → E[|u⊤x|2|u⊤y|2] =: k2(x,y) (D → ∞),

with u = (u1, . . . , ud)
⊤ ∈ Cd and u1, . . . , ud

i.i.d.∼ CN (0, 1). The convergence here is
due to the law of large numbers and defined as a convergence in probability, where
k2(x,y) is the limit of this convergence. Thus, we work out k2(x,y) = E[k̂2(x,y)]
and summarize the result in the following theorem.

Theorem 6.2.1. The kernel k2 approximated by the dot product of optical random
features of Eq. (6.1) is given by

k2(x,y) = ∥x∥2 ∥y∥2 + (x⊤y)2 (6.2)

Proof. Using the contents of this thesis that we developed so far, it is straight-
forward to solve k2(x,y) = E[|u⊤x|2|u⊤y|2]. In fact, it can be directly derived
from the variance formula of complex Gaussian Product-Sketches in Eq. (3.19) in
Chapter 3. Recall from Section 3.3 that the variance of a complex Product-Sketch

k̂C(x,y) =

p∏
i=1

(z⊤
i x)(z

⊤
i y)

with z1, . . . ,zp ∼ CN (0, Id) is computed as V[k̂C(x,y)] = E[|k̂C(x,y)|2]−(x⊤y)2p.

Hence, computing E[|k̂C(x,y)|2] = V[k̂C(x,y)] + (x⊤y)2p and setting p = 1
yields

E[|k̂C(x,y)|2] = ∥x∥2 ∥y∥2 + (x⊤y)2 = k2(x,y),

where we used the variance formula for complex Gaussian Product-Sketches in
Eq. (3.19). E[|k̂C(x,y)|2] corresponds exactly to k2(x,y) because we have

E[|k̂C(x,y)|2] = E[|z⊤
1 x|2|z⊤

1 y|2] = E[|u⊤x|2|u⊤y|2].

The result of Theorem 6.2.1 is remarkable because it shows that the optical
random features computed by the OPU naturally give rise to a limiting kernel
that is similar to a degree-2 polynomial kernel. In fact, when appending the norm
of the inputs to this feature map, i.e., by setting Φ′(x) := (i ∥x∥ ,Φ(x)⊤)⊤ and
Φ′(y) := (i ∥y∥ ,Φ(y)⊤)⊤ with i :=

√
−1, we obtain precisely E[Φ′(x)⊤Φ′(y)] =

(x⊤y)2. We will thus show in Section 6.3 that optical random features are useful
for image classification tasks for which polynomial kernels are known to work well.
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Higher degree features. In the following, we show that one can obtain higher
degree kernels when numerically changing the exponent of the feature map in
Eq. (6.1). We focus here on the case m = 2s for some s ∈ N, i.e., by setting:

Φm(x) :=
1√
D
|Ux|m (6.3)

In this case, we obtain the kernel k2s(x,y) described through the following theo-
rem.

Theorem 6.2.2. When the exponent m in Eq. (6.3) is even, i.e., m = 2s, for
some s ∈ N, the dot product of feature maps of Eq. (6.3) tends to the kernel k2s
(for D → ∞) with

k2s(x,y) := ∥x∥m ∥y∥m
s∑

i=0

(s!)2
(
s

i

)2
(x⊤y)2i

∥x∥2i ∥y∥2i
. (6.4)

The proof in this case is more involved and we move it to Appendix E.1.

Eq. (6.4) is interesting for two reasons. On the one hand, it shows that nu-
merically changing the exponent of the optical random features (6.1) leads to a
positively weighted sum of normalized polynomial kernels, similar to the expansion
of inhomogeneous polynomial kernels

(ν + x⊤y)p =

p∑
i=0

(
p

i

)
νp−i(x⊤y)i (6.5)

with ν ≥ 0 and p ∈ N. The difference between Eq. (6.5) and Eq. (6.4) is that the
polynomial kernels in the sum of Eq. (6.4) use inputs normalized to unit length.
The entire kernel (6.4) is then rescaled by the norms ∥x∥m ∥y∥m after computing
this sum.

On the other hand, Eq. (6.4) allows us to compute the variance of the kernel
estimate obtained through optical random features. Let s ∈ N and assume D = 1
for now. Then the following relationship holds:

V[k̂s(x,y)] = E[(Φs(x)Φs(y))
2]− E[Φs(x)Φs(y)]

= E[Φ2s(x)Φ2s(y)]− E[Φs(x)Φs(y)]

= k2s(x,y)− ks(x,y)

For D > 1, we simply divide the variance V[k̂s(x,y)] by D, as the random features
are sampled i.i.d. The variance of k̂s(x,y) can thus be expressed in terms of
k2s(x,y).

The variance formula for optical random features cannot be directly used
to derive a Bernstein-type exponential concentration bound as we did in Theo-
rem 3.4.1 for Rademacher Product-Sketches. This is because both U and x,y are
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Figure 6.2: Ridge Regression test error on Fashion MNIST for different RFs and
projection dimensions D. Horizontal lines show the test error using the limiting
kernel. Standard deviations for different seeds are negligibly small and not shown
in the plot. Plot (a) compares optical RFs of degree m = 2 to RFFs for the
Gaussian kernel. Higher degree optical RFs are left out for better readability. The
more slowly converging optical RFs for m = 4 are added for larger D in plot (b).

unbounded here. Therefore, we used a Bernstein inequality for sub-exponential
random variables (Vershynin, 2018, Theorem 2.8.2) in the associated work (Ohana
et al., 2020) to show exponentially decaying errors of the kernel estimate un-
der the simplifying assumption that the weights in Eq. (6.1) are real-valued, i.e.,
u1, . . . ,uD ∼ N (0, I). In this case, we obtain the following theorem:

Theorem 6.2.3. Let ϵ > 0 and k̂m(x,y) = Φm(x)
⊤Φm(y) with Φm being defined

through Eq. (6.3). Then we can provide the following exponential tail bound for
the kernel approximation error:

Pr
[
k̂m(x,y)− km(x,y) ≥ ϵ

]
≤ D exp(−c(Dϵ)1/m) (6.6)

with c > 0 being a constant.

The bound given by Theorem 6.2.3 is not tight, but it shows that the kernel
approximation error decays exponentially for a sufficiently large number D of ran-
dom features. Moreover, this decay is slowed down by an increasing exponent m
of the feature map. We skip a detailed derivation of this result here and refer the
reader to the original work.

6.3 Classification Experiments

In this section, we assess the usefulness of optical random features (6.3) for m =
2 and m = 4 for different settings and datasets. The model of our choice in
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each case is Ridge Regression. OPU experiments were performed remotely on the
OPU prototype ”Vulcain”, running in the LightOn Cloud with library LightOnOPU

v1.0.2. Since the current version only supports binary input data, we binarize
inputs for all experiments using a threshold binarizer, where the threshold is chosen
using cross-validation. The code of the experiments is publicly available1.

6.3.1 Optical Random Features for Fashion MNIST

We compare optical random features (simulated as well as physical) to a random
Fourier features (RFF) baseline (Rahimi and Recht, 2007) for different projec-
tion dimensions D on Fashion MNIST (Xiao et al., 2017). We use individually
optimized hyperparameters for all random feature methods that are found for
D = 10 000 using an extensive grid search on a held-out validation set. The same
hyperparameters are also used for the precise kernel limit.

Fig. 6.2 shows how the overall classification error decreases asD increases. Part
(b) shows that simulated optical RFs for m = 2 and RFF (RBF Fourier RFs in
the plot) reach the respective kernel test score at D = 105. Simulated optical RFs
for m = 4 converge more slowly but outperform m = 2 features from D = 2× 104.
They perform similarly well as RFF at D = 105. The performance gap between
m = 2 and m = 4 also increases for the real optical RFs with increasing D. This
gap is larger than for the simulated optical RFs due to an increase in regularization
for the m = 2 features that was needed to add numerical stability when solving
linear systems for large D.

The real OPU loses around 1.5% accuracy for m = 2 and 1.0% for m = 4
for D = 100 000, which is due slightly suboptimal hyperparameters to improve
numerical stability for large dimensions. Moreover, there is a small additional loss
due to the quantization of the analog signal when the OPU camera records the
visual projection.

6.3.2 Transfer Learning on CIFAR-10

An interesting use case for the OPU is transfer learning for image classification. For
this purpose, we extract a diverse set of features from the CIFAR-10 (Krizhevsky
et al., 2009) image classification dataset using three different convolutional neu-
ral networks (ResNet34 (He et al., 2015), AlexNet (Krizhevsky et al., 2009) and
VGG16 (Chatfield et al., 2014)). The networks were pretrained on the well-known
ImageNet classification benchmark (Russakovsky et al., 2015). For transfer learn-
ing, we can either fine-tune these networks and therefore the convolutional features
to the data at hand, or we can directly apply a classifier on them assuming that
they generalize well enough to the data. The latter case requires much less com-
putational resources while still producing considerable performance gains over the
use of the original features. This light-weight approach can be carried out on a

1https://github.com/joneswack/opu-kernel-experiments

https://github.com/joneswack/opu-kernel-experiments
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Architecture ResNet34 AlexNet VGG16

Layer L1 L2 L3 Final MP1 MP2 Final MP2 MP3 MP4 MP5 Final
Dimension d 4 096 2 048 1 024 512 576 192 9 216 8 192 4 096 2 048 512 25 088

Sim. Opt. RFs 30.4 24.7 28.9 11.6 38.1 41.9 19.6 28.2 20.5 20.7 29.8 15.2 (12.9)
Optical RFs 31.1 25.7 29.7 12.3 39.2 42.6 20.8 30.9 23.3 21.5 30.2 16.4

RBF Four. RFs 30.1 25.2 30.0 12.3 39.4 41.9 19.1 28.0 20.7 20.7 30.1 14.8 (13.0)
No RFs 31.3 26.7 33.5 14.7 44.6 48.8 19.6 27.1 21.0 22.5 34.8 13.3

Table 6.1: Test errors (in %) on CIFAR-10 using D = 104 RFs for each kernel
(except linear). Features were extracted from intermediate layers when using the
original input size (32x32). Final convolutional layers were used with upscaled
inputs (224x224). L(i) refers to the ith ResNet34 layer and MP(i) to the ith Max-
Pool layer of VGG16/AlexNet. Values for the kernel limit are shown in parenthesis
(last column).

CPU in a short amount of time where the classification error can be improved with
random features.

We compare optical random features and RFF (RBF Four. RFs) to a simple
baseline that directly works with the provided convolutional features (no RFs).
Table 6.1 shows the test errors achieved on CIFAR-10. Each column corresponds to
convolutional features extracted from a specific layer of one of the three networks.

Since the projection dimension D = 104 was left constant throughout the
experiments, it can be observed that all random features perform particularly well
compared to a linear kernel when D ≫ d, where d is the input dimension. For
the opposite case D ≪ d, the lower dimensional projection leads to an increasing
test error. This effect can be observed in particular in the last column where the
test error of the random feature approximation is higher than without random
features. The contrary can be achieved with large enough D as indicated by the
values for the true kernel in parenthesis.

A big drawback here is that the computation of sufficiently large dimensional
random features may be very costly, especially when d is large as well. This is a
regime where the OPU outperforms CPU and GPU by a large margin (see Fig. 6.3)
since its computation time is invariant to d and D.

In general, the simulated as well as the physical optical random features yield
similar performances as the RBF Fourier RFs on the provided convolutional data.

6.4 Projection Time and Energy Consumption

The main advantage of the OPU compared to a traditional CPU/GPU setup is
that the OPU takes a constant time for computing the random features in Eq. (6.1)
of arbitrary dimension D (up to D = 106 on current hardware) for a single input.
Moreover, its power consumption stays below 30 W independently of the workload.
We therefore compare the computation time of the random feature map in Eq. (6.1)
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taken by the OPU against the time it takes to carry out the same computation on
a GPU. We simultaneously compare the energy consumption of both devices.

Fig. 6.3 shows the computation time and the energy consumption over time for
GPU and OPU for different projection dimensions D. In both cases, the time and
energy spending do not include matrix building and loading. For the GPU, only
the calls to the PyTorch (Paszke et al., 2019) function torch.matmul are measured
and energy consumption is the integration over time of power values given by the
nvidia-smi command.

For the OPU, the energy consumption is constant w.r.t. D and equal to 45
Joules (30 W multiplied by 1.5 seconds). The GPU computation time and energy
consumption are monotonically increasing except for an irregular energy develop-
ment between D = 45 000 and D = 56 000. This exact irregularity was observed
throughout all simulations we performed and can most likely be attributed to an
optimization routine that the GPU carries out internally. The GPU consumes
more than 10 times as much energy as the OPU for D = 58 000 (GPU memory
limit). The GPU starts to use more energy than the OPU from D = 18 000.
The exact crossover points may change in future hardware versions. The relevant
point we make here is that the OPU has a better scalability in D with respect to
computation time and energy consumption.
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Figure 6.3: Time and energy spent for computing a matrix multiplication (n,D)×
(D,D). The batchsize n is 3000 (solid line) or 1000 (dotted). The curves cross
each other at the same D independent from n. We verified more precisely that
time and energy are linear with n for both OPU and GPU (experiments were run
on an NVIDIA P100).

6.5 Discussion

In this chapter, we have derived the limiting kernel of the OPU and demonstrated
its usefulness for practical machine learning applications. We further showed that
the feature map can be numerically modified to yield higher order features, and
carried out an energy consumption and projection time benchmark, where a mod-
ern GPU was outperformed when computing a large number of random features.
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Although a large number of random features is needed to give the OPU a
practical advantage over the GPU, these results show the potential of the OPU to
be used for scalable machine learning applications. Future versions of the OPU
could accelerate the device such that it becomes beneficial from a lower number
of random features D.

Concurrently to the development of the results in this chapter, Gupta et al.
(2019) have found a way to obtain an equivalent random projection as the one
in Eq. (6.1) using the OPU, but without the non-linearity | · |2 that is inherently
obtained when recording the light intensity. They thus managed to use the OPU
for linear random projections. This result makes it possible to use the OPU
for random feature approximations and numerical linear algebra methods using
Gaussian random projections and thus widens the range of applications immensely.
It will be interesting to see in the future how further applications can be accelerated
by the OPU and how this can result in energy savings compared to using GPUs.



Chapter 7

Conclusions and Future Work

In this thesis, we carried out an in-depth analysis of random feature approximations
for polynomial kernels and more general dot product kernels. In particular, we
focused on Product-Sketches originally proposed by Kar and Karnick (2012) and
Hamid et al. (2014), i.e., random feature approximations of the form

k̂(x,y) =
1

D

D∑
ℓ=1

p∏
i=1

(w⊤
i,ℓx)(w

⊤
i,ℓx), (7.1)

where k̂(x,y) is an unbiased estimate of the polynomial kernel (x⊤y)p.
Using a detailed variance analysis (Chapter 3), we successively optimized these

sketches in terms of the sampling distribution over the weights {wi,ℓ}Dℓ=1 that
we assume to be independent over i = 1, . . . , p. In particular, we showed that
a variance lower bound can be attained when wi,ℓ are independent Rademacher
vectors for i = 1, . . . , p and ℓ = 1, . . . , D. We further showed that structured
polynomial sketches, i.e., sketches where the {wi,ℓ}Dℓ=1 are dependent over ℓ =
1, . . . , D can further improve these variances. To the best of our knowledge, our
work is the first one to report statistical advantages of structured polynomial
sketches.

Moreover, we developed complex-valued generalizations for both structured and
non-structured Product-Sketches and elucidated conditions under which such gen-
eralizations yield lower variances. As complex-valued random feature maps require
the downstream application to handle complex data, we proposed a Complex-to-
Real (CtR) transformation for them (Chapter 4) that makes it possible to use
these sketches as a drop-in replacement for classical real-valued random features.
We studied the impact of this transformation on the approximation variances and
showed that CtR sketches keep the variance advantage of the complex sketches
introduced before. We also derived a novel CtR-TensorSRHT sketch that outper-
forms the state-of-the-art in terms of computation speed and kernel approximation
errors for low-degree polynomial kernels.

In Chapter 5, we proposed a technique to combine the aforementioned poly-
nomial sketches in order to approximate more general dot product kernels. We

120
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developed a novel feature distribution algorithm that exploits the previously de-
rived variances in order to allocate random features among polynomial sketches of
different degrees. We showed that these allocations can improve kernel approxi-
mations considerably, which confirms the importance of this subject that has been
neglected in related works. At the same time, we uncovered a pathology associated
with Maclaurin-based approximations of the Gaussian kernel and proposed a cure
for this pathology, leading to state-of-the-art performance for the task of Gaussian
kernel approximation across different length scale parameterizations.

Lastly, using the techniques developed in this thesis, we derived the limiting
kernel for the random feature approximations obtained by an optical hardware, the
Optical Processing Unit. We discussed relations of this kernel to the polynomial
kernel and demonstrated its usefulness in image classification tasks.

With this thesis, we have set the foundation for a principled way to improve
random feature approximations for dot product kernels. Yet, there is still space
for improvements and we summarize some remaining challenges in the following.

1) Exploration of alternatives to complex weights for variance reduction.
We have shown that Product-Sketches (7.1) using complex weightswi,ℓ can achieve
considerable variance reductions, in particular for high-degree polynomial kernels.
This is because complex random features approximate the linear kernel (x⊤y) with
a lower variance than their real-valued analogs, and this effect is amplified through
the product in Eq. (7.1), as we show in Chapter 4.

However, there is no guarantee that our proposed complex-valued estimate
of the linear kernel is optimal. We have only proved the optimality of complex
Rademacher vectors under the assumption that the elements of wi,ℓ are sampled
i.i.d. and that the vectors are independent over i = 1, . . . , p and ℓ = 1, . . . , D.
Future work should therefore explore whether there exist more efficient estimates
of the linear kernel that would have an even larger effect on the variance reduction
when approximating degree-p polynomial kernels using the estimator in Eq. (7.1).

It would also be interesting to see if an improvement can be achieved by remov-
ing the independence assumption over i = 1, . . . , p as it is done for some polynomial
sketches in the literature such as TensorSketch (Pham and Pagh, 2013) and Ten-
sorSRHT by Ahle et al. (2020). In this case however, it becomes difficult to derive
the associated approximation variances.

2) Improving the optimized Maclaurin method. Although we have shown
that our proposed optimized Maclaurin approach optimally allocates the number of
random features for a given stochastic optimization objective, it would be desirable
to make this approach simpler to use in practice. The current algorithm relies on
the evaluation of the variance formulas on pairs of data points from a given data
set, where the user needs to specify the number of pairs being evaluated.

It would be desirable to achieve a feature allocation without the need for pair-
wise evaluations, simply by looking at the scale of the data at hand using a one-pass
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algorithm with a linear time complexity. We showed in our empirical campaign
that the scale of the data is the main driver for the distribution of random features
between polynomial degrees. E.g., when the data is modelled using a large length
scale, pairwise dot products are distributed closely around the origin and most
random features are attributed to low polynomial degrees. The opposite is the
case for high-frequency data modelled with a short length scale compared to the
scale of the data. There may thus be ways to “shift” the random feature allocation
between degrees according to the distribution of the norms of the data (taking the
length scale being used into account).

Future work should further investigate the use of alternative basis functions
for the approximation of general dot product kernels, e.g., Gegenbauer polyno-
mials as they have lately been proposed by Han et al. (2022). In this case, the
ideas developed in this thesis for Maclaurin expansions could be transferred to
Gegenbauer expansions, potentially requiring only lower order expansions for the
same approximation quality. These may eventually lead to lower approximation
variances.

3) Approximating extreme-frequency data. Recently, a random feature ap-
proximation of the exponential kernel (Choromanski et al., 2021) has been pro-
posed for Transformer architectures (Vaswani et al., 2017). Such a method has
the potential of making Transformers scalable to long input sequences and to in-
cur memory savings as explained in Chapter 1. This topic is closely related to the
contents of this thesis because the exponential kernel exp(x⊤y/l2) for l > 0 is a
dot product kernel.

However, such random feature approximations require a significant amount of
fine-tuning of entire Transformer architectures to work well in practice, and they
still result in performance degradation compared to using the exact attention mech-
anism as shown in a recent benchmark (Tay et al., 2021). This is mainly because
the attention patterns that typically arise in Transformer models are extremely
sparse. This sparsity in turn stems from high-magnitude inputs being passed to
the softmax function that is an integral part of attention layers.

We demonstrate this effect in Fig. 7.1, which shows unnormalized attention
patterns, i.e., softmax evaluations without the softmax denominator, of the first
layer of a pretrained Bert-based (Devlin et al., 2019) model when processing an
IMDB movie review (Maas et al., 2011) as an example input. Every pair of rows in
Fig. 7.1 corresponds to attention patterns obtained from a single attention head.
The first column shows the first 50x50 out of 512x512 values contained in the
matrix exp(QK⊤) (see Chapter 1 for a definition), where the rows of Q and K
are normalized to unit length in every second row of the figure.

Columns 2-4 show the random feature approximations of exp(QK⊤), where
approximation errors (relative Frobenius norm errors) are shown in parenthesis in
the titles. Here we compare a modified random Fourier feature map (Rahimi and
Recht, 2007) using structured projections (see Yu et al. (2016)) against FAVOR+
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(Choromanski et al., 2021) and our optimized Maclaurin method (Chapter 5). It
becomes clear that the approximation quality of all methods is quite poor, but
improves considerably when approximating attention maps with normalized Q
and K.

This is because the distribution of the entries of QK⊤ (right column) has
a much larger spread in the unnormalized case producing extreme values for
exp(QK⊤) that ultimately lead to sparse attention patterns in practice. As shown
in this thesis and in Choromanski et al. (2021), approximation variances typically
scale with the norms of the inputs, Q and K in this case, and it is therefore
very challenging to approximate the original sparse attention patterns. Although
the optimized Maclaurin method achieves very good results when using normal-
ized Q and K, it still struggles when approximating the original attention matrix
(the same holds for the RFF and FAVOR+ approaches proposed in the literature
(Choromanski et al., 2021)).

We therefore conclude that the current state-of-the-art of random feature ap-
proximations for dot product kernels is not mature enough to approximate sparse
attention patterns. We believe that more efficient approximations would be a
significant step towards more efficient modern neural network architectures like
Transformers and bilinear neural networks (Lin et al., 2018) (see Chapter 1). This
thesis has laid the foundations for further developments in this direction.
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Figure 7.1: Unnormalized attention maps extracted from a single text fragment of
length 512 from the IMDB movie reviews (Maas et al., 2011) using a pretrained
Bert-base model (Devlin et al., 2019). We show the first 50x50 out of 512x512 pair-
wise attention evaluations of exp(QK⊤) along with their approximations through
different random feature methods (rel. Frob. error shown in parenthesis in the
title). The rightmost column shows a histogram of the entries of QK⊤. We show
three different attention heads with the rows of Q and K being normalized to
unit-length in every second row.
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Appendix of Chapter 2

A.1 Sum of Independent and Uniformly Distributed

Variables

In Section 2.2.2, we use the following result. Let A,B ∼ U({0, . . . , D − 1}) be
independent. Then C = (A+B) mod D ∼ U({0, . . . , D − 1}).

Proof. Without the modulus operation, we have:

P (A+B = c) =
D−1∑
b=0

P (A = c− b|B = b)P (B = b)

=
1

D

D−1∑
b=0

P (A = c− b|B = b) =
1

D

D−1∑
b=0

P (A = c− b)

Now we use the relation (A + B) mod D = c ⇐⇒ A = (c − B) mod D. So it
follows that ((c− b) mod D) ∈ {0, . . . , D− 1} and hence P (A = (c− b) mod D) =
1/D. Therefore, C ∼ U({1, . . . , D − 1}).
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Appendix of Chapter 3

B.1 Proofs for Sections 3.1-3.4

B.1.1 Proof of Theorem 3.3.1

We first show

V[k̂C(x,y)] =
( d∑

k=1

E[|zk|4]x2
ky

2
k + ∥x∥2∥y∥2 − 2

d∑
k=1

x2
ky

2
k + (x⊤y)2

+
d∑

i=1

d∑
j=1
j ̸=i

E[z2i ]E[zj2]xixjyiyj

)p

− (x⊤y)2p. (B.1)

where z2i := zizi and zi
2 := zizi are in general different from |zi|2 = zizi. We have

V[k̂C(x,y)] = E[|k̂C(x,y)|2]− |E[k̂C(x,y)]|2 = E[|
p∏

i=1

z⊤
i xz

⊤
i y|2]− (x⊤y)2p

=

p∏
i=1

E[|z⊤
i xz

⊤
i y|2]− (x⊤y)2p = (E[|z⊤xz⊤y|2])p − (x⊤y)2p. (B.2)

Henceforth we focus on E[|z⊤xz⊤y|2] in the last expression (B.2). Write z =
(z1, . . . , zd)

⊤, x = (x1, . . . , xd)
⊤, and y = (y1, . . . , yd)

⊤. Since E[zz⊤] = Id, we
have E[zizj] = 1 if i = j and E[zizj] = 0 if i ̸= j. Recall also that z1, . . . , zd ∈ C
are i.i.d, and E[zi] = 0 for i = 1, . . . , d. Then

E[|z⊤xz⊤y|2] = E

[
(

d∑
i=1

zixi)(
d∑

j=1

zjyj)(
d∑

k=1

zkxk)(
d∑

l=1

zlyl)

]

=
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

E[zizjzkzl]xiyjxkyl. (B.3)

The expected value E
[
zizjzkzl

]
is different from 0, only if:

126
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(a) i = j = k = l, for which there are d terms and E
[
zizjzkzl

]
xiyjxkyl =

E[|zi|4]x2
i y

2
i .

(b) i = j ̸= k = l, for which there are d(d− 1) terms and E
[
zizjzkzl

]
xiyjxkyl =

E[|zi|2]E[|zk|2]xixkyiyk.

(c) i = k ̸= j = l, for which there are d(d− 1) terms and E
[
zizjzkzl

]
xiyjxkyl =

E[|zi|2]E[|zj|2]x2
i y

2
j .

(d) i = l ̸= j = k, for which there are d(d− 1) terms and E
[
zizjzkzl

]
xiyjxkyl =

E[z2i ]E[zj2]xixjyiyj.

Therefore,

(B.3) =
d∑

i=1

E[|zi|4]x2
i y

2
i︸ ︷︷ ︸

case (a)

+
d∑

i=1

d∑
j=1
j ̸=i

E[|zi|2]E[|zj|2]x2
i y

2
j

︸ ︷︷ ︸
case (c)

+
d∑

i=1

d∑
j=1
j ̸=i

E[|zi|2]E[|zj|2]xixjyiyj

︸ ︷︷ ︸
case (b)

+
d∑

i=1

d∑
j=1
j ̸=i

E[z2i ]E[zj2]xixjyiyj

︸ ︷︷ ︸
case (d)

=
d∑

i=1

E[|zi|4]x2
i y

2
i +

d∑
i=1

d∑
j=1
j ̸=i

x2
i y

2
j +

d∑
i=1

d∑
j=1
j ̸=i

xixjyiyj +
d∑

i=1

d∑
j=1
j ̸=i

E[z2i ]E[zj2]xixjyiyj

=
d∑

i=1

E[|zi|4]x2
i y

2
i +

[
∥x∥2∥y∥2 −

d∑
i=1

x2
i y

2
i

]
+

[
(x⊤y)2 −

d∑
i=1

x2
i y

2
i

]

+
d∑

i=1

d∑
j=1
j ̸=i

E[z2i ]E[zj2]xixjyiyj

The proof of Eq. (B.1) completes by using this expression of E[(z⊤xz⊤y)2] in
Eq. (B.2).

Eq. (3.16) follows from Eq. (B.1) and E[z2k] = E[zk2] = 2q − 1, which uses
Eq. (3.15). The lower bound Eq. (3.17) follows from Jensen’s inequality E[|zk|4] ≥
(E[|zk|2])2 = 1.

B.1.2 Proof of Theorem 3.4.1

We make use of Bernstein’s inequality (e.g., Vershynin, 2018, Theorem 2.8.4): For
independent random variables X1, . . . , XD ∈ R such that E[Xi] = 0 and |Xi| ≤ R
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almost surely for a constant R > 0, we have for any t > 0:

Pr

[∣∣∣∣∣
D∑
i=1

Xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−t2/2∑D

i=1 V [Xi] +Rt/3

)
(B.4)

We define Xi := ΦC(x)iΦC(y)i − (x⊤y)p/D ∈ R, where ΦC(x) ∈ CD is defined in

Eq. (3.10): ΦC(x) =
1√
D

[
(
∏p

i=1 z
⊤
i,1x), . . . , (

∏p
i=1 z

⊤
i,Dx)

]⊤
. Then we have E[Xi] =

0. Moreover,

|Xi| ≤ |ΦC(x)iΦC(y)i|+ |(x⊤y)p/D| = 1

D

(
p∏

j=1

|z⊤
j x||z⊤

j y|+ |(x⊤y)p|

)

≤ 1

D
(∥x∥p1 ∥y∥

p
1 + ∥x∥p2 ∥y∥

p
2) ≤

2

D
∥x∥p1 ∥y∥

p
1 =: R

where the first inequality is the triangle inequality. The second inequality uses
Hölder’s inequality (and that the absolute value of each element of zj is 1) as well
as the upper bound x⊤y ≤ ∥x∥2∥y∥2. Furthermore, by assumption we have

V[Xi] =
σ2 ∥x∥2p2 ∥y∥2p2

D2
≤ σ2 ∥x∥2p1 ∥y∥2p1

D2

for some σ2 ≥ 0. Therefore, using Eq. (B.4) and setting t := ∥x∥p1 ∥y∥
p
1 ϵ, we have

Pr

[∣∣∣∣∣
D∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ ∥x∥p1 ∥y∥
p
1

]
≤ 2 exp

(
−Dϵ2/2
2
3
ϵ+ σ2

)

Setting D ≥ 2( 2
3ϵ
+ σ2

ϵ2
) log(2

δ
) and taking the complementary probability gives the

desired result.

B.2 Proofs for Section 3.5

B.2.1 Key Lemma

First, we state a key lemma that is needed for deriving the variance of real and
complex TensorSRHT. This result is essentially given in Choromanski et al. (2017,
Proof of Proposition 8.2). However, their proof contains a typo missing the neg-
ative sign, and they use a different definition of the Hadamard matrix from ours.
Therefore, for completeness, we state the result formally and provide a proof.
We also provide an extension to stacked Hadamard matrices that is used for our
upsampled TensorSRHT algorithm.

Lemma B.2.1. Let d = 2m for some m ∈ N and Hd = (h1, . . . ,hd) ∈ {1,−1}d×d

be the unnormalized Hadamard matrix defined in Eq. (2.21), where hℓ = (hℓ,1, . . . , hℓ,d)
⊤ ∈
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{1,−1}d for ℓ ∈ {1, . . . , d}. Let π : {1, . . . , d} → {1, . . . , d} be a uniformly random
permutation. Then for any ℓ, ℓ′ ∈ {1, . . . , d} with ℓ ̸= ℓ′ and t, u ∈ {1, . . . , d} with
t ̸= u, we have

E[hπ(ℓ),thπ(ℓ′),thπ(ℓ),uhπ(ℓ′),u] = − 1

d− 1
,

where the expectation is with respect to the random permutation π.
Let B := ⌈D/d⌉. We can then extend this result to a concatenated matrix

HB
d := (Hd, . . . ,Hd︸ ︷︷ ︸

B times

) ∈ {1,−1}d×Bd whose columns we name as hB
1 , . . . ,h

B
Bd. In

this case, we use the uniform permutation πB : {1, . . . , Bd} → {1, . . . , Bd}. Then
for any ℓ, ℓ′ ∈ {1, . . . , Bd} with ℓ ̸= ℓ′ and t, u ∈ {1, . . . , d} with t ̸= u, we have

E[hπ(ℓ),thπ(ℓ′),thπ(ℓ),uhπ(ℓ′),u] = − 1

⌈D/d⌉d− 1
.

Proof. We first derive a few key identities needed for our proof and we focus on
using Hd instead of HB

d for simplicity for now. For ease of notation, define

αℓ := hℓ,thℓ,u, ℓ ∈ {1, . . . , d}.

Since any two distinct rows (and any two distinct columns) of Hd are orthogonal,
we have

d∑
ℓ=1

αℓ =
d∑

ℓ=1

hℓ,thℓ,u = 0.

Since αℓ ∈ {−1, 1}, this identity implies that exactly d/2 elements in {α1, . . . , αd}
are 1, and the rest are −1. Note that for each ℓ ∈ {1, . . . , d} the randomly
permuted index π(ℓ) takes values in {1, . . . , d} with equal probabilities. Therefore,
the probability of απ(ℓ) being 1 and that of απ(ℓ) being −1 are equal:

Pr(απ(ℓ) = 1) = Pr(απ(ℓ) = −1) = 0.5.

Note that πb(ℓ) ̸= πb(ℓ′) since ℓ ̸= ℓ′ and π is a (random) permutation. Therefore,
we have the following conditional probabilities:

Pr(απ(ℓ′) = a | απ(ℓ) = b) =

{
d/2−1
d−1

if a = b = 1 or a = b = −1
d/2
d−1

if a = 1, b = −1 or a = −1, b = −1

Using the above identities, we now prove the assertion:

E[hπ(ℓ),thπ(ℓ′),thπ(ℓ),uhπ(ℓ′),u] = E[απ(ℓ)απ(ℓ′)]

= Pr(απ(ℓ) = 1)E[απ(ℓ)απ(ℓ′) | απ(ℓ) = 1] + Pr(απ(ℓ) = −1)E[απ(ℓ)απ(ℓ′) | απ(ℓ) = −1]

=
1

2
E[απ(ℓ′) | απ(ℓ) = 1]− 1

2
E[απ(ℓ′) | απ(ℓ) = −1]

=
1

2

(
d/2− 1

d− 1
− d/2

d− 1

)
− 1

2

(
d/2

d− 1
− d/2− 1

d− 1

)
= − 1

d− 1
.
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Extending this analysis to the case of using HB
d and πB instead of Hd and

π is straightforward. In this case, the marginal probabilities Pr(απB(ℓ) = 1) and

Pr(απB(ℓ) = −1) remain the same because for two fixed rows t, u of HB
d with t ̸= u,

we still have

Bd∑
ℓ=1

αℓ =
d∑

ℓ=1

hB
ℓ,th

B
ℓ,u = 0

and thus Bd/2 of the elements in {α1, . . . , αd} must be 1 and −1, respectively.
The conditional probabilities however change, and become

Pr(απB(ℓ′) = a | απ(ℓ) = b) =

{
(⌈D/d⌉d)/2−1
⌈D/d⌉d−1

if a = b = 1 or a = b = −1
(⌈D/d⌉d)/2
⌈D/d⌉d−1

if a = 1, b = −1 or a = −1, b = −1

This leads to

E[hB
πB(ℓ),th

B
πB(ℓ′),th

B
πB(ℓ),uh

B
πB(ℓ′),u] = E[απB(ℓ)απB(ℓ′)] = − 1

⌈D/d⌉d− 1

in this case.

B.2.2 Proof of Theorem 3.5.9

We first clarify the notation we use. Recall that our feature map Φ(x) ∈ CD is
given by

Φ(x) =
1√
D

[
(

p∏
i=1

s⊤i,1x), . . . , (

p∏
i=1

s⊤i,Dx)

]⊤
∈ CD.

The random vectors si,ℓ ∈ Cd are independently generated blockwise, and there
are B := ⌈D/d⌉ blocks in total (and note that D = (B − 1)d + mod(D, d)): For
each i = 1, . . . , p,

(si,1, . . . , si,d)︸ ︷︷ ︸
Block 1

, (si,d+1, . . . , si,2d)︸ ︷︷ ︸
Block 2

, . . . ,

(si,(B−2)d+1, . . . , si,(B−1)d)︸ ︷︷ ︸
Block B−1

, (si,(B−1)d+1, . . . , si,(B−1)d+mod(D,d))︸ ︷︷ ︸
Block B

=: (s1i,1, . . . , s
1
i,d)︸ ︷︷ ︸

Block 1

, (s2i,1, . . . , s
2
i,d)︸ ︷︷ ︸

Block 2

, . . . , (sB−1
i,1 , . . . , sB−1

i,d )︸ ︷︷ ︸
Block B−1

, (sBi,1, . . . , s
B
i,mod(D,d))︸ ︷︷ ︸

Block B

,

where we introduced in the second line a new notation:

sbi,ℓ := si,(b−1)d+ℓ (b = 1, . . . , B, ℓ = 1, . . . , d).
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Here b serves as the indicator of the b-th block. Thus, using this notation,

sbi,ℓ = zb
i ◦ hπb(ℓ) ∈ Cd (ℓ = 1, . . . , d),

where zb
i = (zbi,1, . . . , z

b
i,d)

⊤ ∈ Cd is a random vector whose elements zbi,1, . . . , z
b
i,d

are i.i.d., and πb : {1, . . . , d} → {1, . . . , d} is a random permutation of the indices.
Note that zb

i and πb are generated independently for each b ∈ {1, . . . , B}. There-
fore, the random vectors sbi,ℓ and sb

′

i,ℓ′ are statistically independent if they are from
different blocks, i.e., if b ̸= b′.

For each b = 1, . . . , B, define zb = (zb1, . . . , z
b
d)

⊤ ∈ Cd as a random vector
independently and identically distributed as zb

1, . . . ,z
b
p. Define

sbℓ := zb ◦ hb
π(ℓ) = (zb1hπb(ℓ),1, . . . , z

b
dhπb(ℓ),d)

⊤ =: (sbℓ,1, . . . , s
b
ℓ,d)

⊤ ∈ Cd. (B.5)

Then sbℓ is independently and identically distributed as sb1,ℓ, . . . , s
b
p,ℓ. Moreover,

given the permutation πb fixed, sbℓ is identically distributed as zb. This is because
1) zb1, . . . , z

b
d are i.i.d., 2) each zbt is symmetrically distributed (t = 1, . . . , d), and

3) hπb(ℓ),1, . . . , hπb(ℓ),d ∈ {1,−1}.
Now let us start proving the assertion. We first have

V[k̂(x,y)] = E[|k̂(x,y)|2]− |E[k̂(x,y)]|2 = E[|k̂(x,y)|2]− (x⊤y)2p,

where the second identity follows from the approximate kernel being unbiased
for both real and complex TensorSRHT. Thus, from now on we study the term
E[|k̂(x,y)|2].

For simplicity of notation, define Ib := {1, . . . , d} for b = 1, . . . , B − 1 and
Ib := {1, . . . ,mod(D, d)} for b = B. Since the approximate kernel can be written
as

k̂(x,y) := Φ(x)⊤Φ(y) =
1

D

D∑
ℓ=1

p∏
i=1

s⊤i,ℓxs
⊤
i,ℓy =

1

D

B∑
b=1

∑
ℓ∈Ib

p∏
i=1

(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)
its second moment can be written as

E[|k̂(x,y)|2] = 1

D2

B∑
b,b′=1

∑
ℓ∈Ib

∑
ℓ∈Ib′

E

[
p∏

i=1

(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)(
sb

′⊤
i,ℓ′ x

) (
sb

′⊤
i,ℓ′ y

)]

=
1

D2

B∑
b,b′=1

∑
ℓ∈Ib

∑
ℓ∈Ib′

p∏
i=1

E
[(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)(
sb

′⊤
i,ℓ′ x

) (
sb

′⊤
i,ℓ′ y

)]

=
1

D2

B∑
b,b′=1

∑
ℓ∈Ib

∑
ℓ∈Ib′

(
E
[(
sb⊤ℓ x

) (
sb⊤ℓ y

)(
sb

′⊤
ℓ′ x

) (
sb

′⊤
ℓ′ y

)])p
. (B.6)

Now we study individual terms in (B.6), categorizing the indices b, b′ ∈ {1, . . . , B}
and ℓ, ℓ′ ∈ {1, . . . , d} of indices into the following 3 cases:
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1. b = b′ and ℓ = ℓ′ (D terms): As mentioned earlier, conditioned on the per-

mutation πb, sbℓ is identically distributed as zb (see the paragraph following
Eq. (B.5)). Thus,

E
[(
sb⊤ℓ x

)2 (
sb⊤ℓ y

)2]
= Eπb

[
E
[(
sb⊤ℓ x

)2 (
sb⊤ℓ y

)2 | πb
]]

= Eπb

[
E
[(
zb⊤x

)2 (
zb⊤y

)2]]
= E

[(
zb⊤x

)2 (
zb⊤y

)2]
= E

[(
z⊤x

)2 (
z⊤y

)2]
,

where Eπb denotes the expectation with respect to πb and z ∈ Cd is a random
vector identically distributed as z1, . . . ,zB.

2. b = b′ and ℓ ̸= ℓ′ (c(D, d) terms, where c(D, d) is defined in Eq. (3.29)): This
case requires a detailed analysis, which we will do below.

3. b ̸= b′ (The rest of terms = D2 −D − c(D, d) terms): Since sbℓ and sb
′

ℓ′ are in-
dependent in this case, we have

E
[(
sb⊤ℓ x

) (
sb⊤ℓ y

)(
sb

′⊤
ℓ′ x

) (
sb

′⊤
ℓ′ y

)]
= E

[(
sb⊤ℓ x

) (
sb⊤ℓ y

)]
E
[(
sb

′⊤
ℓ′ x

) (
sb

′⊤
ℓ′ y

)]
= E[k̂(x,y)]E[k̂(x,y)] = (x⊤y)2,

where the last equality follows from the approximate kernel being unbised.
We now analyze the case 2:

E
[(
sb⊤ℓ x

) (
sb⊤ℓ y

)(
sb⊤ℓ′ x

) (
sb⊤ℓ′ y

)]
=

d∑
t,u,w,v=1

E[sbℓ,tsbℓ,usbℓ′,vs
b
ℓ′,w]xtyuxvyw

=
d∑

t,u,w,v=1

E[zbtzbuzbvzbw] E[hπb(ℓ),thπb(ℓ),uhπb(ℓ′),vhπb(ℓ′),w]︸ ︷︷ ︸
=:E

xtyuxvyw

Note that we have E[zbtzbuzbvzbw] = 0 unless:

(a) t = u = v = w: E[zbtzbuzbvzbw] = E[|zbt |4] = 1 and E = E[h2
πb(ℓ),t

h2
πb(ℓ′),t] = 1.

(b) t = u ̸= v = w: E[zbtzbuzbvzbw] = E[|zbt |2|zbv|2] = 1 and E = E[h2
πb(ℓ),t

h2
πb(ℓ′),v] =

1.

(c) t = v ̸= u = w: E[zbtzbuzbvzbw] = E[|zbt |2|zbu|2] = 1 and E = E[hπb(ℓ),thπb(ℓ),uhπb(ℓ′),thπb(ℓ′),u].

(d) t = w ̸= u = v: E[zbtzbuzbvzbw] = E[(zbt )2(zbu)2] = (2q − 1)2 and E =
E[hπb(ℓ),thπb(ℓ),uhπb(ℓ′),uhπb(ℓ′),t].
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Therefore, we have

E
[
s⊤ℓ xs

⊤
ℓ ys

⊤
ℓ′xs

⊤
ℓ′y
]

=
d∑

t=1

x2
ty

2
t +

∑
t̸=v

xtytxvyv +
∑
t̸=u

E[hπb(ℓ),thπb(ℓ′),thπb(ℓ),uhπb(ℓ′),u]
(
x2
ty

2
u + (2q − 1)2xtytxuyu

)
= (x⊤y)2 − 1

d− 1

∑
t̸=u

(
x2
ty

2
u + (2q − 1)2xtytxuyu

)
(∵ Lemma B.2.1)

= (x⊤y)2 − V
(1)
q

d− 1
,

where V
(1)
q :=

∑
t̸=u (x

2
ty

2
u + (2q − 1)2xtytxuyu) is Eq. (3.17) with p = 1, which is

the variance of the unstructured polynomial sketch (3.10) with a single feature.
Now, using these identities in Eq. (B.6), the variance of the approximate kernel

can be expanded as

V[k̂(x,y)] = E[k̂(x,y)2]− (x⊤y)2p

=
1

D

(
E
[(
z⊤x

)2 (
z⊤y

)2])p
+

c(D, d)

D2

(
(x⊤y)2 − V

(1)
q

d− 1

)p

+
D2 −D − c(D, d)

D2
(x⊤y)2p − (x⊤y)2p

=
1

D

[(
E
[(
z⊤x

)2 (
z⊤y

)2])p − (x⊤y)2p
]
− c(D, d)

D2

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

d− 1

)p]

=
1

D
V (p)
q − c(D, d)

D2

[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

d− 1

)p]

where V
(p)
q ≥ 0 is Eq. (3.17) with the considered value of the polynomial degree p,

which is the variance of the unstructured polynomial sketch (3.10) with a single
feature. This completes the proof.

Extending the proof to upsampled TensorSRHT

For the case of upsampled TensorSRHT, we use a single block of size ⌈D/d⌉d.
Therefore, we only need to distinguish the first two cases in the analysis of Eq. (B.6),
1. ℓ = ℓ′ (D terms) and 2. ℓ ̸= ℓ′, for which there are now D2 −D terms.

Case 1. remains identical to stacked TensorSRHT. Case 2. is almost identical,
the difference being that the number of non-zero terms for which ℓ ̸= ℓ′ is now D2−
D instead of c(D, d). Moreover, we do not permute the columns of a single matrix
Hd, but the ones of HB

d , which is why we need to make use of the second part
of Lemma B.2.1. We thus substitute E[hπb(ℓ),thπb(ℓ′),thπb(ℓ),uhπb(ℓ′),u] by − 1

⌈D/d⌉d−1

instead of − 1
d−1

.
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This finally leads to

V[k̂(x,y)] =
1

D
V (p)
q −

(
1− 1

D

)[
(x⊤y)2p −

(
(x⊤y)2 − V

(1)
q

⌈D/d⌉d− 1

)p]
.

B.3 Gaussian Processes with Complex Random

Features

We describe here how to use complex random features in Gaussian process (GP)
regression and classification. Since real random features are special cases of com-
plex random features, all derivations for the complex case also hold for the real
case as well.

For GP classification, we employ the framework of Milios et al. (2018), which
formulates GP classification using GP regression and provides a solution in closed
form. Therefore, closed form solutions are available for both GP regression and
classification, and this enables us to compare different random feature approxima-
tions directly.1

Notation and definitions. For a matrix A ∈ Cn×m with n,m ∈ N, denote by

AH := A
⊤ ∈ Cm×n be its conjugate transpose. Note that if A ∈ Rn×m, then

AH = A⊤ ∈ Rm×n. For n ∈ N, In ∈ Rn×n be the identity matrix.
For µ ∈ Cn and positive semi-definite2 Σ ∈ Cn×n with n ∈ N, we denote

by CN (µ,Σ) the n-dimensional proper complex Gaussian distribution with mean
vector µ and covaraince matrix Σ, whose density function is given by (e.g., Neeser
and Massey, 1993, Theorem 1)

CN (v;µ,Σ) :=
1

πn
√

|Σ|
exp

(
−(v − µ)HΣ−1(v − µ)

)
, v ∈ Cn,

where |Σ| is the determinant ofΣ. If a random vector f ∈ Cn follows CN (v;µ,Σ),
we have E[f ] = µ, E[(f − µ)(f − µ)H ] = Σ, and E[(f − µ)(f − µ)⊤] = 0, where
the last property is the definition of f being a proper complex random variable
(Neeser and Massey, 1993, Definition 1).

B.3.1 Complex GP Regression

We first describe the approach of complex GP regression (Boloix-Tortosa et al.,
2018), a Bayesian nonparametric approach to complex-valued regression.

1If we use a formulation of GP classification that requires an optimization procedure, compar-
isons of random feature approximations become more involved, as we need to perform convergence
verification for the optimization procedure.

2A Hermitian matrix Σ ∈ Cn×n is called positive semi-definite, if for all v ∈ Cn, we have
vHΣv ≥ 0.



Appendix B. Appendix of Chapter 3 135

Suppose that there are training data (xi, yi)
N
i=1 ⊂ Rd×C for a complex-valued

regression problem with N ∈ N, and let X := (x1, . . . ,xN)
⊤ ∈ RN×d and y :=

(y1, . . . , yN)
⊤ ∈ CN . We assume the following model for the training data:

yi = f(xi) + εi, (i = 1, . . . , N), (B.7)

where f : Rd → C is an unknown complex-valued function, and εi ∼ CN (0, σ2
i )

is an independent complex Gaussian noise with variance σ2
i > 0. Let σ2 :=

(σ2
1, . . . , σ

2
N)

⊤ ∈ RN .
The task of complex-valued function is to estimate the unknown complex-

valued function f in Eq. (B.7) from the training data (xi, yi)
N
i=1 ⊂ Rd × C. In

complex GP regression, one defines a complex GP prior distribution for the un-
known function f , and derives a complex GP posterior distribution of f , given the
data (xi, yi)

N
i=1 ⊂ Rd × C and the likelihood function given by Eq. (B.7). For the

prior, we focus on a proper complex GP (Boloix-Tortosa et al., 2018, Section II-C),
which we describe below.

Proper complex Gaussian processes. A complex-valued function k : Rd ×
Rd → C is called positive definite kernel, if 1) k(x,x′) = k(x′,x) for all x,x′ ∈ Rd;
and ii) for all n ∈ N and all x1, . . . ,xn ∈ Rd, the matrix K ∈ Cn×n with Ki,j =
k(xi, xj) satisfies v

HKv ≥ 0.
Let f : Rd → C be a zero-mean complex-valued stochastic process, and k : Rd×

Rd → C be a positive definite kernel. We call f a (zero-mean) proper complex GP
with covariance kernel k, if for all n ∈ N and all x1, . . . ,xn ∈ Rd, the random vector
f := (f(x1), . . . , f(xn))

⊤ ∈ Cn follows the proper complex Gaussian distribution
CN (0,K) with covariance matrix K ∈ Cn×n with Ki,j = k(xi,xj). If f is a
zero-mean proper complex GP with covariance kernel k, we write f ∼ CGP(0, k).

We now describe the approach of complex GP regression. For the unknown f
in Eq. (B.7), we define a proper complex GP prior with kernel k, assuming that

f ∼ CGP(0, k) (B.8)

Then the observation model (B.7) and the prior (B.8) induce a joint distribution
of the unknown function f and the training observations y = (y1, . . . , yN)

⊤. Con-
ditioned on y, we obtain the posterior distribution of f , which is also a proper
complex GP (Boloix-Tortosa et al., 2018, Section II-C):

f | y ∼ CGP(µN , kN), (B.9)

where µN : Rd → C is the posterior mean function and kN : Rd × Rd → C is the
posterior covariance function given by

µN(x) := k(x)H(K + diag(σ2))−1y, x ∈ Rd (B.10)

kN(x,x
′) := k(x,x′)− k(x)H(K + diag(σ2))−1k(x), x,x′ ∈ Rd, (B.11)
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where k(x) := (k(x,x1), . . . , k(x,xN))
⊤ ∈ CN , K ∈ CN×N with Ki,j = k(xi,xj),

and diag(σ2) ∈ Rd×d is the diagonal matrix with diagonal elements σ2 = (σ2
1, . . . , σ

2
N)

⊤.
Notice that, if the kernel k is real-valued and so are the observations y, Eq. (B.10)
and Eq. (B.11) reduce to the posterior mean and covariance functions of standard
real-valued GP regression (e.g., Rasmussen and Williams, 2006, Chapter 2). In
this sense, complex GP regression with a proper GP prior is a natural complex
extension of standard GP regression.

B.3.2 GP Regression with Complex Features

We next describe how to use complex features in GP regression. Let Φ : Rd → CD

be a complex-valued (random) feature map,3 and let k̂(x,x′) := Φ(x)⊤Φ(x′) be
the approximate kernel. Define

Φ(X) := (Φ(x1), . . . ,Φ(xN))
⊤ ∈ CN×D, K̂ := Φ(X)Φ(X)H ∈ CN×N , (B.12)

where x1, . . . ,xN ∈ RD are training inputs. Note that K̂i,j = Φ(xi)
⊤Φ(xj) =

k̂(xi,xj), i.e., K̂ is the kernel matrix with kernel k̂.

The approximate kernel k̂ : Rd × Rd → C is complex-valued, and thus induces
a proper complex GP, f ∼ CGP(0, k̂). Using this GP as a prior for the unknown
function f in the observation model (B.7), and conditioning on the observations
y = (y1, . . . , yN)

⊤, we obtain the following approximate complex GP posterior:

f | y ∼ CGP(µ̂N , k̂N), (B.13)

where µ̂N : Rd → C is an approximate posterior mean function and k̂N : Rd×Rd →
C is an approximate posterior covariance function, defined as

µ̂N(x) := k̂(x)H(K̂ + diag(σ2))−1y, x ∈ Rd (B.14)

k̂N(x,x
′) := k̂(x,x′)− k̂(x)H(K̂ + diag(σ2))−1k̂(x), x,x′ ∈ Rd, (B.15)

where k̂(x) := (k̂(x,x1), . . . , k̂(x,xN))
⊤ ∈ CN , and K̂ ∈ CN×N with K̂i,j =

k̂(xi,xj).
Finally, we define a real-valued approximate GP posterior using the real parts

of Eq. (B.14) and Eq. (B.15). That is, define µ̂N,R : Rd → R as the real part of

the approximate posterior mean function in Eq. (B.14) , and k̂N,R as the real part
of the approximate covariance function in Eq. (B.15):

µ̂N,R(x) := R{µ̂N(x)} , x ∈ Rd, (B.16)

k̂N,R(x,x
′) := R

{
k̂N(x,x

′)
}
, x,x′ ∈ Rd. (B.17)

3Again, this subsumes the case of real-valued feature maps.
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Then, we define a real-valued GP with mean function µ̂N,R and covariance function

k̂N,R:

f |y ∼ GP(µ̂N,R, k̂N,R).

We use this approximate GP for prediction tasks in our experiments.
Note that naive computations of Eq. (B.14) and Eq. (B.15) require O(N3 +

N2D) complexity, and thus do not leverage the computational advantage of ran-
dom features. We will show next how to reformulate Eq. (B.14) and Eq. (B.15)
to compute them in O(D3 +ND2), which is linear in the number of training data
points N .

B.3.3 Computationally Efficient Implementation

We describe how to efficiently compute the approximate posterior mean and co-
variance functions in Eq. (B.14) and Eq. (B.15), respectively. To this end, re-
call the notation in Eq. (B.12). Let σ−1 := (σ−1

1 , . . . , σ−1
N )⊤ ∈ RN and σ−2 :=

(σ−2
1 , . . . , σ−2

N )⊤ ∈ RN .
First we deal with Eq. (B.14). For a matrix A ∈ CN×D, we have (AHA +

IN)A
H = AH(AAH + ID), and thus AH(AAH + IN)

−1 = (AHA + ID)
−1AH .

By using this last identity with A = diag(σ−1)Φ(X) ∈ CN×D, we can rewrite
Eq. (B.14) as

µ̂N(x) = k̂(x)H(K̂ + diag(σ2))−1y,

= Φ(x)⊤Φ(X)H
(
Φ(X)Φ(X)H + diag(σ2)

)−1
y

= Φ(x)⊤Φ(X)H diag(σ−1)
(
diag(σ−1)Φ(X)Φ(X)H diag(σ−1) + IN

)−1
diag(σ−1)y

= Φ(x)⊤
(
Φ(X)H diag(σ−2)Φ(X) + ID

)−1
Φ(X)H diag(σ−2)y. (B.18)

Next we deal with Eq. (B.15). For matrices A,C, U, V of appropriate sizes
with A invertible, the Woodbury matrix identity states that A−1 − A−1U(C−1 +
V A−1U)−1V A−1 = (A+UCV )−1. By using the Woodbury identity with A = ID,
C = diag(σ−2), U = Φ(X)H and V = Φ(X), we can rewrite Eq. (B.15) as

k̂N(x,x
′) = k̂(x,x′)− k̂(x)H(K̂ + diag(σ2))−1k̂(x)

= Φ(x)⊤Φ(x)− Φ(x)⊤Φ(X)H
(
Φ(X)Φ(X)H + diag(σ2)

)−1
Φ(X)Φ(x)

= Φ(x)⊤
(
ID − Φ(X)H

(
diag(σ2) + Φ(X)Φ(X)H

)−1
Φ(X)

)
Φ(x)

= Φ(x)⊤
(
ID + Φ(X)H diag(σ−2)Φ(X)

)−1
Φ(x). (B.19)

We now study the costs of computing Eq. (B.18) and Eq. (B.19). For both
Eq. (B.18) and Eq. (B.19), the bottleneck is the computation of the inverse of the
following matrix.

B := Φ(X)H diag(σ−2)Φ(X) + ID ∈ CD×D. (B.20)
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The time complexity of computing B is O(ND2), and that of the inverse B−1 is
O(D3), the latter being the complexity of computing the Cholesky decomposition
B = LLH with L ∈ CD×D being a lower triangular matrix. Thus, the overall cost
of computing B−1 is O(ND2 +D3).

We next conduct a more detailed analysis of the costs ofB and its Cholesky de-
composition, and compare them with the computational costs for the correspond-
ing matrix inversion using real-valued features (i.e., when Φ(X) ∈ RN×D). Below
we use the shorthand Φ̃(X) := diag(σ−1)Φ(X) so that B = Φ̃(X)HΦ̃(X) + ID.
Then the real and imaginary parts of B can be written as

R{B} = R{Φ̃(X)HΦ̃(X)}+ ID = R{Φ̃(X)}⊤R{Φ̃(X)}+ I{Φ̃(X)}⊤I{Φ̃(X)}+ ID

I{B} = I{Φ̃(X)HΦ̃(X)} = R{Φ̃(X)}⊤I{Φ̃(X)} − I{Φ̃(X)}⊤R{Φ̃(X)}.

Since (R{Φ̃(X)}⊤I{Φ̃(X)})⊤ = I{Φ̃(X)}⊤R{Φ̃(X)}, one can compute I{B} by
only computing R{Φ̃(X)}⊤I{Φ̃(X)}. Therefore, the computation of B requires
the computations of the three real D-by-D matrices (i.e., R{Φ̃(X)}⊤R{Φ̃(X)},
I{Φ̃(X)}⊤I{Φ̃(X)}, and R{Φ̃(X)}⊤I{Φ̃(X)}). Thus, the total number of op-
erations for computing B is 3 · (ND2) + 2 · D2, where 3 · (ND2) is operations
for the matrix products and 2 ·D2 for the addition and subtraction inside R{B}
and I{B}, respectively. Hence, assuming N ≫ D, the computational cost for
B is roughly 3 times more expensive than the corresponding cost for when Φ is
real-valued.

Computing the Cholesky decomposition of a D by D matrix requires roughly
1
6
D3 subtractions and 1

6
D3 multiplications (e.g., Trefethen and Bau, 1997, p. 175).

Therefore, when Φ is real-valued (and thus B is real-valued), the Cholesky decom-
position of B requires 1

6
D3 + 1

6
D3 = 1

3
D3 FLOPS. On the other hand, when Φ is

complex-valued, the Cholesky decomposition of B require 4
3
D3 FLOPS: one com-

plex subtraction requires 2 real subtractions, and thus subtractions in total require
1
6
D3×2 = 1

3
D3 FLOPS; one complex multiplication requires 4 real multiplications

and 2 real subtractions, and thus multiplications in total require 1
6
D3 × 6 = D3

FLOPS; thus 1
3
D3 +D3 = 4

3
D3 FLOPS in total. Thus, the cost for computing the

Cholesky decomposition of B when Φ is complex-valued is 4 times more expensive
than the real-valued case.

The memory requirement for the complex case is 2 times as large as the real
case, since the complex case requires storing both real and imaginary parts.

Note that, if one uses a 2D-dimensional real feature map (i.e., Φ(X) ∈ RN×2D),
then this requires 4 times as much memory, 4 times as many operations to compute
the matrix B, and 8 times as many operations for the Cholesky decomposition
of B as those required for a D-dimensional real feature map. Therefore, using a
2D-dimensional real feature map is computationally more expensive than using
a D-dimensional complex feature map, since the latter only requires 2 times as
much memory, 3 times as many operations for computing B, and 4 times as many
operations for computing the Cholesky decomposition of B as those required for a
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D-dimensional real feature map, as shown above. Note also that the performance
improvement from using a D-dimensional complex feature map is typically larger
than using a 2D-dimensional real feature map; see the experiments in Section 3.5.4
in Chapter 3.

B.3.4 GP Classification as Closed-form Multi-output Re-
gression

We now describe the GP classification approach of Milios et al. (2018), and how
to use approximate posteriors for GP regression in this approach.

We assume that there are C ∈ N classes and that output labels are expressed
by one-hot-encoding. Thus, for each class c ∈ {1, . . . , C} and each training input
xi ∈ Rd with i = 1, . . . , N , there exist an output yc,i ∈ {0, 1} such that yc,i = 1 if
xi belongs to class c and yc,i = 0 otherwise.

The approach of Milios et al. (2018). Let α > 0 be a constant. For each class
c ∈ {1, . . . , C}, Milios et al. (2018) define transformed versions ỹc,1, . . . , ỹc,N ∈ R
of the training outputs yc,1, . . . , yc,N as

ỹc,i := log(yc,i + α)− σ2
c,i/2, where σ2

c,i := log((yc,i + α)−1 + 1), i = 1, . . . , N.

Milios et al. (2018) then define an observation model of ỹc,1, . . . , ỹc,N as

ỹc,i = fc(xi) + εc,i, i = 1, . . . , N, (B.21)

where fc : Rd → R is a latent function and εc,i ∼ N (0, σ2
c,i) is an independent

Gaussian noise with variance σ2
c,i. Milios et al. (2018) propose to model fc for each

c ∈ {1, . . . , C} independently as a GP:

fc ∼ GP(0, k), (B.22)

where k : Rd × Rd → R is a kernel. Eq. (B.21) and Eq. (B.22) define the joint
distribution of the latent function fc and the transformed labels ỹc,1, . . . , ỹc,N .
Thus, conditioning on ỹc,1, . . . , ỹc,N , one obtains a GP posterior of fc. In other
words, one can obtain a GP posterior of fc by performing GP regression for each
class c ∈ {1, . . . , C} using (xi, ỹc,i)

N
i=1 as training data.

The constant α is a hyperparameter, which Milios et al. (2018) propose to
choose by cross validation, using the Mean Negative Log Likelihood (MNLL) (e.g.,
Rasmussen and Williams, 2006, p. 23) as an evaluation criterion.

Using approximate GP posteriors. We now explain how to use approximate
posteriors for GP regression in the above approach: For each class c ∈ {1, . . . , C},
we perform approximate GP regression using (xi, ỹc,i)

N
i=1 as training data, to obtain

an approximate GP posterior for the latent function fc in Eq. (B.21). For instance,
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with our approach on approximate GP regression using complex random features
in Appendix B.3.2, we obtain a GP posterior fc ∼ GP(µ̂N,R,c, k̂N,R,c) for each

class c ∈ {1, . . . , C}, where µ̂N,R,c : Rd → R and k̂N,R,c : Rd × Rd → R are
the approximate GP posterior mean and covariance functions in Eq. (B.16) and
Eq. (B.17), respectively, with y := (ỹc,1, . . . , ỹc,N)

⊤ and σ2 := (σ2
c,1, . . . , σ

2
c,N)

⊤.
For a given test input x ∈ Rd, one can obtain its posterior predictive probabil-

ities over the C classes in the following way. For each class c ∈ {1, . . . , C}, we first
generate a sample zc ∈ R from the posterior distribution of the latent function
value fc(x). We then apply the softmax transformation to z1, . . . , zC to obtain
probabilities p1, . . . , pC ≥ 0 over the C class labels: pc := exp(zc)/

∑C
j=1 exp(zj).

Milios et al. (2018) show that these probabilities p1, . . . , pC are approximately a
sample from a Dirichlet distribution, yielding well-calibrated predictions.

B.3.5 Kullback-Leibler (KL) Divergence

In the experiments in Chapters 3 and 5, we use the Kullback-Leibler (KL) diver-
gence between the exact and approximate GP posteriors, to evaluate the qual-
ity of each approximation approach. Let µexact(x) and σ2

exact(x) be the posterior
mean and variance at x ∈ Rd from the exact GP posterior, and let µappr(x) and
σ2
appr(x) be those from an approximate GP posterior. Let x∗,1, . . . ,x∗,m∗ ∈ Rd

be test input points. Define µexact := (µexact(x∗,1), . . . , µexact(x∗,m∗))
⊤, σ2

exact :=
(σ2

exact(x∗,1), . . . , σ
2
exact(x∗,m∗))

⊤, µappr := (µappr(x∗,1), . . . , µappr(x∗,m∗))
⊤, and σ2

appr :=
(σ2

appr(x∗,1), . . . , σ
2
appr(x∗,m∗))

⊤.
We then measure the KL divergence between two diagonal Gaussian distribu-

tions, N (µappr, diag(σ
2
appr)) and N (µexact, diag(σ

2
exact)):

KL
[
N (µappr, diag(σ

2
appr)) || N (µexact, diag(σ

2
exact))

]
=

1

2

m∗∑
i=1

(
σ2
exact(x∗,i)

σ2
appr(x∗,i)

+ log
σ2
exact(x∗,i)

σ2
appr(x∗,i)

− 1 +
(µexact(x∗,i)− µappr(x∗,i))

2

σ2
appr(x∗,i)

)
,

(B.23)

We consider these diagonal Gaussian distributions, since the focus of our exper-
iments in Chapters 3 and 5 is the prediction performance at test input points
x∗,1, . . . ,x∗,m∗ ∈ Rd.
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Appendix of Chapter 4

C.1 Pseudo-Variances of Gaussian and Rademacher

Polynomial Sketches

In this section, we work out the pseudo-variances for Gaussian and Rademacher
Product-Sketches. Let

k̂C(x,y) =
1

D

D∑
ℓ=1

p∏
i=1

(w⊤
i,ℓx)(w

⊤
i,ℓy)

be the corresponding complex kernel estimate. As {wi,ℓ}Dℓ=1 are i.i.d. for Gaussian

and Rademacher sketches, the variance of k̂CtR(x,y) = Re{k̂C(x,y)} is propor-
tional to 1/D and we can assume D = 1 here for ease of presentation and drop
the index ℓ. We then rescale the variances by 1/D later.

Since the CtR-variance can be written as V[k̂CtR(x,y)] =
1
2
Re{V[k̂C(x,y)] +

PV[k̂C(x,y)]}, the only thing left to work out is the pseudo-variance PV[k̂C(x,y)]).
As our estimator is unbiased, we further have E[k̂C(x,y)] = k(x,y) = (x⊤y)p.

Thus, we only need to work out E[k̂C(x,y)2].

E[k̂C(x,y)2] = E

( p∏
i=1

w⊤
i xw

⊤
i y

)2
 =

p∏
i=1

E
[
(w⊤

i x)
2(w⊤

i y)
2
]

(C.1)

= E
[
(w⊤x)2(w⊤y)2

]p
=

(
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

E[wiwjwkwl]xixjykyl

)p

(C.2)

Eijkl := E[wiwjwkwl] ̸= 0, only if:

1. i = j = k = l: there are d terms (Eijkl)xixjykyl = E[|wi|4]x2
i y

2
i .

2. i = k ̸= j = l: there are d(d−1) terms (Eijkl)xixjykyl = E[|wi|2]xiyiE[|wj|2]xjyj =
xiyixjyj.

141
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3. i = l ̸= j = k: there are d(d−1) terms (Eijkl)xixjykyl = E[|wi|2]xiyiE[|wj|2]xjyj =
xiyixjyj.

As for both the Gaussian and the Rademacher sketch, we have E[|wi|2] = 1 for all
{wi}di=1, we obtain:

E
[
k̂C(x,y)

2
]
=

(
d∑

i=1

E[|wi|4]x2
i y

2
i + 2

d∑
i=1

d∑
j ̸=i

xiyixjyj

)p

(C.3)

We have E[|wi|4] = 2 and E[|wi|4] = 1 for the Gaussian and Rademacher case,
respectively. So the pseudo-variances V[k̂C(x,y)] = E[k̂C(x,y)2] − E[k̂C(x,y)]2
are given by the following real-valued expressions:

PV[k̂C(x,y)] =
1

D

((
2(x⊤y)2

)p − (x⊤y)2p
)

(Gaussian) (C.4)

PV[k̂C(x,y)] =
1

D

((
2(x⊤y)2 −

d∑
i=1

x2
i y

2
i

)p

− (x⊤y)2p

)
(Rademacher) (C.5)

where we added the 1/D scaling that we left out before. Note that E[|wi|4] ≥
(E[|wi|2])2 = 1 by Jensen’s inequality, which is why the Rademacher sketch yields
the lowest possible pseudo-variance for the estimator studied in Eq. (3.11) in Sec-
tion 3.2.

C.2 Gaussian and Rademacher CtR Variance Ad-

vantage over their Real-Valued Analogs

In the following, we compare Gaussian and Rademacher CtR-sketches against
their real-valued analogs assuming that the corresponding feature maps have equal
dimensions. Thus, we assign 2D random features to the real feature map ΦR :
Rd → R2D and only D random features to the CtR feature map ΦCtR : Rd → R2D

as it has twice as many dimensions for the same number of features.
We call the corresponding kernel estimates k̂R(x,y) = ΦR(x)

⊤ΦR(y) and
k̂CtR(x,y) = ΦCtR(x)

⊤ΦCtR(y). V[k̂R(x,y)] is given in Eq. (3.8) and Eq. (3.7).
We further have V[k̂CtR(x,y)] =

1
2
(V[k̂C(x,y)] + PV[k̂C(x,y)]) as shown in

Section 4.2. V[k̂C(x,y)] is given in Eq. (3.19) and Eq. (3.18). PV[k̂C(x,y)] is
given in Eq. (C.4) and Eq. (C.5), respectively.

We start with the simpler Gaussian case and study the Rademacher case after.

Gaussian case: Proof of Theorem (4.2.4).

Proof. Taking into account the different number of random features for ΦR and
ΦCtR to have equal dimensions, the variance difference of their kernel estimates
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yields:

V[k̂R(x,y)]− V[k̂CtR(x,y)]

=
1

2D

((
∥x∥2 ∥y∥2 + 2(x⊤y)2

)p − (x⊤y)2p
)

− 1

2D

((
∥x∥2 ∥y∥2 + (x⊤y)2

)p
+
(
2(x⊤y)2

)p − 2(x⊤y)2p
)

=
1

2D

((
∥x∥2 ∥y∥2 + 2(x⊤y)2

)p − (2(x⊤y)2
)p)− 1

2D

((
∥x∥2 ∥y∥2 + (x⊤y)2

)p − (x⊤y)2p
)

=
1

2D

p−1∑
k=0

(
p

k

)(
2(x⊤y)2

)k (∥x∥2 ∥y∥2)p−k − 1

2D

p−1∑
k=0

(
p

k

)
(x⊤y)2k

(
∥x∥2 ∥y∥2

)p−k

=
1

2D

p−1∑
k=0

(
p

k

)
(2k − 1)(x⊤y)2k

(
∥x∥2 ∥y∥2

)p−k ≥ 0

Thus, the Gaussian CtR-estimator is always better regardless of the choice of
x,y and p and despite using only half the random feature samples. Note that
the variance difference is zero if p = 1 and increases as p increases. Moreover, the
difference is maximized for parallel x and y. In this case, we have (x⊤y) = ∥x∥ ∥y∥
and the difference becomes

V[k̂R(x,y)]− V[k̂CtR(x,y)] =
1

2D

p−1∑
k=0

(
p

k

)
(2k − 1)

(
∥x∥2 ∥y∥2

)p
=

1

2D
∥x∥2p ∥y∥2p (3p − 2p+1 + 1)

We analyze the more difficult Rademacher case next.

Rademacher case: Proof of Theorem (4.2.3).

Proof. Taking into account the different number of random features for ΦR and
ΦCtR to have equal dimensions, the variance difference of their kernel estimates
yields:

V[k̂R(x,y)]− V[k̂CtR(x,y)]

=
1

2D

((
∥x∥2 ∥y∥2 + 2

d∑
i=1

∑
j ̸=i

xixjyiyj

)p

− (x⊤y)2p

)

− 1

2D

{(
∥x∥2 ∥y∥2 +

d∑
i=1

∑
j ̸=i

xixjyiyj

)p

− (x⊤y)2p +

(
2(x⊤y)2 −

d∑
i=1

x2
i y

2
i

)p

− (x⊤y)2p

}
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Next, we write (x⊤y)2p = ((x⊤y)2−
∑d

i=1 x
2
i y

2
i +
∑d

i=1 x
2
i y

2
i )

p. In this way, we can

factor out the term a := (x⊤y)2 −
∑d

i=1 x
2
i y

2
i =

∑d
i=1

∑
j ̸=i xixjyiyj and apply the

binomial theorem to all addends. This gives:

V[k̂R(x,y)]− V[k̂CtR(x,y)] =
1

2D

p∑
k=0

(
p

k

)
ap−k

(∥x∥2 ∥y∥2 + (x⊤y)2 −
d∑

i=1

x2
i y

2
i

)k

−

(
(∥x∥2 ∥y∥2)k + (x⊤y)2k − (

d∑
i=1

x2
i y

2
i )

k

)
We now show that the following term is always non-negative:

B :=

(∥x∥2 ∥y∥2 + (x⊤y)2 −
d∑

i=1

x2
i y

2
i

)k

−

(
(∥x∥2 ∥y∥2)k + (x⊤y)2k − (

d∑
i=1

x2
i y

2
i )

k

)
(C.6)

For k = 0 and k = 1, B = 0. For k ≥ 2, we have:(
∥x∥2 ∥y∥2 + (x⊤y)2 −

d∑
i=1

x2
i y

2
i

)k

=
k∑

j=0

(
k

j

)
∥x∥2j ∥y∥2j

(
(x⊤y)2 −

d∑
i=1

x2
i y

2
i

)k−j

Plugging this expression into B and cancelling out the addend for j = k yields:

B =
k−1∑
j=0

(
k

j

)
∥x∥2j ∥y∥2j

(
(x⊤y)2 −

d∑
i=1

x2
i y

2
i

)k−j

−

(
(x⊤y)2k − (

d∑
i=1

x2
i y

2
i )

k

)

Next, we refactor (x⊤y)2k − (
∑d

i=1 x
2
i y

2
i )

k:

(x⊤y)2k − (
d∑

i=1

x2
i y

2
i )

k = ((x⊤y)2 −
d∑

i=1

x2
i y

2
i +

d∑
i=1

x2
i y

2
i )

k − (
d∑

i=1

x2
i y

2
i )

k

=
k∑

j=0

(
k

j

)
(

d∑
i=1

x2
i y

2
i )

j((x⊤y)2 −
d∑

i=1

x2
i y

2
i )

k−j − (
d∑

i=1

x2
i y

2
i )

k

=
k−1∑
j=0

(
k

j

)
(

d∑
i=1

x2
i y

2
i )

j((x⊤y)2 −
d∑

i=1

x2
i y

2
i )

k−j

Plugging this expression into B yields:

B =
k−1∑
j=0

(
k

j

)(
∥x∥2j ∥y∥2j − (

d∑
i=1

x2
i y

2
i )

j

)
((x⊤y)2 −

d∑
i=1

x2
i y

2
i )

k−j
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Finally, we insertB back into the original variance difference V[k̂R(x,y)]−V[k̂CtR(x,y)]
(remember that B = 0 if k < 2):

V[k̂R(x,y)]− V[k̂CtR(x,y)] =
1

2D

p∑
k=2

(
p

k

)
ap−kB

=
1

2D

p∑
k=2

k−1∑
j=0

(
p

k

)(
k

j

)
ap−j

(
∥x∥2j ∥y∥2j − (

d∑
i=1

x2
i y

2
i )

j

)

Finally, we note that b := ∥x∥2j ∥y∥2j − (
∑d

i=1 x
2
i y

2
i )

j = (
∑d

i=1

∑d
ℓ=1 x

2
i y

2
ℓ )

j −
(
∑d

i=1 x
2
i y

2
i )

j ≥ 0 and V[k̂R(x,y)]−V[k̂CtR(x,y)] ≥ 0 if a =
∑d

i=1

∑
j ̸=i xixjyiy

2
j ≥

0.

C.3 Pseudo-Variance of TensorSRHT

In the following, we work out the pseudo-variance of TensorSRHT. We focus on
upsampled TensorSRHT here. The pseudo-variance of stacked TensorSRHT can
be derived analogously by applying the same modifications as the ones used in
Section B.2.2.

For the pseudo-variance PV[k̂C(x,y)] = E[k̂C(x,y)2] − E[k̂C(x,y)]2, we need
to work out E[k̂C(x,y)2]:

E[k̂C(x,y)2] =
1

D2

D∑
ℓ=1

D∑
ℓ′=1

p∏
i=1

E
[
(w⊤

i,ℓx)(w
⊤
i,ℓy)(w

⊤
i,ℓ′x)(w

⊤
i,ℓ′y)

]
=

1

D2

D∑
ℓ=1

D∑
ℓ′=1

E
[
(w⊤

ℓ x)(w
⊤
ℓ y)(w

⊤
ℓ′x)(w

⊤
ℓ′y)

]p
︸ ︷︷ ︸

e(ℓ,ℓ′)p

We dropped the index i in the last equality for ease of notation, as all {wi,ℓ}pi=1

are i.i.d. samples and the expectation is thus the same for any i. To work out the
expectation e(ℓ, ℓ′), we need to distinguish different cases for ℓ and ℓ′.

1. ℓ = ℓ′ (D terms): e(ℓ, ℓ′)p = E
[
(w⊤

ℓ x)
2(w⊤

ℓ y)
2
]p

=
(
2(x⊤y2)−

∑d
i=1 x

2
i y

2
i

)p
(taken from Eq. (C.3) for the Rademacher case)

2. ℓ ̸= ℓ′ (D(D − 1) terms):

e(ℓ, ℓ′)p =

(
d∑

q=1

d∑
r=1

d∑
s=1

d∑
t=1

E[wℓ,qwℓ,rwℓ′,swℓ′,t]xqyrxsyt

)p

=

(
d∑

q=1

d∑
r=1

d∑
s=1

d∑
t=1

E[dqdrdsdt]E[hpℓ,qhpℓ,rhpℓ′ ,s
hpℓ′ ,t

]xqyrxsyt

)p
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dq, dr, ds, dt are uniform samples from {1,−1, i,−i}, i.e., complex Rademacher sam-
ples, that are independent from the index samples pℓ,q, pℓ,r, pℓ′,s, pℓ′,t, which is why
we can factor out the two expectations. We will simplify the above sum by studying
when E[dqdrdsdt] ̸= 0.

We have to distinguish three non-zero cases for E[dqdrdsdt]:

1. q = r = s = t (d terms): E[dqdrdsdt] = E[|dq|4] = 1

2. q = r ̸= s = t (d(d− 1) terms): E[dqdrdsdt] = E[|dq|2]E[|ds|2] = 1

3. q = t ̸= r = s (d(d− 1) terms): E[dqdrdsdt] = E[|dq|2]E[|dr|2] = 1

because E[|dq|4] = E[|dq|2] = 1.
In the second part of Lemma B.2.1, we show that for ℓ ̸= ℓ′ and q ̸= r,

E[hpℓ,qhpℓ,rhpℓ′ ,r
hpℓ′ ,q

] = − 1
⌈D/d⌉d−1

holds. Therefore, e(ℓ, ℓ′)p for ℓ ̸= ℓ′ yields:

e(ℓ, ℓ′)p =

(
d∑

i=1

x2
i y

2
i +

d∑
i=1

d∑
j ̸=i

xiyixjyj −
1

⌈D/d⌉d− 1

d∑
i=1

d∑
j ̸=i

xiyixjyj

)p

=

(
(x⊤y)2 − 1

⌈D/d⌉d− 1

[
(x⊤y)2 −

d∑
i=1

x2
i y

2
i

])p

In fact, e(ℓ, ℓ′)p does not depend on ℓ and ℓ′ anymore after working out the ex-
pectations involved. Plugging e(ℓ, ℓ′)p back into E[k̂C(x,y)2] yields the following
pseudo-variance for TensorSRHT:

PV[k̂C(x,y)2] =
1

D

[(
2(x⊤y2)−

d∑
i=1

x2
i y

2
i

)p

− (x⊤y)2p

]

+

(
1− 1

D

)[(
(x⊤y)2 − 1

⌈D/d⌉d− 1

[
(x⊤y)2 −

d∑
i=1

x2
i y

2
i

])p

− (x⊤y)2p

]

=
1

D
PV(p)

Rad. −
(
1− 1

D

)[
(x⊤y)2p −

(
(x⊤y)2 − PV(1)

Rad.

⌈D/d⌉d− 1

)p]
(C.7)

PV(p)
Rad. and PV(1)

Rad. are the Rademacher pseudo-variance (C.5) for a given degree p
and p = 1, respectively.

For stacked TensorSRHT, the pseudo-variance becomes

PV[k̂C(x,y)2] =
1

D
PV(p)

Rad. −
(
c(D, d)

D2

)[
(x⊤y)2p −

(
(x⊤y)2 − PV(1)

Rad.

d− 1

)p]
.

with c(D, d) = ⌊D/d⌋d(d−1)+mod(D, d)(mod(D, d)−1). It can be derived using
the same changes to the above derivation as presented in Section B.2.2.
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Appendix of Chapter 5

D.1 Convex Surrogate Functions for Stacked Ten-

sorSRHT Variances

To extend the applicability of the Incremental Algorithm in Algorithm 4 to Ten-
sorSRHT, we derive here convex surrogate functions for the variances of stacked
TensorSRHT. To this end, we first analyze the variances of stacked TensorSRHT
in Appendix D.1.1. We then derive convex surrogate functions in Appendix D.1.2.

D.1.1 Analyzing the Variances of stacked TensorSRHT

We first derive another form of the variance of stacked TensorSRHT given in
Eq. (3.35) of Theorem 3.5.9, which we will use in a later analysis. Let Φn : Rd →
CD be a complex TensorSRHT sketch of degree n ∈ N satisfying the assumptions
in Theorem 3.5.9 with 0 ≤ q ≤ 1. For q = 1 we recover the real TensorSRHT and
for q = 1/2 the complex one.

As shown in Appendix B.2.2, the approximate kernel of the complex Ten-
sorSRHT can be written as

k̂(x,y) := Φn(x)
⊤Φn(y) =

1

D

B∑
b=1

∑
ℓ∈Ib

n∏
i=1

(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)
,

whereB := ⌈D/d⌉, Ib := {1, . . . , d} for b = 1, . . . , B−1 and Ib := {1, . . . ,mod(D, d)}
for b = B, and sbi,ℓ ∈ Cd are the structured random weights defined in Eq. (B.5).
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We can then write the variance of the approximate kernel as

V[k̂(x,y)] =
1

D2

B∑
b=1

V

[∑
ℓ∈Ib

n∏
i=1

(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)]

=
1

D2

B∑
b=1

∑
ℓ∈Ib

V

[
n∏

i=1

(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)]
︸ ︷︷ ︸

= V
(n)
q

+
1

D2

B∑
b=1

∑
ℓ,ℓ′∈Ib,
ℓ̸=ℓ′

Cov

(
n∏

i=1

(
sb⊤i,ℓx

) (
sb⊤i,ℓy

)
,

n∏
i=1

(
sb⊤i,ℓ′x

) (
sb⊤i,ℓ′y

))
︸ ︷︷ ︸

=: Cov
(n)
q

=
V

(n)
q

D
+

c(D, d)

D2
Cov(n)q = Eq. (3.35), (D.1)

where c(D, d) = ⌊D/d⌋d(d−1)+mod(D, d)(mod(D, d)−1) and the last line follows

from that the values of V
(n)
q and Cov(n)q do not depend on the choice of ℓ, ℓ′ and

b (which can be shown from the arguments in Appendix B.2.2). Here, V
(n)
q is the

variance of the unstructured Rademacher sketch with a single feature in Eq. (3.17)
with p = n, and Cov(n)q is the covariance for distinct indices ℓ, ℓ′ inside each block

b. By comparing Eq. (3.35) and Eq. (D.1), the concrete form of Cov(n)q is given by

Cov(n)q = −

[
(x⊤y)2n −

(
(x⊤y)2 − V

(1)
q

d− 1

)n]
Eq. (D.1) is a useful representation of the variance of TensorSRHT in Eq. (3.35)

for studying its (non-)convexity with respect to D. The following result shows a
range of values of D for which Eq. (3.35) is convex.

Theorem D.1.1. The variance of the TensorSRHT sketch in Eq. (3.35) is convex
and monotonically decreasing with respect to D ∈ {1, . . . , d} and with respect to
D ∈ {kd | k ∈ N}.

Proof. If D ∈ {1, . . . , d}, we have c(D, d) = D(D − 1) in Eq. (D.1). Therefore,
Eq. (D.1) is equal to

1

D
V (n)
q +

(
1− 1

D

)
Cov(n)q =

1

D

(
V (n)
q − Cov(n)q

)
+ Cov(n)q . (D.2)

For two random variables X, Y it generally holds that |Cov(X, Y )| ≤
√

V[X]V[Y ]

by the Cauchy-Schwarz inequality. Hence, we have |Cov(n)q | ≤ V
(n)
q and thus

V
(n)
q −Cov(n)q ≥ 0. Therefore, Eq. (D.2) is proportional to 1/D with a non-negative

coefficient, and thus it is convex and monotonically decreasing for D ∈ {1, . . . , d}.
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Next, supposeD = kd for some k ∈ N, in which case we have c(D, d) = kd(d−1)
in Eq. (D.1). Therefore Eq. (D.1) is equal to

1

kd

(
V (n)
q + (d− 1)Cov(n)q

)
=

1

D

(
V (n)
q + (d− 1)Cov(n)q

)
. (D.3)

The term in the parenthesis is non-negative, because (D.1) is the variance of Ten-
sorSRHT and thus non-negative. Therefore, (D.1) is convex and monotonically
decreasing with respect to D ∈ {kd | k ∈ N}.

As we do next, Theorem D.1.1 is useful for designing a convex surrogate func-
tion for Eq. (3.35), as it shows the range of D on which Eq. (3.35) is already convex
and does not need to be modified.

D.1.2 Convex Surrogate Functions

Based on Eq. (3.35), we now propose a convex surrogate function for the variance
of TensorSRHT in Eq. (3.35). We consider the following two cases separately: i)
Cov(n)q ≤ 0 and ii) Cov(n)q > 0. For each case, we propose a convex surrogate
function.

i) Case Cov(n)q ≤ 0. We define a surrogate function of Eq. (3.35) by concate-

nating the two expressions of Eq. (D.1) for D ∈ {1, . . . , d} and D ∈ {kd | k ∈ N}
given in Eq. (D.2) and Eq. (D.3), respectively, and extend their ranges to the entire
domain D ∈ N:

V
(n)
Surr.(D) :=


1
D

(
V

(n)
q − Cov(n)q

)
+ Cov(n)q if D ≤ d

1
D

(
V

(n)
q + (d− 1)Cov(n)q

)
if D > d.

(D.4)

ii) Case Cov(n)q > 0. We use the expression (D.3) to define a surrogate function

on D ∈ N:

V
(n)
Surr.(D) :=

1

D

(
V (n)
q + (d− 1)Cov(n)q

)
(D.5)

The convexity of Eq. (D.5) immediately follows from V
(n)
q + (d − 1)Cov(n)q ≥ 0,

which holds as we show in the proof of Theorem D.1.1. Note that Cov(n)q > 0 can
only occur when n is even, as shown in Corollary 3.5.10 of Section 3.5.

We defined the surrogate function in Eq. (D.4) by interpolating the variances of
TensorSRHT in Eq. (3.35) for D ∈ {1, . . . , d} and D ∈ {kd | k ∈ N} and extending
the domain to N. In fact, for D ∈ {1, . . . , d} and D ∈ {kd | k ∈ N}, Eq. (D.4) is
equal to Eq. (3.35), as shown in the proof of Theorem D.1.1. Fig. D.1 illustrates
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Figure D.1: Convex surrogate functions in Eq. (D.4) and the variances of Ten-
sorSRHT in (3.35) as a function of the number of random features D, with poly-
nomial degrees n = 1, 2 and input vectors x = y = [

√
1/2,

√
1/2]⊤ (d = 2). For a

comparison, we also plot the variances of the real Rademacher sketch in Eq. (3.7)
and the complex Rademacher sketch in Eq. (3.18).

the convex surrogate function in Eq. (D.4) and the variance of TensorSRHT in
(3.35) when Cov(n)q ≤ 0 holds.

Note that, as mentioned later in Remark D.1.3, the surrogate function in
Eq. (D.4) may not be convex over D ∈ N if the condition Cov(n)q ≤ 0 does not
hold. This is why we defined another convex surrogate function as in Eq. (D.5)
for the case Cov(n)q > 0.

The following theorem shows that the surrogate function in Eq. (D.4) is convex
in the considered case of i) Cov(n)q ≤ 0.

Theorem D.1.2. If Cov(n)q ≤ 0, Eq. (D.4) is convex with respect to D ∈ N.

Proof. As shown in Theorem D.1.1, V
(n)
Surr.(D) = 1

D
(V

(n)
q −Cov(n)q )+Cov(n)q is convex

over D ∈ {1, . . . , d}. Likewise, V (n)
Surr.(D) = 1

D
(V

(n)
q + (d− 1)Cov(n)q ) is convex over

D ∈ [d,∞) ∩ N, since V
(n)
q + (d − 1)Cov(n)q ≥ 0 holds as we show in the proof of

Theorem D.1.1.
Therefore, the proof completes by showing that the concatenated function

V
(n)
Surr.(D) in Eq. (D.4) is also convex over D ∈ {d− 1, d, d+ 1}, i.e.,

1

2

(
V

(n)
Surr.(d− 1) + V

(n)
Surr.(d+ 1)

)
≥ V

(n)
Surr.(d). (D.6)

By using the definition in Eq. (D.4), this inequality is equivalent to

1

2

(
1

d− 1

(
V (n)
q + (d− 2)Cov(n)q

)
+

1

d+ 1

(
V (n)
q + (d− 1)Cov(n)q

))
≥ 1

d

(
V (n)
q + (d− 1)Cov(n)q

)
. (D.7)

Note that we have V
(n)
q + (d− 1)Cov(n)q ≥ 0 , as mentioned earlier. If V

(n)
q + (d−

1)Cov(n)q = 0 holds, then we have V
(n)
Surr.(D) = 0 for D ≥ d by the definition in
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Eq. (D.4), and thus Eq. (D.6) holds (which concludes the proofs). Therefore, we

assume that the inequality to be strict, i.e., V
(n)
q + (d − 1)Cov(n)q > 0. Dividing

the both sides of Eq. (D.7) by (V
(n)
q + (d− 1)Cov(n)q ), we obtain

1

2

(
1

d− 1

V
(n)
q + (d− 2)Cov(n)q

V
(n)
q + (d− 1)Cov(n)q

+
1

d+ 1

)
≥ 1

d
,

which after some rearrangement gives

V
(n)
q + (d− 2)Cov(n)q

V
(n)
q + (d− 1)Cov(n)q

≥ 1− 2

d2 + d
. (D.8)

This inequality holds because we have (d−2)Cov(n)q ≥ (d−1)Cov(n)q , which follows

from our assumption Cov(n)q ≤ 0. Therefore Eq. (D.7) holds.

Remark D.1.3. Theorem D.1.2 shows the convexity of the surrogate function in
Eq. (D.4), assuming Cov(n)q ≤ 0. If this condition does not hold, i.e., if Cov(n)q >
0, then the surrogate function in Eq. (D.4) may not be convex. To see this, let
d = 2,x = (a, 0)⊤ with a > 0, y = (0, b)⊤ with b > 0, and n be even; then we

have V
(n)
q = Cov(n)q = a2nb2n > 0, and the inequality in Eq. (D.8) in the proof of

Theorem D.1.2 does not hold, which implies that the surrogate function in Eq. (D.4)
is not convex.

As mentioned in Section 3.5, the variance of TensorSRHT in Eq. (3.35) be-
comes zero if n = 1 and D ∈ {kd | k ∈ N}, i.e., V[Φ1(x)

⊤Φ1(y)] = 0 holds.
Therefore, because the convex surrogate functions in Eq. (D.4) and Eq. (D.5) are
equal to the variance of TensorSRHT in Eq. (3.35) for D ∈ {kd | k ∈ N}, these
surrogate functions also become zero for n = 1 and D ∈ {kd | k ∈ N}. Thus, the
Incremental Algorithm (Algorithm 4), when used with the surrogate functions in
Eq. (D.4) and Eq. (D.5), will not assign more than D = d random features to the
polynomial degree n = 1. Note that assigning D = d random features is equivalent
to appending the input vectors x and y to the approximate kernel (5.10), which
is called H0/1 heuristic in Kar and Karnick (2012). Therefore, the Incremental
Algorithm with the surrogate functions in Eq. (D.4) and Eq. (D.5) automatically
achieve the H0/1 heuristic.

Finally, we describe briefly how to use the convex surrogate functions in Eq. (D.4)
and Eq. (D.5) in the Incremental Algorithm in Algorithm 4. To this end, we
rewrite Eq. (5.20) using the surrogate functions as follows: (Here, we make the

dependence of V
(n)
q and Cov(n)q on the input vectors x,y ∈ Rd explicit and write
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them as V
(n)
q (x,y) and Cov(n)q (x,y), respectively.)

Eq. (5.20) =


a2n
Dn

(∑
i ̸=j V

(n)
q (xi,xj) + (d− 1)

∑
i ̸=j Cov

(n)
q (xi,xj)

)
if
∑

i ̸=j Cov
(n)
q (xi,xj) > 0 or Dn > d,

a2n
Dn

(∑
i ̸=j V

(n)
q (xi,xj)−

∑
i ̸=j Cov

(n)
q (xi,xj)

)
+ a2n

∑
i ̸=j Cov

(n)
q (xi,xj)

otherwise.

After precomputing the constants
∑

i ̸=j V
(n)
q (xi,xj) and

∑
i ̸=j Cov

(n)
q (xi,xj) for

each n ∈ {1, . . . , p}, which can be done in O(m2) time, one can directly use the
above modification of Eq. (5.20) in the objective function in Eq. (5.19). In this way,
we adapt the objective function in (5.19) to be convex, so that the Incremental
Algorithm in Algorithm 4 is directly applicable.

D.2 Additional Experiments

We present here additional experimental results, supplementing those in Chapter 5.
Table D.1 shows the effects of applying zero-centering to input vectors in the
polynomial kernel approximation experiments. Fig. D.2 and Fig. D.3 show the
results of additional experiments on GP regression. Fig. D.4 and Fig. D.5 show
the results of additional experiments on GP classification.

MNLL Rel. Frob. Error
Non-centred Centred Non-centred Centred

Dataset SRF Gaus. Opt. Macl. Rad. SRF Gaus. Opt. Macl. Rad. SRF Gaus. Opt. Macl. Rad. SRF Gaus. Opt. Macl. Rad.

Boston 3.410±0.37 3.447±0.38 3.449±0.62 3.161±0.28 0.044±0.02 0.212±0.15 0.356±0.05 0.421±0.06
Concrete 3.779±0.07 3.811±0.04 3.660±0.12 3.542±0.07 0.019±0.01 0.276±0.17 0.610±0.07 0.482±0.03
Energy 6.090±0.12 6.090±0.12 5.116±0.20 5.012±0.13 0.003±0.00 0.222±0.14 0.507±0.08 0.484±0.05
kin8nm -0.203±0.07 -0.310±0.03 -0.203±0.07 -0.323±0.03 0.946±0.04 0.525±0.04 0.947±0.03 0.521±0.03
Naval -6.069±0.03 -6.066±0.03 -8.083±0.04 -7.788±0.10 0.040±0.03 0.183±0.06 0.112±0.04 0.384±0.11
Powerplant 3.064±0.03 3.061±0.06 3.282±0.14 3.400±0.73 0.001±0.00 0.062±0.04 0.609±0.09 0.527±0.10
Protein 3.233±0.01 3.233±0.01 3.072±0.02 3.060±0.02 0.000±0.00 0.002±0.00 0.277±0.05 0.429±0.14
Yacht 4.317±0.45 4.478±0.45 3.773±0.21 3.844±0.28 0.028±0.01 0.276±0.11 0.512±0.04 0.484±0.03

Cod rna 0.307±0.00 0.308±0.00 0.288±0.06 0.151±0.01 0.022±0.01 0.087±0.05 0.641±0.05 0.467±0.05
Covertype 0.821±0.01 - 0.650±0.01 0.639±0.01 0.024±0.01 - 0.361±0.01 0.300±0.01
Drive 1.446±0.02 1.453±0.03 0.677±0.02 0.497±0.01 0.068±0.02 0.135±0.05 0.348±0.01 0.312±0.02
FashionMNIST 0.353±0.00 0.364±0.00 0.364±0.00 0.361±0.00 0.029±0.00 0.062±0.01 0.099±0.00 0.104±0.01
Magic 0.453±0.01 0.452±0.01 0.381±0.02 0.350±0.01 0.068±0.01 0.147±0.05 0.430±0.03 0.418±0.04
Miniboo 0.253±0.01 - 0.239±0.01 0.213±0.01 0.027±0.01 - 0.214±0.01 0.229±0.02
MNIST 0.076±0.00 0.074±0.00 0.290±0.02 0.353±0.09 0.073±0.00 0.082±0.00 0.085±0.00 0.089±0.01
Mocap 0.360±0.01 0.334±0.01 0.357±0.02 0.289±0.01 0.115±0.01 0.187±0.04 0.414±0.01 0.290±0.02

Table D.1: GP regression (top) and classification (bottom) for centred vs. non-
centred data with D = 5d features. Non-centred Miniboo and Covertype led to
numerical issues for Maclaurin (no scores reported).
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Figure D.2: Additional results of the experiments in Section 5.4.3 on approximate
GP regression with a high-degree polynomial kernel. Lower values are better
for all the metrics. For each dataset, we show the number of random features
D ∈ {1d, 3d, 5d} used in each method on the horizontal axis, with d being the
input dimensionality of the dataset. We put the legend labels and the bars in the
same order.
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Figure D.3: Additional results of the experiments in Section 5.4.3 on approximate
GP regression with a Gaussian kernel. Lower values are better for all the metrics.
For each dataset, we show the number of random features D ∈ {1d, 3d, 5d} used
in each method on the horizontal axis, with d being the input dimensionality of
the dataset. We put the legend labels and the bars in the same order.
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Figure D.4: Additional results of the experiments in Section 5.4.3 on approximate
GP classification with a high-degree polynomial kernel. Lower values are better
for all the metrics. For each dataset, we show the number of random features
D ∈ {1d, 3d, 5d} used in each method on the horizontal axis, with d being the
input dimensionality of the dataset. We put the legend labels and the bars in the
same order.
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Figure D.5: Additional results of the experiments in Section 5.4.3 on approximate
GP classification with a Gaussian kernel. Lower values are better for all the
metrics. For each dataset, we show the number of random featuresD ∈ {1d, 3d, 5d}
used in each method on the horizontal axis, with d being the input dimensionality
of the dataset. We put the legend labels and the bars in the same order.
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Appendix of Chapter 6

E.1 Proof of Theorem 6.2.2

We now derive the limiting kernel when the optical random feature map is given
by Φm(x) =

1√
D
|Ux|m for some m = 2s and s ∈ N. Thus, we work out km(x,y) =

E[Φm(x)
⊤Φm(y)] and obtain:

km(x,y) =

∫
|x⊤u|m|y⊤u|m p(u)du

=

∫
∥x∥m∥y∥m|u1|m|u1 cos θ + u2 sin θ|m p(u)du

= ∥x∥m∥y∥m
∫

|u1|m|u1 cos θ + u2 sin θ|m p(u)du

with p(u) = CN (0, σ2I).
Now we work out the term A = |u1 cos θ+u2 sin θ|2s (with m = 2s) as we focus

on even powers:

A = (u1 cos θ + u2 sin θ)
s(u1 cos θ + u2 sin θ)

s

=

( s∑
j=0

(
s

j

)
(u1 cos θ)

j(u2 sin θ)
s−j

)( s∑
i=0

(
s

i

)
(u1 cos θ)

i(u2 sin θ)
s−i

)
=
∑
i

∑
j

(
s

j

)(
s

i

)
uj
1u

i
1u

s−j
2 us−i

2 (cos θ)i+j(sin θ)2s−i−j

One can notice that E[A] =
∑

i

∑
j

(
s
j

)(
s
i

)
E[uj

1u
i
1u

s−j
2 us−i

2 ] has its cross terms equal
to 0: when i ̸= j, the expectation inside the sum is equal to zero because u1 and
u2 are i.i.d (their correlation is then equal to 0) or we can see this by rotational
invariance (any complex random variable with a phase uniform between 0 and 2π
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has a mean equal to zero). Therefore, we obtain:

E[A] =
s∑

i=0

(
s

i

)2

|u1|2i| cos θ|2i|u2|2(s−i)| sin θ|2(s−i)

Using the computation of E[A], we can therefore deduce the analytical formula for
the kernel:

k2s(x,y)

∥x∥m∥y∥m
=

∫
|u1|2s

s∑
i=0

(
s

i

)2

|u1|2i| cos θ|2i|u2|2(s−i)| sin θ|2(s−i) p(u)du

=
s∑

i=0

(
s

i

)2

E
[
|u1|2(s+i)| cos θ|2i

]
E
[
|u2|2(s−i)| sin θ|2(s−i)

]
=

s∑
i=0

(
s

i

)2

| cos θ|2i 2s+iσ∗2(s+i) Γ(s+ i+ 1) | sin θ|2(s−i) 2s−iσ∗2(s−i) Γ(s− i+ 1)

=
s∑

i=0

(
s

i

)2

22sσ∗4s | cos θ|2i | sin θ|2(s−i)Γ(s+ i+ 1)Γ(s− i+ 1),

where Γ(·) is the Gamma function and σ∗2 = 1
2
σ2 being the variance of the real

and imaginary parts of u. W.l.o.g. we will use σ2 = 1 and thus σ∗2 = 0.5 in the
following.

We can simplify this formula, by noticing that sin2 θ = 1 − cos2 θ. The latter
formula then becomes:

k2s(x,y)

∥x∥m∥y∥m
=

s∑
i=0

(
s

i

)2

| cos θ|2i (1− cos2 θ)(s−i) 22sσ∗4s Γ(s+ i+ 1)Γ(s− i+ 1)

The new term can be expanded using a binomial expansion: (1 − cos2 θ)(s−i) =∑s−i
t=0(− cos2 θ)t, leading to

k2s(x,y)

∥x∥m∥y∥m
=

s∑
i=0

s−i∑
t=0

(
s

i

)2

(s+ i)!(s− i)!

(
s− i

t

)
(−1)t cos2(i+t) θ

Using the change of variable a = i+ t and keeping i = i, we obtain:

k2s(x,y)

∥x∥m∥y∥m
=

s∑
a=0

[ a∑
i=0

(
s

i

)2

(s+ i)!(s− i)!

(
s− i

a− i

)
(−1)a−i

]
cos2a θ

We focus on the term between the parenthesis that we will call Ta:

Ta =
a∑

i=0

s!2

(s− i)!2i!2
(s+ i)!(s− i)!

(s− i)!

(a− i)!(s− a)!
(−1)a−i

=
a∑

i=0

(s!)2
(s+ i)!

(i!)2(a− i)!(s− a)!
(−1)a−i

= (s!)2
(
s

a

)
(−1)a

a∑
i=0

(
a

i

)(
s+ i

i

)
(−1)i
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Using the upper negation (
(
a
b

)
= (−1)b

(
b−a−1

b

)
) so here

(
s+i
i

)
=
(
i−i−s−1

i

)
(−1)i =(−s−1

i

)
(−1)i leads to

Ta = (s!)2
(
s

a

)
(−1)a

a∑
i=0

(
a

i

)(
−s− 1

i

)
(E.1)

= (s!)2
(
s

a

)
(−1)a

a∑
i=0

(
a

i

)(
−s− 1

−s− 1− i

)
(E.2)

Now we can use the Vandermonde identity
∑n

i=0

(
a
i

)(
b

n−i

)
=
(
a+b
n

)
, yielding:

Ta = (s!)2
(
s

a

)
(−1)a

(
a− s− 1

−s− 1

)
= (s!)2

(
s

a

)
(−1)a

(
a− s− 1

a

)
(E.3)

= (s!)2
(
s

a

)(
s

a

)
= (s!)2

(
s

a

)2

(E.4)

where in the last line we used again the upper negation formula.
This leads to the desired result for m = 2s

k2s(x,y) = ∥x∥m∥y∥m
s∑

i=0

(s!)2
(
s

i

)2

cos2i θ
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