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Introduction
• Telehealth allows the distribution

of health-related services.

• Promising avenue for prevention,
and remote diagnosis and
monitoring of diseases.

• Can be a solution when access to
care is restricted.
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Bodyo AiPod
• Stand-alone telehealth kiosk.

• Measures 27 health indicators
in 6 minutes.

• 4 sensors collect information :
• a scale
• a body composition sensor
• an oximeter
• a blood pressure sensor
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Deploying the AiPod

• In non-clinical contexts sensors may fail, leading to incomplete
data.

• If one sensor fails all measures collected by the sensor go
missing.

• We cannot afford to discard incomplete observations.
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Problem:
How to deal with missing data?



Working with missing data

•We investigate two ways to deal with missing data:

• Imputation schemes to fill the missing values.

• A set approach that avoids imputation.
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Imputation of missing values
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Imputation schemes

• We still want to keep observations with missing values.

• Imputation schemes allow to fill missing values.

• Imputation needs to preserve the integrity of the original data.
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Multiple Imputation with Denoising 
Autoencoders (MIDA)
• The MIDA architecture[1] imputes

missing values.
• Based on a denoising autoencoder.
• MIDA masker not suitable for our

problem.

[1] Gondara, L., & Wang, K. (2018, June). Mida: Multiple imputation using denoising autoencoders. 
In Pacific-Asia conference on knowledge discovery and data mining (pp. 260-272). Springer, Cham.
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Our Approach:
Modify the masker to imitate the 

pattern of a failing  sensor.



Evaluation : feature reconstruction error
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Evaluation : feature distribution
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Evaluation : blood pressure classification

Accuracy F1-score Precision Sensitivity
None 0.67 0.65 0.62 0.69

Mean 0.64 0.67 0.59 0.77
Our method 0.71 0.71 0.65 0.77

• Dataset: 329 samples with 24 features.

• Data from at least one of the sensors is missing for 48 samples.

• Use case: assess if imputation improves the binary classification
of BP categories according to 2 categories.
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Limitations of imputation

• There may be additional information, not collected by the
sensors.

• In our dataset, only 105 samples (out of 329) have no missing
values.

• Imputation of poorly represented information can introduce
significant biases in the learning process.
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Set approach to learn with missing values
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Set models

• Most classical machine learning models require fixed-
dimensional inputs.

• Sets allow to overcome this limitation.

• Good alternative to learn with missing values.
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Set models

• Idea: use permutation invariant neural networks.

• Permutation invariant function: indifferent to the ordering of its
input.

4 H. Chaptoukaev

On the Limitations of Representing Functions on Sets

Edward Wagstaff * 1 Fabian B. Fuchs * 1 Martin Engelcke * 1 Ingmar Posner 1 Michael Osborne 1

Abstract
Recent work on the representation of functions
on sets has considered the use of summation in
a latent space to enforce permutation invariance.
In particular, it has been conjectured that the di-
mension of this latent space may remain fixed
as the cardinality of the sets under consideration
increases. However, we demonstrate that the ana-
lysis leading to this conjecture requires mappings
which are highly discontinuous and argue that this
is only of limited practical use. Motivated by this
observation, we prove that an implementation of
this model via continuous mappings (as provided
by e.g. neural networks or Gaussian processes)
actually imposes a constraint on the dimensional-
ity of the latent space. Practical universal function
representation for set inputs can only be achieved
with a latent dimension at least the size of the
maximum number of input elements.

1. Introduction
Machine learning models have had great success in taking
advantage of structure in their input spaces: recurrent neural
networks are popular models for sequential data (Sutskever
et al., 2014) and convolutional neural networks are the state-
of-the-art for many image-based problems (He et al., 2016).
Recently, however, models for unstructured inputs in the
form of sets have rapidly gained attention (Ravanbakhsh
et al., 2016; Zaheer et al., 2017; Qi et al., 2017a; Lee et al.,
2018; Murphy et al., 2018; Korshunova et al., 2018).

Importantly, a range of machine learning problems can nat-
urally be formulated in terms of sets; e.g. parsing a scene
composed of a set of objects (Eslami et al., 2016; Kosiorek
et al., 2018), making predictions from a set of points form-
ing a 3D point cloud (Qi et al., 2017a;b), or training a set
of agents in reinforcement learning (Sunehag et al., 2017).

*Equal contribution 1Department of Engineering Science, Uni-
versity of Oxford, Oxford, United Kingdom. Correspondence to:
<{ed, fabian, martin}@robots.ox.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).
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Figure 1: Illustration of the model structure proposed in
several works (Zaheer et al., 2017; Qi et al., 2017a) for
representing permutation-invariant functions. The sum op-
eration enforces permutation invariance for the model as a
whole. � and ⇢ can be implemented by e.g. neural networks.

Furthermore, attention-based models perform a weighted
summation of a set of features (Vaswani et al., 2017; Lee
et al., 2018). Hence, understanding the mathematical prop-
erties of set-based models is valuable both in terms of set-
structured applications as well as better understanding the
capabilities and limitations of attention-based models.

Many popular machine learning models, including neural
networks and Gaussian processes, are fundamentally based
on vector inputs1 rather than set inputs. In order to adapt
these models for use with sets, we must enforce the property
of permutation invariance, i.e. the output of the model must
not change if the inputs are reordered. Multiple authors, in-
cluding Ravanbakhsh et al. (2016), Zaheer et al. (2017) and
Qi et al. (2017a), have considered enforcing this property
using a technique which we term sum-decomposition, illus-
trated in Figure 1. Mathematically speaking, we say that a
function f defined on sets of size M is sum-decomposable
via Z if there are functions � : R ! Z and ⇢ : Z ! R such
that2

f(X) = ⇢
�
�x2X�(x)

�
(1)

We refer to Z here as the latent space. Since summa-
tion is permutation-invariant, a sum-decomposition is also
permutation-invariant. Ravanbakhsh et al. (2016), Zaheer
et al. (2017) and Qi et al. (2017b) have also considered
the idea of enforcing permutation invariance using other
operations, e.g. max(·). In this paper we concentrate on a
detailed analysis of sum-decomposition, but some of the lim-
itations we discuss also apply when max(·) is used instead
of summation.

1Or inputs of higher rank, i.e. matrices and tensors.
2We use R here for brevity – see Definition 2.2 for the fully

general definition.
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Fig. 2. Illustration of the model structure proposed by Zaheer et al. [1]. The sum
operation enforces permutation invariance for the model as a whole. ' and ⇢ can be
implemented by neural networks. (Figure taken from [19].)

3.1 Permutation-Invariant Neural Networks

Models for set inputs have gained attention recently. For instance, Zaheer et
al. [1] considered objective functions defined on sets that are invariant to per-
mutations in the paper Deep Sets. Precisely, [1] characterizes and provides a
family of permutations-invariant functions of a special structure allowing the
design of a deep network operating on sets. Similarly, Ravanbakhsh et al. [18]
used a permutation-invariant network for point-cloud classification and intro-
duced a permutation-equivariant layer for deep learning set structures.

Permutation-Invariance A function f that transforms its domain X into its
range Y is permutation-invariant if it is indi↵erent to the ordering of its input
elements. Many authors [1, 18] enforced the property of permutation-invariance
using the notion of sum decomposition as illustrated in Fig. 2. The following
theorem characterizes the structure of such functions in the case where the input
is a countable set.

Theorem 1. A function f operating on a set X having elements in a countable
universe, is a valid set function i↵ there are functions ' : R ! Z and ⇢ : Z ! R
such that

f(X) = ⇢
⇣ X

x2X

'(x)
⌘

(1)

In other words, f is invariant to the permutations of its input, if it is sum-
decomposable via a latent space Z. Summation being permutation-invariant, a
sum decomposition is also permutation-invariant.

Invariant Architecture Based on the previous theorem, Zaheer et al. [1] pro-
posed the Deep Sets architecture, as a general strategy for inference over sets.
In a first step, each observation xj of an input set X is transformed, possibly
through several layers, into some representation �(xj). The representations �(xj)
are then added up and the output is processed using the ⇢ network as in any
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Deep Sets architecture

[2] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). 
Deep sets. Advances in neural information processing systems, 30. 16



Our approach
• Each input vector Xi is encoded as a set of permutation

invariant observations xj.
• Each xj is represented as a tuple (vj, mj) such that :

Xi := {(v1, m1),…,(vp, mp)}

• The whole dataset can then be described as:
D := {(X1, y1),…,(Xn, yn)}

17
Paper in writting. 

Our Approach:
Allows us to deal with missing values.



Evaluation: diabetes classification
• The Pima Indians Diabetes[3] database is composed of 768 samples and 8

features.
• Up to 374 samples have missing values across 5 features.

[3] https://www.kaggle.com/competitions/diabetes-classification/data
18
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Evaluation : benchmark

Accuracy F1-score Precision Sensitivity
Mean imp. + LR 0.753 0.61 0.70 0.52

Mean imp. + RF 0.772 0.65 0.71 0.59

Mean imp. + GB 0.727 0.59 0.62 0.56

Our method 0.792 0.71 0.68 0.74

• Benchmark: Logistic regression, Random Forests and Gradient
Boosting.

• Missing values need to be imputed first for the benchmark.
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Concluding remarks

• The problem of missing values is a particularly sensitive issue in
the medical field.

• We proposed two simple yet robust models that yield good
performances.

• Imputation methods should be used sparingly to avoid biases
in the learning.
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Ongoing work

• Develop a way to compute a weighted aggregation.

• Test the method on the AiPod data.

• Investigate the combination of the two approaches.
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