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Abstract

Average Value-at-Risk (AVaR) is a potential alternative to Value-at-
Risk in the financial regulation of banking and insurance institutions.
To understand how AVaR influences a company’s investment behav-
ior, we study portfolio optimization under the AVaR constraint. Our
main contribution is to derive analytical solutions for non-concave
portfolio optimization problems under the AVaR constraint in a com-
plete financial market by quantile formulation and the decomposition
method, where the non-concavity arises from assuming that the com-
pany is surplus-driven. Given the AVaR constraint, the company takes
three investment strategies depending on its initial budget constraint.
Under each investment strategy, we derive the fair return for the com-
pany’s debt holders fulfilling the risk-neutral pricing constraint in closed
form. Further, we illustrate the above analytical results in a Black-
Scholes market. We find that the fair return varies drastically, e.g.,
from 4.99% to 37.2% in different situations, implying that the com-
pany’s strategy intimately determines the default risk faced by its debt
holders. Our analysis and numerical experiment show that the AVaR
constraint cannot eliminate the company’s default risk but can reduce
it compared with the benchmark portfolio. However, the protection
for the debt holders is poor if the company has a low initial budget.

Keywords: Average Value-at-Risk, Non-concave portfolio optimization,
Risk-neutral pricing constraint, Quantile formulation
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1 Introduction

Average Value-at-Risk (AVaR), a.k.a. Tail Value-at-Risk, or Conditional
Value-at-Risk, is an alternative risk measure to Value-at-Risk (VaR) for mar-
ket risk in banking regulation (see the report of Basel Committee on Banking
Supervision [7]).1 Meanwhile, it is also a significant risk measure in insur-
ance regulation (see Solvency II and the Swiss Solvency Test). Mathematically,
AVaR measures the average quantile of a random variable in its left tail, which
can be interpreted as a portfolio’s expected loss in the worst economic states.
AVaR has several competent properties, e.g., it is a coherent risk measure
[1, 4], and it encourages portfolio diversification and punishes risk concentra-
tion [34], which make AVaR a preferable risk measure in the current framework
of financial regulation.

To understand the impact of financial regulation on a company’s investment
behavior, there is growing literature studying portfolio optimization problems
using the risk measure (VaR or AVaR) as a constraint. A popular frame-
work is to consider an expected utility maximization problem under one or
multiple risk constraints. For example, since the seminal work by Basak and
Shapiro [6], portfolio optimization problems under the VaR constraint have
been extensively studied ([12, 13, 16]).2 However, compared to VaR, the num-
ber of relevant studies on companies’ portfolio choices under AVaR is much
less. A recent work by Wei [36] studies portfolio optimization under the AVaR
constraint in the standard framework of expected utility theory.

This paper contributes to the above stream of literature by providing
analytical solutions for portfolio optimization problems under the AVaR con-
straint. Different from [36], we consider a non-concave utility maximization
problem under the AVaR constraint. Non-concave settings offer the standard
expected utility framework more flexibility to incorporate behavioral observa-
tions or explore contracts with more complicated payoff designs. For instance,
one can consider an S-shape utility function from cumulative prospect theory
[33] to model loss aversion [3, 8, 18], introduce a benchmark to asset alloca-
tion problems [5], or construct non-linear contingent payoff functions [10, 11].
In the literature, a non-concave utility maximization problem without risk
constraints has been tackled by different methods, e.g., the concavification
method in [10] and [30], the decomposition method in [25] and [17], and the
Lagrangian approach in [8], [5] and [11]. However, regarding incorporating risk
constraints, only a few recent studies investigate the non-concave optimiza-
tion under the VaR constraint [18, 29]. The models in [17] and [3] analyze
the impact of AVaR on non-concave optimization in restrictive settings. The
model in [3] illustrates that the AVaR constraint is useless in constraining

1These different terminologies lead to the same mathematical concept although some researchers
may prefer one term over the others depending on specific problems. This paper considers a
continuous probability space, where these terminologies define the same function. We choose the
name AVaR to be consistent with Föllmer and Schied [21].

2For instance, [13, 16] extend the portfolio optimization problem to a multi-period setting with
multiple VaR constraints. [12] considers the portfolio optimization problem under a combined VaR
and portfolio insurance constraint.
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the company’s investment behavior, assuming that the company can incur an
arbitrarily large loss.3 In contrast, we consider a company with limited liabil-
ity and non-negative wealth. We show that AVaR can reduce the company’s
default probability compared with the benchmark portfolio. The analysis in
[17] restricts the AVaR constraint to the affine or the convex part of the prob-
lem. To incorporate all possible solutions, we allow for an arbitrary AVaR
constraint that can intervene in the affine and the concave part of the prob-
lem. Our study compensates for the existing works on non-concave portfolio
optimization under the AVaR constraint by providing full explicit treatment.

Non-concavity and the AVaR constraint make it nontrivial to solve the
optimization problem explicitly. The major challenge is that the AVaR con-
straint as a quantile-based function is defined on the real interval [0, 1], while
the expected (non-concave) utility function to be maximized is defined on the
physical probability space. Hence, to tackle the constrained optimization prob-
lem, we should either construct an equivalent objective function on the real
interval [0, 1] or transfer the AVaR constraint to equivalent risk constraints on
the physical probability space. A recent study by Chen, Stadje, and Zhang [14]
follows the second method and transfers the AVaR constraint to equivalent
Expected Shortfall constraints, also called Limited Expected Loss constraints,
on the physical probability space.4 Then, by solving the optimization prob-
lems under the equivalent ES constraints first, they derive the set of optimal
solutions that contain the one under the AVaR constraint. Different from their
method, we construct an equivalent objective function on the real interval
[0, 1] by quantile formulation and solve the non-concave optimization problem
under the AVaR constraint by the decomposition method. We compare and
discuss the connection between the two methods in Section 4.

Quantile formulation, formally introduced by He and Zhou [23] and Xu
[37], attempts to solve complicated portfolio optimization problems with
law-invariant objectives explicitly. The idea is to construct an equivalent opti-
mization problem on [0, 1] based on the quantile functions of the portfolio. It
has been applied to study Yaari’s dual problem, rank-dependent utility maxi-
mization, cumulative prospect theory, and utility maximization under weighted
VaR; for details, see [23, 32, 35, 36].

The decomposition method is used in [25], and [17] to address the non-
concavity along with an S-shape utility function or a non-linear contingent
payoff function. The idea is to decompose the choice variable (e.g., the termi-
nal wealth of the company) into two random variables, X and Y , such that
the non-concave objective function is strictly concave in X, and affine or con-
vex in Y . Thus, after solving two sub-optimization problems (i.e., maximizing
the concave and minimizing the convex), determining the global maximum is
equivalent to finding the optimal decomposition. However, due to the AVaR
constraint, the optimal decomposition involves several cases depending on the

3The company’s wealth can be negative in this model, but its economic interpretation is unclear.
4Under some conditions, the AVaR constraint is equivalent to the Expected Shortfall constraint.

See Lemma 4.1 in [14].
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initial budget constraint and hence is complicated to determine. We provide
detailed proofs in the appendix.

We motivate our model by considering optimal investment choices for a
surplus-driven financial company with limited liability under the AVaR con-
straint. The company’s surplus, i.e., the positive difference between its asset
and its liability, is non-linear in the terminal asset. Thus, assuming the com-
pany is surplus-driven, the corresponding utility maximization problem is
non-concave. This setting arises from the fact that most managerial boards of
financial companies represent their shareholders’ benefits, which are positive
if there are positive surplus. By explicitly distinguishing the debt holders’ and
the shareholders’ benefits, it is straightforward to analyze whether and how
the financial regulation can protect the debt holders’ benefits. This setting is
in line with Chen, Stadje and Zhang [14].

We find that the surplus-driven company adopts three different investment
strategies depending on its initial budget constraint. The multiple structures
of optimal solutions in the non-concave setting are different from the unique
structure of optimal solutions in the standard concave setting; See, e.g., [14]
and [18]. Further, each optimal solution has a set of zero assets in its most left
tail, which implies that the company will default in the worst financial states.
This observation shows two important information: a) The AVaR constraint
alone is not enough to prevent the company’s default in the worst scenarios;
b) Since the set of zero assets depends on the initial budget constraint, the
default risk faced by the debt holders varies in different solutions.

According to these findings, a natural question is how the AVaR constraint
protects the debt holders in different cases. Following [11], we derive the fair
return for the debt holders fulfilling the risk-neutral pricing constraint. The
fair return reflects the magnitude of the default risk faced by the debt holders,
that is, the higher the fair return, the more significant the default risk. We
conduct numerical experiments in a Black-Scholes market. Our results show
that the AVaR constraint can reduce the company’s default probability with
each investment strategy compared with the benchmark portfolio. However,
if the company has a low initial budget, the AVaR constraint provides poor
protection for the debt holders.

There exist abundant studies comparing VaR and AVaR as risk measures
in financial regulation. However, most studies compare them from the view-
point of statistical properties. For instance, AVaR obeys sub-additivity (i.e.,
the risk of combining portfolios is smaller than not combining), and hence is a
coherent risk measure, which is superior to VaR, see [1, 2, 4]. In contrast, VaR
has elicitability (i.e., estimating VaR is equivalent to minimizing the objective
forecasting function [27]), and hence can be back-tested, which is more advan-
tageous than AVaR. For a more comprehensive comparison of VaR and AVaR,
see, for example, [19, 20] and the references therein. This paper adds one more
degree to comparing VaR and AVaR as standard risk measures in financial
regulation. Our results confirm the finding in Chen, Stadje and Zhang [14]
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that VaR and AVaR have similar regulatory effects in the non-concave portfo-
lio optimization problem, which is to reduce the company’s default probability
but cannot fully illuminate it. Further, our numerical examples show that the
AVaR constraint provides poor protection for the debt holders if the company
has a low initial budget.

The paper proceeds as follows. Section 2 introduces the definition of the
AVaR constraint and the constrained portfolio optimization problem. Section 3
contains the optimal solution for the constrained optimization problem. Espe-
cially, this section demonstrates how to apply quantile formulation and the
decomposition to solve non-concave optimization. Section 4 discusses the con-
nection between the terminal wealth method in Chen, Stadje and Zhang [14]
and our method. Section 5 provides numerical illustrations in a Black-Scholes
market, including the pre-horizon wealth and the optimal investment strate-
gies. The same section also discusses the fair return for the debt holders under
each optimal solution. Section 6 concludes. Technical proofs are put in the
appendix.

2 Model Setup

2.1 The financial market

We assume a complete financial market without transaction costs in continuous
time that contains one traded risk-free asset S0 (the bank account) and m
traded risky assets denoted by the stochastic processes S = (S1, · · · , Sm)

′
.5 We

fix a filtered probability space (Ω,F = (Ft)t∈[0,T ],P), T < ∞. The unique local
martingale measure is denoted by Q. The state price density process is defined

by ξT := S0(0)dQ
S0(T )dP .

6 The financial institution endowed with an initial capital x0

chooses an investment strategy that we describe by πi(t), the units of ith risky
asset in the portfolio at time t. We assume that π(t) = (π1(t), · · · , πm(t))
is adaptive with respect to the filtration F = (Ft)t∈[0,T ]. The strategy is
self-financing (i.e., no intermediate income) such that

Xπ
t = X0 +

m∑
i=0

∫ t

0

πi(s)dSi(s) = X0 +

∫ t

0

π(s)dS(s), X0 = x0 > 0.

In addition, the set of attainable terminal wealth is defined by

X := {Xπ
T ≥ 0, is FT -measurable, replicable, and E[ξTXπ

T ] = x0}.7

5S is an m-dimensional vector and ′ denotes the transposed sign.
6The state price density ξT is defined in this way such that the discounted asset process is a

local martingale under the risk-neutral probability measure Q.
7E[] denotes the expectation under the physical probability P.
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Notice that in a complete financial market, it is sufficient to determine the
optimal terminal wealth from the set of attainable wealth [15, 26], and the cor-
responding investment strategy can be obtained by the martingale approach.8

Hence, from now on we omit the dependence of XT on π and focus on find-
ing the optimal terminal wealth. Without ambiguity, we use ξ instead of ξT to
denote the state price density at time T .

2.2 The optimal asset allocation problem with the AVaR
constraint

We consider a surplus-driven financial institution operating in [0, T ], T < ∞.
At time 0, the company’s asset consists of the equity, E0, from the shareholders
and the liability, D0, from the debt holders. Hence, at time zero, the company’s
asset value is given by x0 = E0+D0. We assume that the company has limited
liability, i.e., the terminal payoff to the debt holders at horizon T is given by

φL(XT ) = min(DT , XT ).

The debt holders are fully paid back if the terminal asset of the company can
cover the promised payoff DT to them. Otherwise, the debt holders have the
priority to claim the residual of the company’s asset. In contrary, the equity
holders obtain the positive difference between the company’s asset and the
payoff to the debt holders, i.e.,

φE(XT ) = XT − φL(XT ) = max(XT −DT , 0) =: (XT −DT )
+.

We assume that the debt holders obtain a deterministic return, i.e., DT =
D0 exp(gT ), g > 0. Since the company has limited liability, the debt holders
face the default risk of the company. Therefore, the return g has to be larger
than the risk-free return in the financial market, i.e., g > r > 0, due to the no-
arbitrage assumption. Intuitively, the return to the debt holders should reflect
the default risk faced by them, which leads to the so-called fairness contract
problem [11]. We will discuss how to determine the fair return to the debt
holders in Section 5.

In line with Chen, Stadje and Zhang [14], we assume that the surplus-driven
financial company makes investment decision maximizing the expected utility
of the surplus, i.e., the positive difference between the company’s asset and
its debt. This is a reasonable assumption since, in reality, the board members
of a company usually represent the benefits of its shareholders. Considering
the AVaR constraint in the financial regulation, we introduce the following
optimization problem,

8After determining the optimal terminal wealth, one can calculate the optimal investment strat-
egy for a constant relative risk aversion (CRRA) investor through a standard procedure via Itô’s
Lemma in a Black-Scholes market, see the examples in [5, 6, 10, 12].
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Problem AVaR

max
XT∈X

E[U((XT −DT )
+)], subject to

1

α

∫ α

0

V aRXT
(β)dβ ≥ L, E[XT ξ]=x0,

(1)

with V aRXT
(β) := inf{x|P(XT ≤ x) ≥ β},

where U(·) is the utility function of the company’s managerial board, which
is strictly increasing, strictly concave and twice continuously differentiable.
The value L > 0 is the regulatory threshold for the average quantile of the
terminal wealth in the left tail. Thus, the optimal terminal asset X∗

T (if it
exists) maximizes the expected utility of the company’s surplus, and at the
same time, has a minimum average quantile L in the worst financial scenarios.

2.3 Technical Assumptions

Before proceeding to the optimal solution for the Problem AVaR (1), we
present several technical assumptions for the optimization problem.

Assumption 1: The utility function satisfies the Inada and Asymptotic
Elasticity (AE) conditions:

Inada: U ′(0) = lim
x→0

U ′(x) = ∞, U ′(∞) = lim
x→∞

U ′(x) = 0, (2)

AE: lim
x→∞

sup
xU ′(x)

U(x)
< 1, (3)

where U ′(·) denotes the first derivative of the utility function, also called the
marginal utility.

Assumption 2: Letting I(·) = (U ′)−1(·) denote the inverse function of the
marginal utility, we assume that

E[U(I(λξ)] < ∞, E[ξI(λξ)] < ∞,

where λ > 0 is a positive real number.

Assumption 3: The state price density ξ is atomless. In addition,

ess inf ξ := inf{c ∈ R|P(ξ < c) > 0} = 0, (4)

ess sup ξ := sup{c ∈ R|P(ξ > c) > 0} = +∞. (5)

Let Fξ(·) and F−1
ξ (·) denote the cumulative distribution function and its

inverse function (i.e., the quantile function of ξ), respectively. We assume that
F−1
ξ (·) is continuous. Since ξ is assumed to be atomless, we have that F−1

ξ (·)
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is strictly increasing. Moreover,

F−1
ξ (0) = 0, F−1

ξ (1) = +∞. (6)

These are standard technical assumptions when dealing with a utility maxi-
mization problem in a complete financial market; See, for instance, [23, 36].
Later we will illustrate the optimal solutions in a Black Scholes financial mar-
ket (Section 5), where the state price density ξ is log-normal distributed and
satisfies the above assumptions.

Assumption 4: The utility function is bounded from below, so we assume
U(0) = 0 without loss of generality. A bounded utility function means that
the company feels “ finite pain” by incurring default in the worst financial
scenarios, indicating that default risk exists. In addition, the Problem AVaR
(1) is law invariant. Thus, adding a finite constant to the utility function will
not change the optimal solution.

For the Problem AVaR (1), an unbounded utility function (U(0) = −∞)
will lead to a trivial solution. The decision-maker will take a portfolio insurance
strategy in the worst financial scenarios in the first place, implying that the
regulation is redundant. See Chen, Stadje and Zhang [14].

3 The optimal solution for the Problem (1)

The major challenge in solving the Problem AVaR (1) is that the maximization
problem and the AVaR constraint are defined in different sets. To be concrete,
the expected utility to be maximized is a function of the terminal wealth XT ,
defined on the probability space Ω, while the AVaR constraint is a quantile
function defined on the real interval [0, 1]. To proceed with the Problem AVaR
(1), we can either transfer the quantile-based AVaR constraint to an equivalent
terminal wealth-based constraint defined on the probability space Ω, or transfer
the terminal wealth-based maximization problem to an equivalent quantile-
based maximization problem for functions defined on [0, 1]. Chen, Stadje and
Zhang [14] study the first method. With this method, they derive a set of
solutions that include the optimal solution for the Problem AVaR (1). However,
this method is not enough to determine the exact optimal solution. Our work
applies the second method to provide the unique optimal solution for the
Problem AVaR (1). Later, we also discuss the connection between the two
methods in Section 4.

3.1 Quantile formulation

Note that the expected utility is law-invariant, i.e., different random vari-
ables with the same distribution will give the same expected utility. Since the
quantile function of a random variable always has the same distribution as
the original random variable, the optimization problem based on the quantile
function of the terminal wealth is equivalent to the original problem. After
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obtaining the optimal quantile function, we can determine the optimal terminal
wealth via its unique relationship with the optimal quantile function in a com-
plete financial market. This procedure is called quantile formulation ([23, 37]).
Moreover, Proposition C.1 in Jin and Zhou [25] gives that if Q∗

X(·) is the opti-
mal solution to the equivalent quantile-based optimization problem, then the
optimal terminal wealth to the original optimization problem is given by

X∗
T = Q∗

X(1− Fξ(z)), z ∈ [0, 1]. (7)

A general case involving the distortion of the probability measure can be found
in Xu [37]. Equation (7) indicates that the optimal terminal wealth is decreas-
ing with the state price density, i.e., the higher the state price density, the
lower the terminal wealth. This decreasing relationship is reasonable because
the state price density represents the price for the Arrow-Debreu security.9 A
higher price of the Arrow-Debreu security implies a lower return for this state
and vice versa.

Quantile formulation provides a different perspective on the terminal
wealth-based expected utility maximization problem. It has been applied in
solving, e.g., a rank-dependent utility maximization problem [9] or a concave
utility maximization problem under the AVaR constraint [36]. In this work,
we apply quantile formulation to solve the non-concave utility maximization
problem under the AVaR constraint.

3.2 The benchmark problem

We first study the unconstrained non-concave utility maximization problem,
i.e., the benchmark problem. The benchmark problem is given by

max
XT∈X

E[U((XT −DT )
+)], subject to E[XT ξ] = x0. (8)

The optimal solution to the benchmark problem (8) is given in the following

proposition. Let F̃ (z) = F−1
ξ (1− z), z ∈ [0, 1].

Proposition 1 Let 1A(·) be an indicator function on a set A such that

1A(x) =

{
1, if x ∈ A;

0, otherwise.

Let λB > 0 and z∗D ∈ (0, 1) satisfy the following two equations:

− U(I(λBF̃ (z∗D))) + λBI(λBF̃ (z∗D))F̃ (z∗D) + λBF̃ (z∗D)DT = 0, (9)∫ 1

z∗
D

(I(λBF̃ (z)) +DT )dz = x0. (10)

9The Arrow-Debreu security, a.k.a state-price security, is a security that pays one unit of a
numeraire (e.g., dollar) if a particular state occurs and pays zero if other states occur.
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Then, the optimal solution to the benchmark problem (8) is given by

XB
T = (I(λBξ) +DT )1ξ<ξ∗D

, (11)

where ξ∗D = F̃ (z∗D).

Note that the benchmark problem has been extensively studied in the liter-
ature by different methods, e.g., the concavification [10, 30] or the Lagrangian
approach [5, 8, 14]. The optimal solution (Proposition 1) is not new to the lit-
erature. However, we are particularly interested in obtaining this solution by
quantile formulation. The reasons are the following:

1. Quantile formulation alone is not enough to solve the Problem AVaR (1) and
the benchmark problem (8) because the utility of surplus U((XT −DT )

+)
is not strictly concave. For this, we will apply the decomposition method.
Different from previous works, we apply the idea of decomposition to the set
of quantile functions. Moreover, we find the optimal decomposition through
the first-order condition, which has an intuitive interpretation. The bench-
mark problem is much simpler than the Problem AVaR (1). Hence, we will
showcase the technique using the benchmark problem as an example.

2. In addition to the technical challenge, non-concave utility maximization
also brings new economic implications. Assuming that the utility function
is bounded from below, a surplus-driven company will inevitably default
in the worst financial scenarios. Having the benchmark behavior in mind
is necessary to understand the economic impact of the AVaR constraint on
the surplus-driven company.

In the next section, we demonstrate solving the benchmark problem (8) by
quantile formulation and the decomposition method.

3.3 The equivalent quantile-based benchmark problem

Let Q denote the set of all quantile functions QX(z) of the attainable terminal
wealth (Section 2.1), i.e.,

QX(z) := inf{x|P(X ≤ x) ≥ z, }, z ∈ [0, 1]; Q := {QX(z), z ∈ [0, 1]|X ∈ X}.

The quantile-based benchmark problem is given by

max
QX∈Q

∫ 1

0

U((QX(z)−DT )
+)dz, subject to

∫ 1

0

QX(z)F̃ (z)dz = x0. (12)

Observe that

(QX(z)−DT )
+ =

{
QX(z)−DT > 0, if QX(z) > DT ,

0, if QX(z) ≤ DT .
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Given a terminal debt DT , we define the inverse of a quantile function at DT

as follows:

z(DT ) ≡ Q−1
X (DT ) := max{z ∈ (0, 1)|QX(z) ≤ DT }.

Since quantile functions are non-decreasing, we have that QX(z) > DT if
z > z(DT ). Let us consider an arbitrary probability zD ∈ [0, 1] and define a
subset of quantile functions in the following way:

Q(zD) := {QX(z) ∈ Q|z(DT ) ≤ zD}, Q =
⋃

zD∈[0,1]

Q(zD).

Note that the quantile functions in Q(zD) are larger thanDT on z > zD. More-
over, the union of the sets Q(zD), zD ∈ [0, 1] is the set of quantile functions of
the attainable terminal wealth.

In addition, we express the quantile functions in set Q(zD) in the following
way:

QX(z) = Q1
X(z)1zD<z≤1 +Q2

X(z)10≤z≤zD , QX(z) ∈ Q(zD), (13)

where Q1
X(·) and Q2

X(·) are both non-decreasing functions. We have that
Q1

X(zD) ≥ DT ≥ Q2
X(zD). Writing the quantile function in this way enables us

to decompose the original problem (12) into the following three sub problems:
P1:

max
QX(z)∈QD

∫ 1

zD

U(QX(z)−DT )dz, subject to

∫ 1

zD

QX(z)F̃ (z)dz = x+
0 .

P2:

min
QX(z)∈QD

∫ zD

0

QX(z)F̃ (z)dz = x0 − x+
0 .

P3:

max
zD∈[0,1]

max
QX(z)∈QD

∫ 1

zD

U(QX(z)−DT )dz, subject to

∫ 1

0

QX(z)F̃ (z)dz = x0.

Thus, the original non-concave optimization problem (12) has been decom-
posed into a concave maximization problem on (zD, 1] (P1 ), and a minimiza-
tion problem on [0, zD] (P2 ). In P3, we determine the global optimal solution
by finding the optimal zD ∈ [0, 1], which is a key component in the quantile
function (13).

Remark 1:

The decomposition method is discussed in [25] and [17], where the terminal
wealth is decomposed to two random variables, X and Y , such that the utility
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function is strictly concave in X, and convex in Y . Our idea of decomposi-
tion is similar. While [25] and [17] focus on the terminal wealth, we focus
on decomposing the quantile function into two non-decreasing functions on
disjoint sets.

Since P1 is concave maximization, it can be solved by the standard
Lagrangian approach. P2 is trivial that Q2

X(z) = 0, z ∈ [0, zD] minimizes the
cost on [0, zD]. Thus, given a zD ∈ [0, 1], the argmax to P1 and P2 is given by

Q∗
X(zD) = (I(λBF̃ (z)) +DT )1zD<z≤1. (14)

Recall that F̃ (z) = F−1
ξ (1 − z), z ∈ [0, 1]. In P3, we determine the optimal

zD to obtain the global argmax. Because of (14), P3 reduces to a concave
maximization problem

max
zD∈[0,1]

∫ 1

zD

U(Q∗
X(zD)−DT )dz, subject to

∫ 1

zD

Q∗
X(zD)F̃ (z)dz = x0.

Given a λ > 0, the Lagrangian of P3 is given by the following,

G(zD) =

∫ 1

zD

U(Q∗
X(zD)−DT )dz − λ

∫ 1

zD

Q∗
X(zD)F̃ (z)dz. (15)

The first order condition is given by

G′(zD) = −U(Q∗
X(zD)−DT ) + λQ∗

X(zD)F̃ (zD)

= −U(I(λF̃ (zD)) + λF̃ (zD)I(λF̃ (zD)) + λF̃ (zD)DT = 0. (16)

The following lemma is useful to discuss (16). The proof of Lemma 3.1 is given
in Appendix A.

Lemma 3.1 The utility function satisfying the Inada (2) and AE (3) conditions has
the following features:

1. Given a constant d > 0, the function, H(x) = U(x−d)−U ′(x−d)x, x > d,
has a unique zero root in x denoted by x∗. Moreover, the zero root is larger
than the constant d, i.e., x∗ > d > 0.

2. The function H(x) is increasing in x.

Let λ > 0 and D̂T satisfy U(D̂T −DT )− U ′(D̂T −DT )D̂T = 0. Thus, G′(z∗D) = 0

with z∗D = 1− F

(
U ′(D̂T−DT )

λ

)
.



Non-concave portfolio optimization with Average Value-at-Risk 13

Lemma 3.1 gives that G′(z∗D) = 0 (16) with z∗D = 1−F
(
U ′(D̂T −DT )/λ

)
.

Thus, the argmax to P3 is given by

Q∗
X(z) = (I(λF̃ (z)) +DT )1z∗

D<z≤1. (17)

Lemma A.1 shows that the Lagrangian multiplier λ in (17) exists. The proof
of Lemma A.1 is given in Appendix A. By Equation (7), the optimal terminal
wealth (15) is given by

XB
T = (I(λBξ) +DT )1ξ<ξ∗D

, ξ∗D = F̃ (z∗D).

Then, it can be shown that XB
T is the optimal benchmark solution, following a

routine argument. See, for example, Appendix B.1 in Chen, Stadje, and Zhang
[14].

We have illustrated how to solve the benchmark problem (8) by quantile
formulation and the decomposition method. Following a similar procedure, we
solve the Problem AVaR (1). Before moving to the optimal solution under the
AVaR constraint, we give a remark on the benchmark solution.

Remark 2

1. Lemma 3.1 provides a way to determine the optimal decomposition (the
critical probability zD) in the benchmark problem. The other methods,
e.g., the concavification [10] and the pointwise Lagrangian [8, 14], apply a
similar idea to find the tangent point for the utility function, which is the
key step in deriving the optimal solution. Applying quantile formulation
and the decomposition method, the critical probability z∗D is obtained
via the first-order condition, which gives a different perspective than the
tangent point in the concavification.

2. The benchmark solution gives that the optimal terminal wealth will end
with zero in the worst financial scenarios given a bounded utility function.
The intuition is that if the punishment for inducing the minimum wealth
in the worst scenarios is not large enough, the surplus-driven company will
default in the worst financial scenarios. Assuming a classic concave utility
maximization problem cannot model this behavior. We illustrate the opti-
mal solution for the benchmark problem in Figure 1. We use the red dashed
line to denote the left tail of the portfolio with α = 0.1, meaning that the
regulator is concerned about the company’s performance in the worst 10%
scenarios. In our toy example, the probability of default is much higher than
10%, justifying the necessity for financial regulation.

3.4 The optimal solution for the Problem AVaR (1)

Now we consider the optimization problem with the AVaR constraint. We first
formulate the equivalent quantile-based optimization problem to the Problem
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AVaR (1). Then, we apply the decomposition method to find the optimal quan-
tile function. In the end, we recover the optimal terminal wealth via Equation
(7).

Quantile-based Problem AVaR

The equivalent quantile-based optimization problem for the Problem AVaR(1)
is given by

max
QX∈Q

∫ 1

0

U((QX(z)−DT )
+)dz, (18)

subject to
1

α

∫ α

0

QX(z)dz ≥ L,

∫ 1

0

QX(z)F̃ (z)dz = x0.

Following the same idea as we did in solving the benchmark problem, we
decompose the set of quantile functions in the following way:

Q(zD) := {QX(z) ∈ Q|z(DT ) ≤ zD}, Q =
⋃

zD∈[0,1]

Q(zD).

Then, the quantile-based Problem AVaR (18) can be decomposed into the
following three sub optimization problems:
P1:

max
QX(z)∈QD

∫ 1

zD

U(QX(z)−DT )dz,

subject to
1

α

∫ α

0

QX(z)dz ≥ L,

∫ 1

zD

QX(z)F̃ (z)dz = x+
0 .

P2:

min
QX(z)∈QD

∫ zD

0

QX(z)F̃ (z)dz = x0 − x+
0 ,

1

α

∫ α

0

QX(z)dz ≥ L.

P3:

max
zD∈[0,1]

max
QX(z)∈QD

∫ 1

zD

U(QX(z)−DT )dz,

subject to
1

α

∫ α

0

QX(z)dz ≥ L,

∫ 1

0

QX(z)F̃ (z)dz = x0.

Note that if 0 < α ≤ zD, we only need to consider the AVaR constraint in P2,
which is a relatively simple case. If α > zD, we need to consider the AVaR
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constraint in both P1 and P2, which is a more complicated case. Before pro-
ceeding with the optimization problem under the AVaR constraint, we define
the effective risk constraint.

Fig. 1: This figure illustrates the optimal quantile function and the corre-
sponding optimal terminal wealth for the benchmark problems (12) and (8),
respectively. The parameters for the underlying financial market and the utility
function are consistent with the numerical experiment in Section 5 (Table 1).
The left graph plots the optimal quantile function (17), where the red dashed
line denotes the AVaR of the quantile function with α = 0.1. Correspondingly,
the right graph plots the optimal terminal wealth (11), where the red dashed
line denotes the worst scenario payoff with probability 0.1.

Effective risk constraint

If the optimal solution for the Problem AVaR (1) is different from the bench-
mark solution given the same initial wealth, we say the AVaR constraint is
effective. If the optimal solution for the Problem AVaR (1) is the same as the
benchmark solution, we say the AVaR constraint is redundant.

The benchmark solution (Proposition 1) tells that the surplus-driven com-
pany will inevitably default in the worst economic states. However, assuming
a deterministic debt level DT , the probability of default varies with the ini-
tial budget. We illustrate this fact in Figure 2. We can see that the default
probability increases as the initial budget decreases. Hence, given the AVaR
constraint with fixed parameters α and L, we can imagine that there will be
multiple solutions depending on the initial wealth.

Proposition 2 provides the optimal solution for the Problem AVaR (1). The
proof for Proposition 2 is given in Appendix B.

Proposition 2 The optimal solutions can be divided into the following cases.
Case 1:
The threshold in the AVaR constraint is smaller than the debt level: 0 < L < DT .
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1. Let λ1 satisfy E[ξXAV aR
T ] = x0 and L̂∗ = αL

α−β∗ . If L < L̂∗ < DT , the

optimal solution for the Problem AVaR (1) is given by

XAV aR
T = (I(λ1ξ) +DT )1ξ<ξ1 + L̂∗

1ξ1≤ξ<ξ2 , (19)

where ξ1 = F̃ (z∗D), ξ2 = F̃ (β∗), z∗D and β∗ satisfy the following two
equations:

− U(I(λ1F̃ (z∗D)) + λ1F̃ (z∗D)I(λ1F̃ (z∗D) + λ1F̃ (z∗D)

(
DT − αL

α− β∗

)
= 0,

(20)∫ z∗
D

β∗
F̃ (z)dz − (α− β∗)F̃ (β∗) = 0. (21)

(The existence of β∗ is shown in Lemma B.1 and the existence of z∗D is
given by Eq (B9) and Lemma 3.1.)

2. Let L̂∗ satisfy G′(L̂∗) = 0 (B14). (The existence of L̂∗ is shown by Lemma

B.3). If DT < L̂∗ < D̂T , the optimal solution for the problem AVaR (1) is
given by

XAV aR
T = (I(λ1ξ) +DT )1ξ<ξ1 + L̂∗

1ξ1≤ξ<ξ2 , (22)

where ξ1 = U ′(L̂∗−DT )
λ1

, and ξ2 = F̃
(

α(L̂∗−L)

L̂∗

)
.

3. Let λ2 satisfy 1
α

∫ α

0
QAV aR

X (z)dz = L. If L̂∗ > D̂T , the optimal solution for
the problem AVaR (1) is given by

XAV aR
T =



I(λ1ξ) +DT , if ξ < ξ1,

L̂∗, if ξ1 < ξ < ξ2,

I

(
λ1ξ − λ1λ2

α

)
+DT , if ξ2 < ξ < ξ3,

0, if ξ > ξ3,

(23)

where ξ1 = U ′(L̂∗−DT )
λ1

, ξ2 = U ′(L̂∗−DT )
λ1

+ λ2

α , ξ3 = U ′(D̂T−DT )
λ1

+ λ2

α , and

QAV aR
X (·) is the quantile function of the optimal wealth XAV aR

T .

Case 2:
The threshold in the AVaR constraint is higher than the debt level: L ≥ DT . Let L̂

∗

satisfy G′(L̂∗) = 0 (B14).

1. If DT < L̂∗ < D̂T , the optimal solution for the problem AVaR (1) is the
same as (22).

2. If L̂∗ > D̂T , the optimal solution for the problem AVaR (1) is the same as
(23).
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Fig. 2: This figure illustrates the optimal quantile function and the optimal
terminal wealth for Proposition 1 with the same terminal debtDT and different
initial wealth. We can see the default probability varies with the initial budget.
In addition, the higher the initial budget, the smaller the default probability.
Note that the benchmark wealth is either higher than the tangent point D̂T

(Lemma 3.1), or is zero.

We use a numerical example to illustrate the different structures of the opti-
mal solutions for the Problem AVaR (1) (Proposition 2) in the Black Scholes
market with the parameters in Table 1. Suppose that the AVaR constraint is

given by 1
0.1

∫ 0.1

0
V aRX(β)dβ ≥ 40%DT . Its economic interpretation is that

the average quantile value of the company’s portfolio in the worst 10% scenar-
ios has to be at least 40% of its debt. The surplus-driven company will adopt
different strategies according to its initial wealth. We consider three values of
the initial budget: x0 = 132, x0 = 154, and x0 = 218. Let the terminal debt
level DT = 100 be fixed. The three optimal wealth correspond to Eq (19),
(22), and (23), respectively. In comparison, we plot the benchmark wealth
(i.e., without the AVaR constraint) under the corresponding initial budget in
Figure 3. Each line in Figure 3 jumps to zero if the state price density ξT
is large enough. This implies that the surplus-driven company will default in
the worst financial states. Nevertheless, under each initial budget, the default
probability (the length of the flat region) of the wealth with the AVaR con-
straint is smaller than the benchmark wealth, demonstrating the effectiveness
of the regulation. However, the default probability is not zero in any case.

We give a remark for Proposition 2.

Remark 3

Given the AVaR constraint, the regulatory effect depends on the company’s
initial budget.10 If the initial budget is large enough, the AVaR constraint is
redundant. On the other hand, if the initial wealth is too low (x0 < Le−rT ),

the optimal solution does not exist. In Proposition 2, we use L̂∗ to distin-
guish different cases of the optimal solutions. We remark that there is a
one-to-one relationship between L̂∗ and the Lagrangian multiplier λ1, which

10It is also possible to fix the initial budget and analyse the regulatory effect with varying α.
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Fig. 3: This figure illustrates Propositions 1 and 2 by plotting the optimal
terminal wealth with different initial budgets. The solid lines are the wealth
under the AVaR constraint (Proposition 2), while the dashed lines are the
corresponding benchmark wealth (Proposition 1). The red line corresponds to

Eq (19) with L̂∗ = 70 < DT , the green line corresponds to Eq (22) with DT <

L̂∗ = 120 < D̂T and the blue line corresponds to Eq (23) with L̂∗ = 220 > D̂T .

is uniquely determined by the initial budget x0 through the budget constraint
E[ξXAV aR

T ] = x0 (Lemma A.1).11 Hence, all possible cases are covered by
Proposition 2. We explain how to determine the range of the initial wealth for
each solution in Appendix B.2.

4 The connection between the terminal-wealth
method and the quantile-formulation method

The analysis in Chen, Stadje, and Zhang [14] for the non-concave opti-
mization problem under the AVaR constraint applies the terminal-wealth
method. They establish equivalent Expected Shortfall (ES) constraints to
the AVaR constraint on the physical probability space, and solve the con-
strained optimization problem on the physical probability space. To compare
the terminal-wealth method and our quantile-formulation method, we briefly
summarize the optimal solution for the non-concave optimization problem
under the equivalent ES constraint. We first define the ES constraint.

11For a comprehensive discussion of the budget constraint as a function of the Lagrangian
multiplier, we recommend [24].
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Definition of the Expected Shortfall constraint

Given a regulatory threshold LES > 0 and ϵ > 0, the ES constraint of a
portfolio is defined by

ES := E[(LES −XT )
+] ≤ ϵ, (LES −XT )

+ := max(LES −XT , 0). (24)

The ES constraint restricts the average loss measured by (LES −XT ) of the
portfolio in the worst financial scenarios to be below the constant ϵ. Different
from the AVaR constraint, the worst scenarios under the ES constraint are not
described by the probability but by the given threshold LES , i.e., the ES con-
straint concerns the loss of the portfolio when the portfolio is below LES (see
the example in Figure 4). Thus, if the threshold LES equals to the α-quantile
of the portfolio, the ES and the AVaR constraints agree on the worst scenarios.
Consequently, the two constraints are equivalent. For a formal discussion on
the equivalence between the AVaR constraint and the ES constraint, we refer
to Theorems 1 and 2 in Rockafellar and Uryasev [31] and Proposition 4.51 in
Föllmer and Schied [21]. For the equivalence of the optimization problems on
the physical probability space between the two constraints, we refer to Lemma
2.7 and Theorem 2.9 in Gandy [22] and Proposition 6 in Chen, Stadje, and
Zhang [14].

Fig. 4: This figure illustrates the worst financial scenarios defined by the
terminal-wealth-based ES constraint. The black curves denote the optimal
quantile function and the optimal terminal wealth for the benchmark problem
(Figure 1). We consider a toy example where the dark blue dotted line denotes
the given regulatory threshold in the ES constraint, e.g., LES = 100. Thus,
the region XB

T < 100 represents the financial scenarios concerned by the regu-
lation. Compared to Figure 1, the ES constraint concerns a larger region than
the AVaR constraint with α = 0.1 in this example.

The optimal solution by the terminal wealth method

The non-concave optimization problem under the ES constraint is given by
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Problem ES.

max
XT∈X

E[U((XT −DT )
+)], s.t. E[(LES −XT )

+] ≤ α(LES − L), E[XT ξ] ≤ x0,

(25)

where α and L are the parameters in the AVaR constraint (1).
The following proposition provides the optimal solution for the Problem ES

(25). The proofs can be found in Appendix B in Chen, Stadje and Zhang [14].

Proposition 3 The optimal solution for the Problem ES (25) is given by the
following.

1. If LES ≤ DT , the optimal wealth is:

XES
T =

(
I(λES

1 ξ) +DT

)
1ξ<ξb if ξb ≤ ξa, (26)

XES
T =

(
I(λES

1 ξ) +DT

)
1ξ<ξa + LES

1ξa≤ξ<ξb if ξa < ξb, (27)

where ξa = U ′(L′ − (DT − LES))/λES
1 , L′ satisfies U((L′ −

(DT − LES)) − L′U ′(L′ − (DT − LES)) = 0, ξb is defined through
E[LES

1ξ≥ξb ] = α(LES − L), and λES
1 satisfies E[ξXES

T ] = x0.

2. If DT < LES ≤ D̂T , the optimal wealth is:

XES
T =

(
I(λES

1 ξ) +DT

)
1ξ<ξd if ξd < ξc, (28)

XES
T =

(
I(λES

1 ξ) +DT

)
1ξ<ξc + LES

1ξc≤ξ<ξd if ξc ≤ ξd, (29)

where ξc = U ′(LES − DT )/λ
ES
1 and ξd is defined through E[LES

1ξ≥ξd ] =
α(LES − L), and λES

1 satisfies E[ξXES
T ] = x0.

3. If LES > D̂T , the optimal wealth is:

XES
T =


(
I(λES

1 ξ) +DT

)
, if ξ < ξe

LES , if ξe ≤ ξ < ξf ,(
I(λES

1 ξ − λES
2 ) +DT

)
, if ξf ≤ ξ < ξg,

0, if ξ > ξg,

(30)

where ξe = U ′(LES − DT )/λ
ES
1 , ξf = U ′(LES − DT ) + λES

2 /λES
1 , ξg =

U ′(D̂T−DT )+λES
2 /λES

1 , λES
1 and λES

2 satisfy E[ξXES
T ] = x0 and E[(LES−

XES
T )+] = α(LES − L).

For an arbitrary LES > L, the optimal wealth in Proposition 3 satisfies
the AVaR constraint, and thus is a feasible solution for the Problem AVaR
(1). Proposition 6 in Chen, Stadje, and Zhang [14] shows that the union of the
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optimal terminal wealth for the Problems ES (25) with all such LES contains
the optimal solution for the Problem AVaR (1). However, it is difficult to
further determine the exact optimal solution for the Problem AVaR (1) by the
terminal-wealth method. In Proposition 4, we give the connection between the
optimization problems under the AVaR and the ES constraints. The proof is
given in Appendix C.

Proposition 4 We make the following statements.

1. Given an AVaR constraint ( 1
α

∫ α

0
V aRXT

(β)dβ ≥ L), if the regulatory
threshold in the ES constraint (E[(LES −XT )

+] ≤ α(LES −L)) is equal to

L̂∗ defined in (19), (23) or (22), i.e., LES = L̂∗, then the optimal solution
under the ES constraint is the same as the optimal solution under the
AVaR constraint.

2. Consider the optimal wealth satisfying the ES constraint, E[(LES −
XES

T )+] = α(LES−L). If the optimal terminal wealth is (27), (29) or (30),
the AVaR constraint is binding, i.e., 1

α

∫ α

0
V aRXES

T
(β)dβ = L. If the opti-

mal terminal wealth is (26) or (28), the AVaR constraint is not binding,
i.e., 1

α

∫ α

0
V aRXES

T
(β)dβ > L.

We give a remark for Proposition 4.

Remark 4

Proposition 4 reveals the connection between the quantile formulation method
and the terminal wealth method in solving the Problem AVaR (1). Given the
optimal solution in Proposition 2 by quantile formulation, we can directly
calculate the equivalent ES constraint. However, given the optimal solution
in Proposition 3 by the terminal wealth method, we can calculate the lower
bound for the AVaR of the portfolio. Nevertheless, by comparing Propositions
2 and 3, we find that there are many cases where the optimal solutions are
equivalent. Moreover, the Problem ES (25) is much easier to solve.

5 Numerical examples and the fairness of the
contract

In this section, we illustrate the optimal solution (Proposition 2) for the Prob-
lem AVaR (1) in a Black Scholes financial market. Previously, the underlying
financial market is assumed to be complete and atomless to obtain the closed
form solution. A Black Scholes market is an example of such a financial mar-
ket, where we can explicitly calculate the optimal terminal wealth and the
corresponding optimal investment strategies.
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For simplicity, we assume that there is a risky asset S(t) and a risk-free
asset B(t) in the financial market and the dynamics are given by

dS(t) = µS(t)dt+ σS(t)dWt, S(0) = s0, dB(t) = rB(t)dt, B(0) = b0,

where µ > 0 is the drift, and σ > 0 is the volatility of the risky asset. The
risk-free rate is given by r > 0. Note that the market price of risk in the
Black Scholes market is given by θ := (µ − r)/σ. Moreover, we assume that

the company has a power utility function defined by U(x) = x1−γ

1−γ , γ ̸= 1. The
basic parameters are given in Table 1.

Table 1: Basic Parameters

drift µ risk-free rate r volatility σ horizon T risk aversion γ

0.08 0.03 0.2 1 0.5

In section 5.1, we show the pre-horizon optimal wealth and the corre-
sponding investment strategies for the Problem AVaR (1) in the Black Scholes
market. In section 5.2, we discuss the fair contract for the debt holders
considering the default probability of the surplus-driven company.

5.1 Pre-horizon optimal wealth

Let T = 1 be the terminal time of the investment. We consider the optimal
wealth at t : 0 < t < T . We also compute the proportion of the optimal wealth
invested into the risky asset in the Black Scholes market. The results are given
in Proposition 5. The proof is given in Appendix D.

Proposition 5 For the benchmark portfolio (Proposition 1):

1. Let k(t) := exp(−(r + 0.5θ2)(T − t)(1 − 1/γ) + 0.5θ2(1 − 1/γ)2(T − t)).
Let ξt denote the state price density at time t, λB and ξ∗D, be defined in
Proposition 1. The optimal benchmark wealth at time t is given by

XB
t =(λBξt)

−1/γk(t)Φ(j(ξ∗D/ξt) + 1/γθ
√
T − t)

+DT exp(−r(T − t))Φ(j(ξ∗D/ξt)), (31)

where j(·) = ln(·)+(r+0.5θ2)(T−t)

θ
√
T−t

− θ
√
T − t, and Φ(·) is the cumulative

distribution function of the standard normal distribution.

2. Given the optimal wealth XB
t , the company invests πB

t XB
t in the stock and

(1−πB
t )XB

t into the bank account. The fraction of the benchmark portfolio
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invested into the risky asset is given by

πB
t =

θ

XB
t σγ

(λBξt)
−1/γk(t)Φ(j(ξ∗D/ξt) +

exp(−r(T − t))

XB
t

D̂TΦ
′(j(ξ∗D/ξt))

σ
√
T − t

,

(32)

where Φ′(·) is the probability density function of the standard normal
distribution.

For the optimal AVaR portfolio (Proposition 2),

1. If the solution XAV aR
T is Eq (19), let λ1 satisfy E[ξXAV aR

T ] = x0. Let

ξ1 = F̃ (z∗D) and ξ2 = F̃ (β∗) (defined in Eq (20) and (21)). The optimal
wealth at time t < T is given by

XAV aR
t =(λ1ξt)

−1/γk(t)Φ(j(ξ1/ξt) + 1/γθ
√
T − t)

+DT exp(−r(T − t))Φ(j(ξ1/ξt))

+L̂∗ exp(−r(T − t))(Φ(j(ξ2/ξt))− Φ(j(ξ1/ξt))), (33)

where L̂∗ = αL
α−β∗ .

The optimal investment strategy at time t < T is given by

πAV aR
t =

k(t)

σXAV aR
t

(λ1ξt)
−1/γ

(
θ

γ
Φ
(
j(ξ1/ξt) + 1/γθ

√
T − t

))
+
(λ1ξ1)

−1/γ

σXAV aR
t

exp(−r(T − t))
Φ′ (j(ξ1/ξt))√

T − t
(34)

+
L̂∗

σXAV aR
t

exp(−r(T − t))
Φ′ (j(ξ2/ξt))√

T − t
. (35)

2. If the solution XAV aR
T is Eq (22), let L̂∗ satisfy G′(L̂∗) = 0 (B14), ξ1 =

U ′(L̂∗ − DT )/λ1 and ξ2 = F̃ (α(L̂∗ − L)/L̂∗). The optimal wealth at time
t < T is given by

XAV aR
t =(λ1ξt)

−1/γk(t)Φ(j(ξ1/ξt) + 1/γθ
√
T − t)

+DT exp(−r(T − t))Φ(j(ξ1/ξt))

+L̂∗ exp(−r(T − t))(Φ(j(ξ2/ξt))− Φ(j(ξ1/ξt))). (36)

The optimal investment strategy at t < T is given by

πAV aR
t =

k(t)

σXAV aR
t

(λ1ξt)
−1/γ

(
θ

γ
Φ
(
j(ξ1/ξt) + 1/γθ

√
T − t

))
+

L̂∗

σXAV aR
t

exp(−r(T − t))
Φ′ (j(ξ2/ξt))√

T − t
. (37)



24 Non-concave portfolio optimization with Average Value-at-Risk

3. If the solution XAV aR
T is Eq (23) with QAV aR

X being its quantile function, let

λ2 satisfy 1
α

∫ α

0
QAV aR

X (z)dz = L. Let ξ1 = U ′(L̂∗−DT )
λ1

, ξ2 = U ′(L̂∗−DT )
λ1

+ λ2

α

and ξ3 = U ′(D̂T−DT )
λ1

+ λ2

α . The optimal wealth at t < T is given by

XAV aR
t =(λ1ξt)

−1/γk(t)Φ(j(ξ1/ξt) + 1/γθ
√
T − t)

+DT exp(−r(T − t))Φ(j(ξ1/ξt))

+L̂∗ exp(−r(T − t))(Φ(j(ξ2/ξt))− Φ(j(ξ1/ξt)))

+ exp(−r(T − t))

∫ j(ξ3/ξt)

j(ξ2/ξt)

(λ1ξtm(z)− λ1λ2/α)
−1/γΦ′(z)dz

+DT exp(−r(T − t))(Φ(j(ξ3/ξt)))− Φ(j(ξ2/ξt)))), (38)

where m(z) = exp(−(r+0.5θ2)(T−t)−θ
√
T − tz). The optimal investment

strategy at t < T is given by

πAV aR
t =

k(t)

σXAV aR
t

(λ1ξt)
−1/γ θ

γ
Φ
(
j(ξ1/ξt) + 1/γθ

√
T − t

)
+

D̂

σXAV aR
t

exp(−r(T − t))
Φ′ (j(ξ3/ξt))√

T − t
. (39)

To illustrate Proposition 5, we plot the optimal wealth under the AVaR
constraint at time t = 0.5 under the different initial budgets, and compare it
with the corresponding benchmark wealth in Figure 5. We observe that if the
economic states are good (with small state price densities ξ), the benchmark
wealth is larger than the constrained wealth. If the economic states are not
good, the constrained wealth is larger than the benchmark. However, both
benchmark and constrained wealth tend to be zero in the worst economic
states.

In Figure 6, we plot the proportion of the pre-horizon wealth invested in
the risky asset, πAV aR

t and πB
t , and the ratio πAV aR

t /πB
t , under the different

initial budgets, respectively. We can see that the proportions πB
t and πAV aR

t

increases as the state price density increases, implying that the company takes
riskier strategies as the financial states worsens. Unlike in the concave util-
ity maximization, where the benchmark strategy π∗

t is a constant in all states
(e.g., the Merton constant [28]), the benchmark strategy πB

t in the non-concave
utility maximization is a stochastic process. Moreover, the proportion πAV aR

t

under the AVaR constraint is a also a stochastic process. Hence, it is more
difficult to compare the two strategies explicitly. Nevertheless, our numerical
examples indicate that the constrained strategy πAV aR

t is less risky than the
benchmark strategy especially if the initial budget is not too large. Moreover,
Figure 3 shows that the default probability of the wealth under the AVaR con-
straint is always smaller than the corresponding benchmark case. We conclude
that the AVaR constraint is effective in reducing the surplus-driven company’s
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investment risk. This contrasts with the conclusion in the standard concave
utility maximization, where the constrained strategies by the AVaR constraint
is even riskier than the benchmark strategy [14, 36].

Fig. 5: This figure plots the optimal wealth at time t = 0.5 with the AVaR
constraint (the red line), and without the AVaR constraint (the blue line),
respectively. The parameters are the same as the numerical examples in Figure
3 and Table 1. The left figure illustrates Eq (33). The middle figure illustrates
the case Eq (36). The right figure denotes the case Eq (38).

5.2 The fair return for the debt holders of a
surplus-driven company

The numerical examples in previous sections indicate that given the AVaR
constraint, the company will choose different investment strategies depending
on its initial budget. Different strategies imply different default probability;
hence, the debt holders are exposed to various levels of risk. In line with [11],
we introduce the following definition of a fair contract.

Definition of a fair contract.

Let Q be the risk neutral measure and r > 0 be the risk free return. If the
payoff to the debt holders, φL(XT ), fulfills the equation

EQ[e
−rTφL(XT )] = D0, (40)

then the contract is regarded as a fair contract.
The equation (40) is reasonable for a contingent payoff in a complete finan-

cial market. The initial debt D0 can be considered as the risk-neutral price of
the contingent payoff DT for the debt holders. Figure 7 plots the payoff to the
debt holders as a consequence of the optimal solutions for the company with
the AVaR constraint, under different initial budgets, respectively. The debt
holders face the default risk in each case, but the probability of default dif-
fers. Intuitively, the return to the debt holders should be different in various
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Fig. 6: We plot the proportion of the pre-horizon wealth in the risky asset
(the upper three figures), πAV aR

t and πB
t , and the ratio (the lower three

figures), πAV aR
t /πB

t , under the different initial budgets, respectively. The red
line denotes πAV aR

t and the blue line denotes πB
t . From the left to the right, the

three figures correspond to the case L̂∗ < DT (35), DT < L̂∗ < D̂T (37), and

L̂∗ > D̂T (39), respectively. The parameters are consistent with the numerical
examples in Figure 3 and Table 1.

situations. The following proposition introduces how to determine the return
to the debt holders in a fair contract.

Proposition 6 Suppose that the return to the debt holders is constant, i.e., DT =
D0 exp(−gT ), where g > r due to the no-arbitrage condition.

1. Let L̂∗ = αL
α−β∗ , ξ1 = F̃ (z∗D) and ξ2 = F̃ (β∗) determined by Eqs (20) and

(21). Suppose the company has the optimal terminal wealth (19). The fair
return to its debt holders is given by

g∗ = − ln
(
E[ξ1ξ<ξ1 ] +

L̂∗

DT
E[ξ1ξ1≤ξ<ξ2 ]

)
/T. (41)

2. Let L̂∗ satisfy G′(L̂∗) = 0 (B14) and ξ2 = F̃
(

α(L̂∗−L

L̂∗

)
. Suppose the com-

pany has the optimal terminal wealth (22). The fair return to its debt holders
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is given by
g∗ = − ln

(
E[ξ1ξ<ξ2 ]

)
/T. (42)

3. Suppose the company has the optimal terminal wealth (23) and λ1 satisfy
E[ξXAV aR

T ] = x0. Let λ2 satisfy 1
α

∫ α

0
QAV aR

X (z)dz = L, where QAV aR
X (·) is

the quantile function of XAV aR
T , and ξ3 = U ′(D̂T−DT )+λ2/α

λ1
. The fair return

to its debt holders is given by

g∗ = − ln
(
E[ξ1ξ<ξ3 ]

)
/T. (43)

Proof The payoff function to the debt holders of a company with limited liability
is given by φL(XT ) = min(DT , XT ). Then, Proposition 6 is a direct application of
the fair contract condition (40) on the optimal solution under the AVaR constraint
(Proposition 2). □

To illustrate the fair return to the debt holders in different cases, we con-
struct the numerical examples in the Black Scholes market. The results are
reported in Table 2. In the numerical experiment, we fix the terminal debt
level in each case, i.e., DT = 100. There exist three potential optimal invest-
ment strategies depending on the initial wealth. If the company has a low
initial budget, the fair return to the debt holders is almost 40%. As the com-
pany’s initial budget increases, it changes its optimal investment strategies.
Consequently, the default probability decreases, and the fair return to the debt
holders also decreases. Our main observation is, although the AVaR constraint
can reduce the default probability compared with the benchmark portfolio, it
cannot eliminate it completely; See Figure 3. In addition, if the company has
a low initial budget, the debt holders will require a very high return even if
the company fulfills the AVaR-based regulation.

Table 2: Fair return in different cases.

α = 0.1 DT D0 g∗ D0/x0 L̂∗

Case 1: 100 68.95 0.37180 52.1% 70
Case 2: 100 86.25 0.1479 55.72% 120
Case 3: 100 95.14 0.0499 43.5% 220

This table provides the numerical illustrations for the
fair return g∗ to the debt holders in different cases. The
parameters for the initial budget constraint, the AVaR
constraint and the Black Scholes market are consistent
with the numerical examples in Figure 3 and Table 1.
The fair return to the debt holders in each optimal
solution is calculated according to Proposition 6. Case
1 is the case L̂∗ < DT (41), Case 2 is DT < L̂∗ < D̂T

(42), and Case 3 is L̂∗ > D̂T (43).
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Fig. 7: This figure plots the payoff to the debt holders under the same AVaR
constraint with different initial budget constraints. The parameters are con-
sistent with the numerical examples in Figure 3 and Table 1. The red line
denotes the case with a low initial wealth. The green line denotes the case with
a intermediate level of initial wealth. The blue line denotes the case with a high
initial wealth. We can see that the default probability varies in different cases.

6 Conclusion

This paper studies the non-concave portfolio optimization problem under
the AVaR constraint, where the non-concavity arises from assuming that the
company is surplus-driven. We solve the optimization problem explicitly by
quantile formulation and the decomposition method. There are three opti-
mal solutions for the optimization problem, implying that the company takes
three different portfolio choices depending on the initial budget constraint.
We provide numerical illustrations of the pre-horizon wealth and the opti-
mal investment strategies in the Black Scholes financial market. In addition,
we derive the fair return for the company’s debt holders under each optimal
solution fulfilling the risk-neutral pricing constraint.

Our contributions are twofold. First, we provide analytical solutions for
non-concave portfolio optimization problems under the AVaR constraint,
which is essential for researchers and practitioners to understand the impact of
the AVaR-based financial regulation on companies’ investment behavior. Sec-
ond, we investigate whether and how the AVaR-based financial regulation can
protect the debt holders’ benefits in a surplus-driven financial company with
limited liability. We find that the AVaR constraint can reduce the company’s
probability default but cannot fully illuminate it. Further, the numerical exam-
ples in a Black-Scholes market indicate that the the AVaR constraint provides
poor protection for the debt holders if the company has a low initial budget.
This finding gives one more degree of the comparison of VaR and AVaR as
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risk measures in financial regulation, where most comparisons are from the
viewpoint of statistical properties.

There are multiple directions to proceed with this topic. Within the cur-
rent model, one can study how to protect debt holders of the surplus-driven
companies, especially if the company has a low initial budget. One can also
calibrate the optimal solutions in this work to real data, and investigate the
optimal regulatory parameters. With the technique in this paper, one can also
study the AVaR constraint in other (non-concave) behavioral models, e.g., the
cumulative prospect theory or rank-dependent utility maximization. Due to
the limited space, we leave these topics for future study.
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Appendix A Proof of Lemma 3.1

Proof

Letting y = x−d, because of the Inada (2) and AE (3) conditions, we have that

H(x) = U(x− d)− U ′(x− d)x = U(y)

(
1− U ′(y)

U(y)

)
− U ′(y)d, y > 0,

−→

limy→∞ U(y)
(
1− U ′(y)

U(y)

)
− U ′(y)d = ∞

limy→0 U(y)
(
1− U ′(y)

U(y)

)
− U ′(y)d = −∞.

In addition, because the utility function is a concave function, we have that

H ′(x) = −U ′′(x)x > 0.

Therefore, H(x) is an increasing and continuous function, and there exits a
unique zero root for the equation H(x) = 0.12 Moreover, the zero root x∗ > d
and does not depend on the financial market.

Let y = I(λF̃ (zD)). Then, G′(zD) (16) can be rewritten as

G′(zD) = −U(y) + U ′(y)y + U ′(y)DT . (A1)

Then Eq (A1) has a unique zero root in y, which is y = D̂T − DT . Hence,

given λ > 0, G′(z∗D) = 0 with z∗D = 1− F
(

D̂T−DT

λ

)
. □

Lemma A.1 Given an initial wealth x0 > 0 and zD(λ) := z∗D ≡ 1 −

F

(
U ′(D̂T−DT )

λ

)
, the function

f(λ) :=

∫ 1

zD(λ)
(I(λF̃ (z)) +DT )F̃ (z)dz − x0 (A2)

has a unique zero root λB, i.e., f(λB) = 0.

Proof:

The function f(λ) is continuous in λ. Since D̂T is a constant for a given utility
function (Lemma 3.1), we have that zD(λ) is comonotonic with λ, i.e., zD(λ)
increases as λ increases. Then, we have the following

lim
λ→0

f(λ) =

∫ 1

0

(I(λF̃ (z)) +DT )F̃ (z)dz − x0 = +∞,

12In concavification, the unique zero root x∗ is called the tangent point of the function U(x−d),
see for instance [10, 14, 30].
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lim
λ→+∞

f(λ) =

∫ 1

1

(I(λF̃ (z)) +DT )F̃ (z)dz − x0 = −x0.

Without loss of generality, we assume that λ1 > λ2 > 0 such that

f(λ1) =

∫ 1

zD(λ1)

(I(λ1F̃ (z)) +DT )F̃ (z)dz − x0,

f(λ2) =

∫ 1

zD(λ2)

(I(λ2F̃ (z)) +DT )F̃ (z)dz − x0.

Because zD(λ1) > zD(λ2) and I(λ1F̃ (z)) < I(λ2F̃ (z)), we conclude that
f(λ1) < f(λ2). Therefore, f(λ) is a strictly decreasing function in λ. Thus,
−x0 < f(λ) < +∞ and f(λ) has a unique zero root, i.e., f(λB) = 0. □

Appendix B Proof of Proposition 2

B.1 Proof of Proposition 2

Poof:

As in the benchmark problem, for an arbitrary probability zD ∈ [0, 1], we
define the set of quantile functions such that

Q(zD) = {QX(z)|Q−1
X (DT ) ≤ zD}.

The quantile functions in Q(zD) are larger than DT if z > zD and are smaller
than DT if z < zD. Given α > 0 in the AVaR constraint, we consider two
situations, zD > α and zD < α.

Case 1: zD > α.

Note that if zD > α, the AVaR constraint is only effective on the region
0 ≤ z ≤ α < zD. In this case, writing the quantile function from Q(zD) as
QX(z) = Q1

X(z)1zD<z≤1 + Q2
X(z)10≤z≤zD , we decompose the quantile-based

problem AVaR into the following three sub-problems.

P1:

max
QX(z)∈QD

∫ 1

zD

U(QX(z)−DT )dz, subject to

∫ 1

zD

QX(z)F̃ (z)dz = x+
0 .

P2:

min
QX(z)∈Q(zD)

∫ zD

0

QX(z)F̃ (z)dz = x0−x+
0 , subject to

1

α

∫ α

0

QX(z)dz ≥ L.
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P3:

max
zD∈(α,1]

max
QX(z)∈Q(zD)

∫ 1

zD

U(QX(z)−DT )dz,

subject to

∫ 1

0

QX(z)F̃ (z)dz = x0,
1

α

∫ α

0

QX(z)dz ≥ L.

In the Problem P1 , we maximize the expected utility on the region z > zD
under the budget constraint. In the Problem P2 , we minimize the cost on the
region 0 ≤ z ≤ zD, while satisfying the AVaR constraint. In the Problem P3 ,
we find the global maximum over zD ∈ (α, 1].

Let λ1 > 0 be the Lagrangian multiplier for the budget constraint. The
optimal quantile function for the Problem P1 is given by

Q1∗
X (z) = I(λ1F̃ (z)) +DT .

Let β ∈ [0, α]. The quantile function on [0, zD] satisfying the AVaR con-
straint is given by Q2

X(z) = l1β<z≤zD . Lemma B.1 gives the minimum cost on
β ∈ [0, zD].

Lemma B.1 The cost function on z ∈ [0, zD] given by

g(β) :=

∫ zD

β

αL

α− β
F−1
ξ (1− z)dz (B3)

attains its minimum at β∗, where β∗ satisfies the following equation

g′(β∗) =
αL

(α− β∗)2

(∫ zD

β∗
F−1
ξ (1− z)dz − (α− β∗)F−1

ξ (1− β∗)

)
= 0. (B4)

Proof:

The derivative of the cost function (B3) is

g′(β) =
αL

(α− β)2

∫ zD

β

F−1
ξ (1− z)dz − αL

α− β
F−1
ξ (1− β)

=
αL

(α− β)2

(∫ zD

β

F−1
ξ (1− z)dz − (α− β)F−1

ξ (1− β)

)
. (B5)

Note that g′(β) → −∞ as β → 0. In addition, as β → α, both upper and lower
bounds of the cost function tend to infinity. I.e.,

lim
β→α

g′(β) < lim
β→α

g′(β) := lim
β→α

αL

(α− β)2
((zD − α)F−1

ξ (1− β)) = ∞.

lim
β→α

g′(β) > lim
β→α

g′(β) := lim
β→α

αL

(α− β)2
(zD − β)F−1

ξ (1− zD) = ∞.
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Therefore we conclude that g′(β) tends to ∞ as β tends to α. Without loss of
generality, assuming that 0 < β1 < β2 < α,

g′(β1)− g′(β2)

=
αL

(α− β1)2

(∫ zD

β1

F−1
ξ (1− z)dz − (α− β1)F

−1
ξ (1− β1)

)
− αL

(α− β2)2

(∫ zD

β2

F−1
ξ (1− z)dz − (α− β2)F

−1
ξ (1− β2)

)
<

αL

(α− β2)2

(∫ zD

β1

F−1
ξ (1− z)dz − (α− β1)F

−1
ξ (1− β1)

−
∫ zD

β2

F−1
ξ (1− z)dz + (α− β2)F

−1
ξ (1− β2)

)
=

αL

(α− β2)2

(∫ β2

β1

F−1
ξ (1− z)dz + (α− β2)F

−1
ξ (1− β2)− (α− β1)F

−1
ξ (1− β1)

)
<

αL

(α− β2)2

(
(β2 − β1)F

−1
ξ (1− β1) + (α− β2)F

−1
ξ (1− β2)− (α− β1)F

−1
ξ (1− β1)

)
=

αL

(α− β2)2

(
(α− β2) (F

−1
ξ (1− β2)− F−1

ξ (1− β1))︸ ︷︷ ︸
<0 because β1<β2

)
< 0.

Hence, g′(β) is an increasing function. We conclude that there is a unique
zero root of the function (B5), which is denoted by β∗.□

Note that the cost function decreases on β < β∗ (g′(β) < 0), and
increases on β > β∗ (g′(β) > 0). Thus, g(β∗) attains the minimum cost.
Correspondingly, the quantile function on the region z < zD is Q2

X(z) =
αL

α−β∗1β∗<z≤zD .
Together with the quantile function on z > zD, the optimal quantile

function on the entire set is given by

Q∗
X(z) = (I(λ1F̃ (z) +DT )1zD<z≤1 +

αL

α− β∗1β∗<z≤zD . (B6)

Note that zD > α implies DT ≥ αL
α−β∗ . Hence, the quantile function (B6) is

an increasing function. Now we find the global maximum of the problem over
zD ∈ (α, 1] (P3 ). The Lagrangian for P3 is given by

G(zD) (B7)

=

∫ 1

zD

U(Q1
X(z)−DT )dz − λ1

∫ 1

zD

Q1
X(z)F̃ (z)dz − λ1

(∫ zD

0

Q2
X(z)F̃ (z)dz

)
.
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The derivative of G(zD) (B7) with respect to zD is given by

G′(zD) (B8)

=− U(Q1
X(zD)−DT ) + λ1Q

1
X(zD)F̃ (zD)− λ1Q

2
X(zD)F̃ (zD)

=− U(I(λ1F̃ (zD))) + λ1F̃ (zD)I(λ1F̃ (zD)) + λ1F̃ (zD)DT − lλ1F̃ (zD)

=− U(I(λ1F̃ (zD))) + λ1F̃ (zD)(I(λ1F̃ (zD) +DT − l), (B9)

where l = αL
α−β∗ . Letting x = I(λ1F

−1
ξ (1− zD)) +DT − l, Eq (B9) can be

written as

G′(zD) = −U(x− (DT − l)) + U ′(x− (DT − l))x.

Thus, by Lemma 3.1, Eq (B9) has a unique zero root, which is denoted by z∗D.
Further, if z∗D > α, the globally optimal quantile function is given by

Q∗
X(z) = (I(λ1F̃ (z) +DT )1z∗

D<z≤1 +
αL

α− β∗1β∗<z≤z∗
D
. (B10)

However, if z∗D ≤ α, we go to the second case zD < α.

Case 2: zD < α.

In this case, the AVaR constraint is effective on both regions α > z > zD and
z < zD. Let us first consider the extreme case that zD = 0, which implies that
the quantile functions in Q(zD) are all above DT . The optimization problem
becomes:

Problem P0:

max
QX(z)∈QD

∫ 1

0

U(QX(z)−DT )dz, s.t.

∫ 1

0

QX(z)F̃ (z)dz = x0,
1

α

∫ α

0

QX(z)dz ≥ L.

Note that the Problem P0 is a concave optimization problem. Wei [36]
provides the analytical solution to a similar problem by the concavification
technique. In this study, we apply the point-wise Lagrangian approach to solve
the problem.

We consider the quantile function QX(z) = Q1
X(z)1α<z≤1 +Q2

X(z)10≤z≤α

and the following Lagrangian

G(α) =

{∫ 1

α
U(Q1

X(z)−DT )dz − λ1

∫ 1

α
Q1

X(z)F̃ (z)dz,∫ α

0
U(Q2

X(z)−DT )dz − λ1

∫ α

0
Q2

X(z)F̃ (z)dz + λ1
λ2

α

∫ α

0
Q2

X(z)dz.

(B11)
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The first order condition gives that

Q∗
X(z) =

I(λ1F
−1
ξ (1− z)) +DT , α < z ≤ 1(

I

(
λ1F

−1
ξ (1− z)− λ1λ2

α

)
+DT

)
, 0 ≤ z ≤ α.

(B12)

Note that there are infinite pairs of z ∈ (α, 1] and s ∈ [0, α] such that

F−1
ξ (1− z) = F−1

ξ (1− s)− λ2

α
. (B13)

And for each pair (zi, si) satisfying (B13), we have the following:


if α < z < zi : I(λ1F̃ (z)) < I(λ1F̃ (zi)) = I

(
λ1F̃ (si)− λ1λ2

α

)
,

if α ≥ s > si : I

(
λ1F̃ (s))− λ1λ2

α

)
> I

(
λ1F̃ (si)− λ1λ2

α

)
= I(λ1F̃ (zi)).

Therefore, the optimal quantile function should take the following form:

Q∗
X(z) = (I(λ1F̃ (z))+DT )1zi<z≤1+L̂i1si<z≤zi+

(
I

(
λ1F̃ (z)−λ1λ2

α

)
+DT

)
10≤z≤si ,

(B14)

where L̂i = I(λ1F
−1
ξ (1− zi)) +DT = I

(
λ1F

−1
ξ (1− si)− λ1λ2

α

)
+DT and

(zi, si) satisfy the function (B13).

Lemma B.2 Given a positive Lagrangian multiplier λ2 > 0, we have that

1. α < zi ≤ 1−F
(
F−1
ξ (1− α)− λ2

α

)
=: z̄; s̄ := 1−F

(
F−1
ξ (1−α)+ λ2

α

)
≤

si ≤ α.
2. The constant quantile function L̂i falls in the bound

L̂b := I(λ1F
−1
ξ (1−α))+DT ≤ L̂i ≤ L̂u =: I

(
λ1F

−1
ξ (1− α)− λ1λ2

α

)
+DT .

3. If L̂1 = I(λ1F
−1
ξ (1 − z1)) + DT < L̂2 = I(λ1F

−1
ξ (1 − z2)) + DT , then

s1 < s2 < z1 < z2.
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Proof:

Note that zi = 1− F (F−1(1− si)− λ2

α ) and si = 1− F (F−1
ξ (1− zi) +

λ2

α ) by
(B13). Because si ≤ α, we know that

α < zi ≤ 1− F

(
F−1(1− α)− λ2

α

)
= z̄.

Similarly, since zi > α, we have the bounds for si

s̄ = 1− F (F−1
ξ (1− α) +

λ2

α
) < s ≤ α.

Moreover, as L̂i = I(λ1F
−1
ξ (1− zi)) +DT , we derive the bounds for L̂i

L̂b = I(λ1F
−1
ξ (1− α)) +DT ≤ L̂i ≤ L̂u = I

(
λ1F

−1
ξ (1− α)− λ1λ2

α

)
+DT .

Further, if L̂1 < L̂2, we have that I(λ1F
−1
ξ (1 − z1)) < I(λ1F

−1
ξ (1 − z2)).

Since I(·) is an increasing function of z, we have that z1 < z2. With a similar
argument, we obtain that s1 < s2.□

Now, we regard the Lagrangian (B11) plugged in with the optimal quantile

function (B14) as a function of L̂i. Then, we find the global maximum of the

Lagrangian (B11) over the domain of L̂i. Recall that for each given L̂i, (zi, si)

can also be expressed as functions of L̂i, i.e.,

zi = f(L̂i) := 1− F

(
U ′(L̂i −DT )

λ1

)
; si = g(L̂i) := 1− F

(
U ′(L̂i −DT )

λ1
+

λ2

α

)
.

Lemma B.3 The Lagrangian (B11) plugged in with the quantile function (B14) is
given by

G(α, L̂i) =

∫ 1

f(L̂i)
U(Q1(z)−DT )dz +

∫ f(L̂i)

g(L̂i)
U(L̂i −DT )dz +

∫ g(L̂i)

0
U(Q2(z)−DT )dz

−λ1

∫ 1

f(L̂i)
Q1(z)F̃ (z)dz − λ1

∫ f(L̂i)

g(L̂i)
L̂iF̃ (z)dz − λ1

∫ g(L̂i)

0
Q2(z)F̃ (z)dz

+
λ1λ2
α

∫ α

g(L̂i)
L̂idz +

λ1λ2
α

∫ g(L̂i)

0
Q2(z)dz, (B15)

where Q1(z) = I(λ1F
−1
ξ (1 − z)) +DT if z > f(L̂i) and Q2(z) = I

(
λ1F

−1
ξ (1 −

z) − λ1λ2
α

)
+ DT if z < g(L̂i). The Lagrangian function (B15) is increasing on

L̂i < L̂∗ and is decreasing on L̂i > L̂∗, and attains its maximum at L̂i = L̂∗, where
L̂∗ is the unique zero root of the function G′(L̂i) = 0.
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Proof:

If we can show that the derivative of the Lagrangian function (B15) has a

unique zero root, i.e, G′(L̂∗) = 0, and G′(L̂i) > 0 if L̂i < L̂∗ and G′(L̂i) < 0 if

L̂i > L̂∗, then Lemma B.3 is proved.
The derivative of the Lagrangian with respect to L̂i is given by13

G′(L̂i)

=− f ′(L̂i)U(Q1(f(L̂i)−DT ) + g′(L̂i)U(Q2(g(L̂i)−DT ) + (f ′(L̂i)− g′(L̂i))U(L̂i −DT )

+λ1f
′(L̂i)F̃ (f(L̂i))Q1(f(L̂i))− λ1g

′(L̂i)F̃ (g(L̂i))Q2(g(L̂i)) +

∫ f(L̂i)

g(L̂i)

U ′(L̂i −DT )dz

−λ1f
′(L̂i)F̃ (f(L̂i))L̂i + λ1g

′(L̂i)F̃ (g(L̂i))L̂i − λ1

∫ f(L̂i)

g(L̂i)

F̃ (z)dz

−λ1λ2

α
g′(L̂i)L̂i +

λ1λ2

α
g′(L̂i)Q2(g(L̂i)) +

λ1λ2

α
(α− g(L̂i)).

Since

Q1(f(L̂i)) := I(λ1F̃ (zi)) +DT = I
(
λ1F̃ (si)−

λ1λ2

α

)
+DT =: Q2(g(L̂i)) = L̂i

the derivative function simplifies to

G′(L̂i)

=

∫ f(L̂i)

g(L̂i)

U
′
(L̂i −DT )dz − λ1

∫ f(L̂i)

g(L̂i)

F̃ (z)dz +
λ1λ2

α
(α− g(L̂i))

= λ1F̃ (f(L̂i))︸ ︷︷ ︸
=U ′(L̂i−DT )

(f(L̂i)− g(L̂i))− λ1

∫ f(L̂i)

g(L̂i)

F̃ (z)dz +
λ1λ2

α
(α− g(L̂i)).

(B16)

Recalling that L̂b ≤ L̂i ≤ L̂u, we derive the bounds for the derivative of
G′(L̂i) (B16). Note that L̂i = L̂u implies that f(L̂u) = z̄ and g(L̂u) = α. Thus,
we have that

G′(L̂u) = λ1F̃ (f(L̂u))(f(L̂u)− g(L̂u))− λ1

∫ f(L̂u)

g(L̂u)

F̃ (z)dz +
λ1λ2

α
(α− g(L̂u))

= λ1F̃ (z̄)(z̄ − α)− λ1

∫ z̄

α

F̃ (z)dz < λ1F̃ (z̄)(z̄ − α)− λ1(z̄ − α)F̃ (z̄) = 0.

13We omit the dependence of the Lagrangian on α because α is a constant.
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Similarly, we have that G′(L̂b) > 0,

G′(L̂b)

=λ1F̃ (f(L̂b))(f(L̂u)− g(L̂b))− λ1

∫ f(L̂b)

g(L̂u)

F̃ (z)dz +
λ1λ2

α
(α− g(L̂b))

= λ1F̃ (α)(α− s̄)− λ1

∫ α

s̄

F̃ (z)dz +
λ1λ2

α
(α− s̄)

> λ1F̃ (α)(α− s̄)− λ1(α− s̄)F̃ (s̄) +
λ1λ2

α
(α− s̄)

= λ1F̃ (α)(α− s̄)− λ1(α− s̄)

(
F̃ (s̄)− λ2

α

)
︸ ︷︷ ︸
=F̃ (f(L̂b))=F̃ (α)

= 0.

Moreover, since G′(L̂i) is continuous, there is at least one L̂i such that

G′(L̂i) = 0.

Next, we show that G′(L̂i) (B16) is a decreasing function. Without loss

of generosity, we assume that L̂1 < L̂2, which implies that g(L̂1) < g(L̂2) <

f(L̂1) < f(L̂2). Now, we compare G′(L̂1) and G′(L̂2), i.e.,

G′(L̂1)−G′(L̂2)

=λ1F̃ (f(L̂1))(f(L̂1)− g(L̂1))− λ1

∫ f(L̂1)

g(L̂1)

F̃ (z)dz + λ1
λ2

α
(α− g(L̂1))

−λ1F̃ (f(L̂2))(f(L̂2)− g(L̂2)) + λ1

∫ f(L̂2)

g(L̂2)

F̃ (z)dz − λ1
λ2

α
(α− g(L̂2))

= λ1F
−1
ξ (1− f(L̂1))(f(L̂1)− g(L̂1))− λ1F

−1
ξ (1− f(L̂2))(f(L̂2)− g(L̂2))

+λ1
λ2

α
(g(L̂2)− g(L̂1)) + λ1

∫ f(L̂2)

f(L̂1)

F̃ (z)dz + λ1

∫ f(L̂1)

g(L̂2)

F̃ (z)dz

−λ1

∫ g(L̂2)

g(L̂1)

F̃ (z)dz − λ1

∫ f(L̂1)

g(L̂2)

F̃ (z)dz

= λ1

∫ f(L̂2)

f(L̂1)

F̃ (z)dz︸ ︷︷ ︸
A

−λ1

∫ g(L̂2)

g(L̂1)

F̃ (z)dz︸ ︷︷ ︸
B

+λ1
λ2

α
(g(L̂2)− g(L̂1))︸ ︷︷ ︸

C

+λ1 F̃ (f(L̂1))(f(L̂1)− g(L̂1))︸ ︷︷ ︸
D

−λ1 F̃ (f(L̂2))(f(L̂2)− g(L̂2))︸ ︷︷ ︸
E

.
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We make use of integration by parts to deal with the terms A and B, i.e,

∫ f(L̂2)

f(L̂1)

F̃ (z)dz =F̃ (z)z|f(L̂2)

f(L̂1)
−
∫ f(L̂2)

f(L̂1)

zdF̃ (z)

=F̃ (f(L̂2))f(L̂2)− F̃ (f(L̂1))f(L̂1)−
∫ f(L̂2)

f(L̂1)

zdF̃ (z)

∫ g(L̂2)

g(L̂1)

F̃ (z)dz =F̃ (z)z|g(L̂2)

g(L̂1)
−
∫ g(L̂2)

g(L̂1)

zdF̃ (z)

=F̃ (g(L̂2))g(L̂2)− F̃ (g(L̂1))g(L̂1)−
∫ g(L̂2)

g(L̂1)

zdF̃ (z).

Note that the terms D − E + C is

D − E + C

=F̃ (f(L̂1))f(L̂1)− F̃ (f(L̂2))f(L̂2)− (F̃ (f(L̂1)) +
λ2

α
)g(L̂1)

+(F̃ (f(L̂2)) +
λ2

α
)g(L̂2)

=F̃ (f(L̂1))f(L̂1)− F̃ (f(L̂2))f(L̂2)− F̃ (g(L̂1))g(L̂1) + F̃ (g(L̂2))g(L̂2).

Therefore, G′
(L̂1)−G′

(L̂2) simplifies to

G
′
(L̂1)−G

′
(L̂2) =λ1

(∫ g(L̂2)

g(L̂1)

zdFξ
−1(1− z)−

∫ f(L̂2)

f(L̂1)

zdFξ
−1(1− z)

)

=λ1

∫ f(L̂2)

f(L̂1)

(g(L̂i)− z)dFξ
−1(1− z)

=λ1

∫ f(L̂2)

f(L̂1)

(g(L̂i)− z)︸ ︷︷ ︸
<0

(Fξ
−1)

′
(1− z)︸ ︷︷ ︸

<0

dz > 0.

Hence, we conclude that G′(L̂i) is a decreasing function, and there is a

unique zero root to the function G′(L̂i) = 0. We use L̂∗ to denote the unique

zero root of the function G′(L̂i) = 0 and the correspondingly

f(L̂∗) = 1− F

(
U ′(L̂∗ −DT )

λ1

)
=: z∗, g(L̂∗) = 1− F

(
U ′(L̂∗ −DT )

λ1
+

λ2

α

)
=: s∗.
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In addition, the Lagrangian G(L̂i) increases on L̂i < L̂∗ (G′(L̂i) > 0) and

decreases on L̂∗ < L̂i (G′(L̂i) < 0), and attains its maximum at L̂∗.□
Therefore, the optimal quantile function for Problem P0 is given by

Q0
X = (I(λ1F̃ (z))+DT )1z∗<z≤1+L̂∗

1s∗<z≤z∗+

(
I

(
λ1F̃ (z)− λ1λ2

α

)
+DT

)
10≤z≤s∗ .

(B17)
Now let us consider the general case, i.e., 0 < zD < α. Lemma B.3 is still

valid except that the function (B15) becomes

G(zD, L̂i) (B18)

=

∫ 1

f(L̂i)

U(Q1(z)−DT )dz +

∫ f(L̂i)

g(L̂i)

U(L̂i −DT )dz +

∫ g(L̂i)

zD

U(Q2(z)−DT )dz

−λ1

∫ 1

f(L̂i)

Q1(z)F̃ (z)dz − λ1

∫ f(L̂i)

g(L̂i)

L̂iF̃ (z)dz

−λ1

∫ g(L̂i)

zD

Q2(z)F̃ (z)dz +
λ1λ2

α

∫ α

g(L̂i)

L̂idz +
λ1λ2

α

∫ g(L̂i)

zD

Q2(z)dz, (B19)

where Q1(z) = I(λ1F̃ (z)) + DT and Q2(z) = I(λ1F̃ (z) − λ1λ2

α ) + DT . Note

that the partial derivative of G(zD, L̂i) with respect to L̂i is the same as

G′(L̂i) (B16), and is not affected by zD. Therefore, by Lemma B.3, there

is a unique zero root for ∂G(zD, L̂i)/∂L̂i = 0 denoted by L̂∗. Correspond-

ingly, we have that f(L̂∗) = 1 − Fξ

(
U ′(L̂∗−DT )

λ1

)
=: z∗ and g(L̂∗) = 1 −

Fξ

(
U ′(L̂∗−DT )

λ1
+ λ2

α

)
=: s∗. Next, we find the global maximum of G(zD, L̂i)

over zD < α.

Lemma B.4 For a fixed zD < α, the maximum of the function (B19) is given by

G(zD, L̂∗) (B20)

=

∫ 1

z∗
U(Q1(z)−DT )dz +

∫ z∗

s∗
U(L̂∗ −DT )dz +

∫ s∗

zD

U(Q2(z)−DT )dz

−λ1

∫ 1

z∗
Q1(z)F̃ (z)dz − λ1

∫ z∗

s∗
L̂iF̃ (z)dz − λ1

∫ s∗

zD

Q2(z)F̃ (z)dz

+
λ1λ2
α

∫ α

s∗
L̂idz +

λ1λ2
α

∫ s∗

zD

Q2(z)dz, (B21)

where Q1(z) = I(λ1F̃ (z))+DT and Q2(z) = I(λ1F̃ (z)− λ1λ2
α )+DT . The partial

derivative of the function (B21) has a unique zero root, i.e., ∂G(zD, L̂∗)/∂zD(z∗D) =
0.

1. If L̂∗ > D̂T , the Lagrangian (B21) attains its maximum at zD = z∗D;
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2. If L ≤ L̂∗ ≤ D̂T , the Lagrangian (B21) attains its maximum at zD =

α(L̂∗ − L)/L̂∗.

Proof:

The partial derivative of G(zD, L̂∗) with respect to zD is given by

∂G(zD, L̂∗)

∂zD

=− U(Q2(zD)−DT ) + λ1Q2(zD)F̃ (zD)− λ1λ2

α
Q2(zD)

=− U

(
I

(
λ1F̃ (z)− λ1λ2

α

))
+ λ1F̃ (zD)

(
I

(
λ1F̃ (zD)− λ1λ2

α

)
+DT

)
−λ1λ2

α

(
I

(
λ1F̃ (zD)− λ1λ2

α

)
+DT

)
=− U

(
I

(
λ1F̃ (z)− λ1λ2

α

))
+

(
λ1F̃ (zD)− λ1λ2

α

)(
I

(
λ1F̃ (zD)− λ1λ2

α

)
+DT

)
.

(B22)

Letting x = I
(
λ1F̃ (zD)− λ1λ2

α

)
+DT , the partial derivative (B22) can be

writte as
∂G(zD, L̂∗)

∂zD
= −U(x−DT ) + U

′
(x−DT )x.

Thus, Lemma 3.1 provides that there is a unique root for the function

∂G(zD, L̂∗)

∂zD
= 0,

which is z∗D = 1− Fξ(
U ′(D̂T−DT )

λ1
+ λ2

α ). Moreover, Lemma 3.1 also gives that

∂G(zD, L̂∗)/∂zD > 0 if zD < z∗D and ∂G(zD, L̂∗)/∂zD < 0 if zD > z∗D. Thus,

G(z∗D, L̂∗) is the maximum of the Lagrangian.

If L̂∗ > D̂T , we have that

z∗D = 1− Fξ

(
U ′(D̂T −DT )

λ1
+

λ2

α

)
< s∗ = 1− Fξ

(
U ′(L̂∗ −DT )

λ1
+

λ2

α

)
,

because U ′(·) is a decreasing function. Thus, G(zD, L̂∗) indeed attains its
maximum at zD = z∗D.
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However, if L̂∗ ≤ D̂T , we know that z∗D > s∗. In this case, the Lagrangian

G(zD, L̂∗) becomes

G(zD, L̂∗) =

∫ 1

z∗
U(Q1(z)−DT )dz +

∫ z∗

zD

U(L̂∗ −DT )dz − λ1

∫ 1

z∗
Q1(z)F̃ (z)dz

−λ1

∫ z∗

zD

L̂∗F̃ (z)dz +
λ1λ2

α

∫ α

zD

L̂∗dz. (B23)

The partial derivative of (B23) is given by

∂G(zD, L̂∗)

∂zD
= −U(L̂∗ −DT ) + λ1L̂

∗F̃ (zD)− λ1λ2

α
L̂∗

= −U(L̂∗ −DT ) + λ1L̂
∗(F̃ (zD)− λ2

α
).

Note that in this case zD takes value in (s∗, α). Then, we have that

lim
zD→s∗

=
∂G(zD, L̂∗)

∂zD

= −U(L̂∗ −DT ) + λ1L̂
∗(F̃ (s∗)− λ2

α
) = L̂∗U ′(L̂∗ −DT )− U(L̂∗ −DT ) > 0

lim
zD→α

=
∂G(zD, L̂∗)

∂zD

= −U(L̂∗ −DT ) + λ1L̂
∗(F̃ (α)− λ2

α
)

> −U(L̂∗ −DT ) + λ1L̂
∗(F̃ (z∗)) = L̂∗U ′(L̂∗ −DT )− U(L̂∗ −DT ) > 0.

Obviously, ∂G(zD, L̂∗)/∂zD is a monotone (decreasing) function of zD.

Hence, the function G(zD, L̂∗) is increasing in zD. However, to satisfy the

AVaR constraint, zD is at most z∗∗D = α(L̂∗ − L)/L̂∗.□ □

B.2 Discussion of the budget constraint

In the previous section, we have shown the optimal solutions for the Problem
AVaR (1) in different situations assuming they exist. In this section, we give
a short discussion of the existence of the optimal solutions.

Note that we always assume that the AVaR constraint is given, i.e., α and
L are fixed, and the debt level is given, i.e., DT is fixed. Correspondingly,
the tangent point D̂T is a constant (Lemma 3.1). Recall that the benchmark

solution is either above the tangent point D̂T or is zero. Hence, given the AVaR
constraint 1

α

∫ α

0
QAV aR

X (z)dz ≥ L, the trivial solution is given by XAV aR
T = L.

Therefore, if the budget is below Le−rT , the optimal solution does not exist.
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Let XB
T denote the benchmark solution (Proposition 1) with the budget

constraint E[XB
T ξ] = xB

0 . If
1
α

∫ α

0
QB(z)dz ≥ L, where QB(z) is the quantile

function of XB
T , then the AVaR constraint is redundant. It means that the

benchmark solution is also the optimal solution under the AVaR constraint.
Therefore, the optimal solutions in Proposition 2 exist if the initial budget is
Le−rT < x0 < xB

0 .
The optimal solution (19) depends on β∗ (Lemma B.1) and z∗D (Eq B9 and

Lemma 3.1). Given the AVaR constraint, we have that 0 < β∗ < β̄ := α(DT −
L)/DT . Therefore, given a β∗ ∈ (0, β̄), z∗D can be written as a function of β∗

and λ1 by Eq B9 and Lemma 3.1. The constraint z∗D > α can be transferred
to a constraint on λ1, which implies a bound of the budget. Let x0(α) denote
the budget if z∗D = α. Then, if Le−rT < x0 < x0(α), Eq 19 is the optimal
solution for the Problem AVaR (1).

Similarly, Lemma B.3 tells that L̂∗ is a function of λ1 and λ2. Let x0(D̂T )

denote the budget when L̂∗ = D̂T . Then, if x0(α) < x0 < x0(D̂T ), Eq (22)
is the optimal solution for the Problem AVaR (1); Otherwise, the optimal
solution is Eq (23).

Note that if L > DT , Eq (19) does not exist.

Appendix C Proof of Proposition 4

Proof:

The optimal solution for Problem AVaR (1) has three potential structures
depending on the initial budgets.

Case 1: LES = L̂∗ < DT .

If the equations F̃ (z∗D) = ξa, F̃ (β∗) = ξb hold, then the two solutions (27) and

(19) are the same. Note that ξb = F̃ (α(LES − L)/LES) because it is defined

by P (ξ ≥ ξb) = α(LES − L)/LES . Note that β∗ = α(L̂∗ − L)/L̂∗. Thus, if

LES = L̂∗, then F̃ (β∗) = ξb.

Similarly, we have that F̃ (z∗D) = U ′(L̃ − (DT − L̂∗))/λ1 as L̃ satisfies

U(L̃− (DT − L̂∗))−U ′(L̃− (DT − L̂∗))L̃ = 0. Notice that ξa = U ′(L̃− (DT −
LES))/λES

1 , with L̃ satisfying U((L̃−(DT −LES))−L̃U ′(L̃−(DT −LES)) = 0.

Given that LES = L̂∗, we have F̃ (z∗D) = ξa.
Lemma A.1 gives that the budget function is a monotone function. Hence,

λ1 = λES
1 .

Case 2: DT < LES = L̂∗ < D̂T .

The solutions (29) and (22) are the same if ξ1 = ξc, ξ2 = ξd.

Recall that ξ2 = F̃ (α(L̂∗−DT )/L̂
∗). In addition, we have ξd = F̃ (α(LES−

L)/LES) because ξd is defined through P (ξ ≥ ξd) = α(LES − L)/LES . Thus,

if L̂∗ = LES , then ξ2 = ξd.
Moreover, ξ1 = U ′(L̂∗ − DT )/λ1 and ξc = U ′(LES − DT )/λ

ES
1 . Hence, if

LES = L̂∗, ξ1 = ξc
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Case 3: LES = L̂∗ > D̂T .

Similar to Case 2, we have ξ1 = U ′(L̂∗ − DT )/λ1, ξ2 = (U ′(L̂∗ − DT ) +

λ2/α)/λ1 and ξ3 = (U ′(D̂T − DT ) + λ2/α)/λ1. In addition, we know that

ξe = U ′(LES−DT )/λ
ES
1 , ξf = (U ′(LES−DT )+λES

2 )/λES
1 and ξg = (U ′(D̂T −

DT ) + λES
2 )/λES

1 . Hence, if LES = L̂∗, the solution (30) is the same as (23).
The above arguments also work if we start from the solutions (27), (29)

and (30). It means that given the optimal wealth (27), (29) and (30) under
the ES constraint E[(LES −XT )

+] ≤ α(LES −L), we can compute the AVaR
of the portfolio that is 1

α

∫ α

0
V aRXT

(β)dβ = L. In another case, if the optimal

wealth is (26) or (28), the AVaR of the portfolio is 1
α

∫ α

0
V aRXT

(β)dβ > L by
Lemma 4.1 in Chen, Stadje and Zhang [14]. □

Appendix D Proof of Proposition 5

In the Black Scholes market with two financial assets, the unique state price
density ξT follows a log normal distribution, i.e.,

ξT /ξ0 ∼ LN (−(r + 0.5θ2)T, θ
√
T ), θ = (µ− r)/σ, ξ0 = 1. (D24)

In addition, the process XAV aR
T ξT is a martingale, i.e.,

XAV aR
t ξt = E

[
XAV aR

T ξT

∣∣∣∣Ft

]
. (D25)

Based on these two facts, we can express the pre-horizon wealth XAV aR
t as a

function of ξt.
Next, we explain how to obtain the investment strategy πAV aR

t . Given
the investment strategy πAV aR

t , the dynamics of the optimal portfolio can be
expressed as

dXAV aR
t = πAV aR

t

XAV aR
t

St
dSt + (1− πAV aR

t )
XAV aR

t

Bt
dBt

= (r + πAV aR
t (µ− r))XAV aR

t dt+ πAV aR
t σXAV aR

t dWt. (D26)

Moreover, the portfolio XAV aR
t is a Itô process in the Black Scholes market.

After we obtain XAV aR
t from Eq (D25), we can compute its derivatives by Itô’s

lemma. Then, the optimal investment strategies are obtained by comparing
the stochastic term of the derivative of XAV aR

t with Eq (D26).
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