Hitchhiker's Guide to a Practical Automated TFHE Parameter Setup for Custom Applications

Jakub Klemsa

jakub.klemsa@eurecom.fr

Motivation

TFHE cipher is instantiated with 8 parameters:

- determine **security level** and plaintext/evaluation **error rate**
 - \Rightarrow parameters are **application-specific**,
- vast impact on **performance** \Rightarrow optimization problem,

 \Rightarrow need for a tool for TFHE parameter setup.

Given application specifications:

- + fully automated TFHE parameter setup,
- + optimized for **best performance**,
- + unified approach \Rightarrow allows to **compare** different parameters:
 - $\circ\,$ same target security & error rates, aim for best parameters,
 - \circ e.g., different homomorphization in digit-based arithmetics [1].

Application Specifications

Specify application needs (security & error rates) by **three parameters**:

Parameter Restrictions

Goal: bound the noise of a fresh(ly bootstrapped) sample, s.t. i. limited number of additions can be performed (cf. $2^{2\Delta}$); and ii. the noise can be refreshed correctly during bootstrapping. 2^{π} cleartext values \Rightarrow max error $\stackrel{!}{<} \frac{1}{2^{\pi+1}} \dots$ by 3σ -rule: $V_{\max} \leq 2^{2\Delta}V_0 + V_{round} \stackrel{!}{\leq} \frac{1}{3^2 \cdot 2^{2\pi+2}}, \quad \text{where } V_{round} = \frac{n+1}{48N^2}.$ (4) V_0 depends on implementation, for plain TFHE [3]: $V_0 \leq 2nlN2^{2(\gamma-1)}V_{\mathsf{BK}}(N) + n(1+N)2^{-2(\gamma l+1)} + \mathsf{Var}(\mathsf{Err}(u,v)) + \frac{(\bullet)}{(\bullet)} = 0$ $+ tN2^{2(\kappa-1)}V_{\mathsf{KS}}(n) + \frac{2^{-2(\kappa t+1)}N}{(\bullet)}.$ (5)

To derive **good TFHE** parameters, we need to:

- i. satisfy the bound (4) (error budget), using (5); and
- ii. check their quality in terms of **bootstrapping time**.

- A. **bit-security level** denoted λ ;
- B. requested **cleartext space bit-precision** denoted π ; and
- C. bound on the number of homomorphic additions before the sample gets bootstrapped, denoted $2^{2\Delta}$, referred **quadratic weights**;

 \Rightarrow input parameters for our TFHE parameter setup tool.

A. Bit-Security Level λ

Observation 1. At fixed security λ , the logarithm of stddev of LWE noise (den. α), is roughly linear in the LWE dimension n (with factor den. s_{λ}):

$$-\log_2(\alpha) \approx s_\lambda \cdot n; \tag{1}$$

cf. Figure 1. Due to the **collision attack**, the relation is limited to $n \ge 2\lambda$, also the behavior changes for $-\log_2(\alpha) > \tau$ with τ the torus precision.

Figure 1: LWE bit-security level λ as estimated by the *LWE Estimator* by Albrecht et al. [2]. For $\lambda = 128$ bits, $s_{\lambda} \approx 0.0235$.

B. Cleartext Space Bit-Precision π

Before selecting an appropriate π , bare in mind:

- i. complexity of TFHE bootstrapping is roughly **exponential** in π ,
 - practical times for up to $\pi \approx 6$ bits (cf. Figure 2),

	$\mathbb{Z}/16\mathbb{Z}$ Demo: $\pi = 6, 2^{2\Delta} = 2$		Repo with
	Orig. param's [4]	New param's	exp. code
$N,n \ ; \ \gamma,l$	$2048,750\ ;\ 7,3$	$2048,766\ ;\ 21,1$	
$\kappa, t; \log(\alpha_{BK,KS})$	2,7; -52, -18	3,5; -48, -18	FF C
$\lambda \ ; \ t_{BS}$	128.2 ; $199.6 \mathrm{ms}$	131.2 ; $124.6 \mathrm{ms}$	
$\eta_C, \eta_m[\%]$	86.0, 85.5	91.2, 90.5	

Table 1: Original and newly identified TFHE parameters for the $\mathbb{Z}/16\mathbb{Z}$ demo [4] with $\pi = 6$ bits. 500 runs with Concrete [5] on Intel Core i7-7800X. η_C and η_m stand resp. for the usage of the $3\sigma_{\max}$ error budget as calculated by Concrete and as measured after decryption. Experimental code at https://gitlab.eurecom.fr/fakub/tfhe-param-testing.

ii. bootstrapping Look-Up Table (LUT) is inherently **negacyclic**: $LUT(2^{\pi-1}+m) = -LUT(m), \quad m \in [0, 2^{\pi-1}].$ (2)

C. Quadratic weights $2^{2\Delta}$

Observation 2. LWE noises accumulate with each homomorphic addition: for indep. TLWE samples \mathbf{c}_i with equal noise variance denoted V_0 :

$$/\operatorname{ar}\left(\operatorname{Err}\left(\sum w_{i} \cdot \mathbf{c}_{i}\right)\right) = \underbrace{\sum w_{i}^{2}}_{2^{2\Delta}} \cdot \underbrace{\operatorname{Var}(\operatorname{Err}(\mathbf{c}_{i}))}_{V_{0}}, \quad w_{i} \in \mathbb{Z}.$$
 (3)

To ensure **correct LUT evaluation** during bootstrapping:

- **bound** on $2^{2\Delta}$ before a sample gets bootstrapped (refresh noise),
- $2^{2\Delta}$... sum of squared weights; Δ ... bits of stddev of addit'l noise.

Acknowledgements

This work was supported by the MESRI-BMBF project UPCARE (ANR-20-CYAL-0003-01).

Figure 2: Bootstrapping times of best TFHE parameters with $\eta_C < 100\%$ for various scenarios, chosen automatically. The width of the bars represents $l \in [\![1,4]\!]$. Hatched bars represent incorrect results, presumably due to $\log(\alpha) < -64$ being out of Concrete's v0.1.11 supported range.

References

- [1] J. Klemsa and M. Önen, "Parallel Operations over TFHE-Encrypted Multi-Digit Integers," ser. CODASPY '22, 2022.
- M. R. Albrecht, B. R. Curtis, A. Deo, et al., LWE Estimator, https://bitbucket.org/ malb/lwe-estimator, 2018.
- [3] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, "TFHE: fast fully homomorphic encryption over the torus," *Journal of Cryptology*, vol. 33, no. 1, pp. 34–91, 2020.
- [4] Zama, Demo Z/8Z, https://github.com/zama-ai/demo_z8z, 2021.
- [5] Zama, CONCRETE, https://concrete.zama.ai, 2021.