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Abstract: Optical Processing Units (OPUs) are computing devices that perform random projections of input data 

by exploiting the physical phenomenon of scattering a light source through a diffusive medium. Random 

projections calculated by OPUs have been used successfully for approximating kernel ridge regression for large 

datasets with low power consumption and at high speed. However, OPUs require the input data to be binary. In 

this paper, we propose to use shallow and deep neural networks (NN) as binary encoders to perform input data 

binarization. The difficulty in developing a binarization strategy which is learned in an end-to-end fashion along 

with kernel ridge regression parameters, is due to the non-differentiability of the operation performed by the OPU. 

We overcome this difficulty by considering OPUs as a black-box and by employing the REINFORCE gradient 

estimator, which allows us to calculate the gradient of the loss function with respect to the weights of the 

binarization encoder and to optimize these together with the parameters of kernel ridge regression with gradient-

based optimization.   

        Through our experimental campaign on a variety of tasks and datasets, we show that our method outperforms 

alternative unsupervised and supervised binarization techniques.  

 

Keywords: optimization, random features, linear regression, optical processing unit. 

 

 

 

1. Introduction 
 

Statistical models based on kernel methods offer 

powerful and theoretically well-understood tools for 

complex data modeling problems. The limitation of 

employing these kernel-based models in practice is 

that a naive implementation scales poorly with the size 

of the data set, and there has been a tremendous 

amount of work in the direction of mitigating this issue 

by introducing approximations.  

 

 

In this context, Nyström approximations [1] and 

random features [2] are very popular techniques to 

scale kernel methods virtually to any number of data, 

thanks to mini-batch formulations [3], [4]. 

The focus of this work is on random feature 

approximations, where by kernel-based models are 

"linearized" by an equivalent linear model with a set 

of suitably constructed random basis functions. The 

motivation behind this work is to considerably 

accelerate the construction of random features, while 

reducing power consumption, by resorting to a 
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dedicated hardware, which we refer to Optical 

Processing Units (OPUs). 

OPUs are computing devices which perform 

random projections of input vectors by exploiting the 

physical phenomenon of scattering a light source 

through a diffusive medium [5]. The random 

projection is then followed by a nonlinear operation, 

making the whole pipeline of computation exactly 

what is needed to construct random features to 

approximate kernel-based models. Crucially, OPUs 

offer the possibility to operate with a number of 

random features at the speed of light and with low-

power consumption, representing a unique solution to 

further improve scalability of kernel machines. As an 

example, OPU-based random feature approximations 

have successfully been proposed to carry out 

approximate kernel ridge regression in [6], [7]. 

One limitation associated with working with OPUs 

is that, because of the hardware setup, input vectors 

need to be binarized. In addition, the random 

projection matrix characterizing the device is 

unknown, and can only be retrieved through an 

expensive calibration procedure. 

In this paper, we propose a novel binarization 

strategy for OPUs which is learned along with the 

regression/classification task in an end-to-end manner, 

meaning that the parameters of the binarization part 

are learned along with the kernel-based model 

parameters. In order to achieve this, we overcome the 

limitation that OPU projection matrices are unknown 

by employing the so-called REINFORCE gradient 

estimator, which allows us to treat the OPU as a black-

box. Through experiments on several UCI 

classification/regression problems, we show that our 

proposal outperforms alternative unsupervised and 

supervised binarization techniques. This paper is an 

extended version of [8]; compared to the shorter 

version, we expand on the methods by analyzing the 

bounds on the objective functions of the proposed 

approaches, and we expand on the experiment by 

considering a larger class of kernels and image-based 

classification problems. 

 

2. Related work 

 
In neural networks, binarization is generally 

targeting intermediate layer activations, and it may 

also stem from binarization of model parameters; in 

these cases, binarization is mostly introduced to 

reduce computational cost and memory consumption 

[9]. Neural networks with binary hidden layers find 

applications in binary autoencoders for hashing [10], 

data compression [11], and hard attention mechanism 

[12]. The binarization of layer activations is obtained 

by a suitable choice of activation functions; for 

instance, the sign or Heaviside functions for the 

deterministic case, or the sigmoid or 𝑡𝑎𝑛ℎ functions 

combined with the Bernoulli distribution for the 

stochastic case [13], [14]. The most popular technique 

to propagate gradients through such activation 

functions is the so called straight-through estimator 

(STE) [15]. More recently, there have been proposals 

to replace the STE with another estimator through a 

relaxation technique, also known as the Gumbel 

Softmax-trick [16].   Also, different kinds of target 

propagation are used to learn suitable targets for each 

binary layer and then train the associated parameters 

with relaxation techniques or combinatorial 

optimization [17], [18], [19]. 

Focusing on OPUs, currently the standard 

approach to binarize data makes use of a binary 

autoencoder  [11]. Such a binary autoencoder is 

trained independently from the OPU device, and it 

gives the possibility to perform the binarization 

operation by means of its encoder part. The 

autoencoder consists of a fully-connected encoder and 

decoder. The hidden layer has a Heaviside activation 

function, so its output is binary. The training 

procedure updates the weights of the decoder with 

backpropagation and weights of the encoder are forced 

to be equal to the weights of the decoder in order to be 

able to reproduce the input. 

In this work, we aim to develop a supervised 

binarization model which is learned together with the 

supervised learning task. That is, we aim to provide a 

training procedure for the heterogeneous model 

consisting of the kernel ridge regression model 

approximated with random features and the 

binarization encoder before the OPU. In this context, 

a general-purpose framework called Method of 

Auxiliary Coordinates (MAC) was proposed in [19] 

with examples of application in [10] and [20]. The 

authors propose to introduce auxiliary variables into a 

deep neural network. These auxiliary variables are 

assigned the role of pre-activations for each layer, and 

they get replaced during the forward pass. The first 

step of the optimization targets the auxiliary variables, 

and, after this step, the parameters of each layer are 

optimized to regress on these variables, which take the 

role of layer-specific labels. This is very beneficial 

when some layers are discrete and vanilla 

backpropagation is not applicable. In [20], this 

approach is used to train a fully connected network 

with binary activation functions, using a STE to 

propagate a learning signal through the non-

differentiable parts. Reference [10] is especially 

interesting because authors illustrate, how discrete 

binary layers can be optimized withing larger, non-

binary model. 

While splitting the optimization of the binarization 

and the model is a viable option, we still need a way 

to training each part individually. There is a wide 

variety of ways to obtain a solution for kernel ridge 

regression with the random feature approximation, so 

the most difficult point is how to optimize the part 

consisting of the binary encoder and the OPU, because 

it combines a non-differentiable function with an 

implicit random projection. These make the STE from 

[20] inapplicable. Also, we found that the 

combinatorial approach used in [10] and [17] is 

inapplicable for our case for two reasons. First, it is 

suitable only when the binary dimension is relatively 

small, which might be a limitation for a general 
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solution. Second, the combinatorial approach 

combined with MAC converges in one iteration to 

poor local optima, and this happens because of the 

model setup which is different from the ones in [10] 

and [17]. 

From a different point of view, it is possible to 

view our problem through the lenses of reinforcement 

learning, where it is necessary to propagate binary 

codes through the OPU instead of discrete actions 

through the black-box environment. Instead of 

maximizing the reward from the environment, we are 

trying to minimize the loss function. The classical 

algorithm to solve this problem is REINFORCE [1]. 

This allows one to calculate gradients of the reward 

with respect to parameters of the policy that generates 

actions. The applicability of this method to other 

settings with black-box elements was shown in [21]. 

There are various versions of this algorithm intended 

to reduce variance of the gradient of the parameters. 

Very frequently they are based on relaxations of the 

non-differentiable sampling procedure [22], or 

approximation of the black-box part of the model [23]. 

It also worth noting that there exist competitive 

alternatives to REINFORCE, such as the one in [24], 

later extended with variance reduction [25] or 

relaxation [26]. 

 

3. Background 

 
3.1. Kernel Ridge Regression 

 
In this paper, we focus on kernel ridge regression 

for supervised learning tasks. Let 𝐗 = 𝐱1, … , 𝐱𝑛 be a 

set of input vectors 𝐱 ∈ ℝ𝑑 and let 𝐲 = 𝑦1, … 𝑦𝑛  be a 

set of labels associated with the input vectors.  

The labels 𝑦𝑖  can be continuous or binary 

depending on whether the task is regression or 

classification. Kernel ridge regression is a statistical 

model which constructs a functional relationship 

between the inputs and the labels which belongs to the 

so-called Reproducing Kernel Hilbert Space (RKHS).  

The properties of such functions, such as smoothness, 

are characterized by the choice of a so-called kernel 

function 𝑘(∙,∙): ℝ𝑑 × ℝ𝑑 → ℝ  [27], which is a 

positive semi-definite function of pairs of input points 

returning a scalar. The reproducing property of kernel 

functions is 〈𝑘(𝐱,∙), 𝑘(𝐲,∙)〉 = 𝑘(𝐱, 𝐲). Positive 

definiteness of kernel functions implies that we can 

express 𝑘(𝐱𝒊, 𝐱𝒋) = 𝜑(𝐱𝒊)
𝑇𝜑(𝐱𝒋) for some set of 

(possibly infinite) basis functions 𝜑(∙). 

In order to derive the conventional formulation of 

kernel ridge regression, it is useful to start from linear 

regression, where a set of model parameters 𝐰 is 

introduced to express a linear relationship between 

input and labels. Then, one introduces the following 

optimization problem: 

 

�̂� = argmin
𝑤

1

2
∑(𝑦 − 𝐰⊤𝐱 )

2 −
𝜆

2
||𝐰||2

2

𝑛

𝑖=1

 
(1) 

 

The objective function contains two terms; the 

first is a model fitting term, while the second is a 

regularization term, which prevents the weights to 

become too large. The solution to this optimization 

problem is available in closed form, given that the 

objective is quadratic with respect to the parameters, 

yielding: 

 

�̂� = (𝐗⊤𝐗 + 𝜆𝐈)−1𝐲 (2) 

 

Using standard algebraic manipulations involving 

the Woodbury identity, we can re-express the 

solution as: 

 

�̂� = 𝐗𝑇(𝐗 𝐗⊤ + 𝜆𝐈)−1𝐲 (3) 

 

While this is costly than the previous expression 

in the common case where 𝑑 <  𝑛 (inversion of a 

𝑛 × 𝑛 matrix rather than a d × 𝑑 matrix), this 

formulation is useful to derive kernel ridge 

regression. 

Imagining to introduce basis functions 𝜙(⋅) =

(𝜙1(⋅), … , 𝜙𝐷(⋅))
⊤

, we can solve this new 

optimization problem 

 

�̂� = argmin
𝑊

1

2
∑(𝑦𝑖 − 𝐰⊤𝜙(𝐱𝑖))

2
𝑛

𝑖=1

+
λ

2
||𝐰||2 

(4) 

 

with solution 

 

�̂� = Φ⊤(Φ Φ⊤ + 𝜆𝐈)−1𝐲 (5) 

 

Evaluating the model at a given input 𝐱∗ yields: 

 

𝜙(𝐱∗)⊤�̂� = 𝜙(𝐱∗)⊤𝚽⊤(𝚽𝚽⊤ + λ𝐈)−1𝐲 (6) 

  

In this expression, we recognize the scalar product 

of vectors of basis functions. What we can do then, is 

to express these scalar products as a kernel function 

and obtain: 

 

𝜙(𝐱)⊤�̂� = 𝐤∗(𝐊 + λ𝐈)−1𝐲 (7) 

 

where 𝐤∗ = (𝑘(𝐱1, 𝐱∗), … , 𝑘(𝐱𝑛, 𝐱∗))
⊤

 and 𝐾𝑖𝑗 =

𝑘(𝐱𝑖, 𝐱𝑗). In practice, one first chooses a kernel 

function, and this induces a set of basis function; the 

beauty of this formulation is that one never explicitly 

works with the set of basis functions and all we need 

to use this model in practice is the evaluation of kernel 

functions among inputs. 

 

3.2. Random Feature Approximation 

 



Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp. 

 4 

One of main limitations of kernel methods is 

scalability to large datasets. The problem arises from 

the need to evaluate and perform algebraic operations 

with the so-called Gram matrix 𝐊. Because 𝐊 is an 

𝑛 × 𝑛 matrix, evaluating and storing 𝐊 requires 𝒪(𝑛2) 

computations and storage, while any algebraic 

operations, such as factorizations to handle the inverse 

of 𝐊 + λ𝐈, requires 𝒪(𝑛3) operations. These prevent 

the applicability of kernel methods in their exact form 

to datasets of size beyond a few thousand. It is worth 

noting that some approaches have been proposed to 

solve algebraic operations in an iterative fashion and 

without the need to store 𝐊 [28], [29], [30], but they 

still require 𝒪(𝑛2) computations for each iteration of 

their solvers. Furthermore, while the number of 

iterations of the solvers is much lower than 𝑛 in 

practice, in the worst case it can be 𝒪(𝑛), leading to a 

worst-case complexity of 𝒪(𝑛3). 

The literature offers a number of solutions to scale 

kernel methods to large data linearly in the number of 

data, such as Nyström approximations [31] and 

random features [2]. In this work we focus in 

particular on random feature approximations, given 

that these have a practical implementation in hardware 

in the optical processing units that we consider in this 

work. 

The random feature approximations form a class of 

approximations which attempt to construct a finite set 

of basis functions 𝜙(⋅)  ∈ ℝ𝐷 such that 

 

𝑘(𝐱𝑖 , 𝐱𝑗) ≈ 𝜙(𝐱𝑖)⊤𝜙(𝐱𝑗) (8) 

 

There are different ways to construct such sets of 

basis functions, depending on the kernel. For example, 

so-called random Fourier features are commonly 

employed to approximate the Gaussian kernel: 

 

𝑘(𝐱𝑖 , 𝐱𝑗) = exp (−‖𝐱𝑖 − 𝐱𝑗‖
2

) (9) 

 

Appealing to Bochner's theorem [2], this kernel, 

which is shift-invariant due to dependence on 𝛕 =
𝐱𝑖 − 𝐱𝑗, admits an alternative expression as: 

 

𝑘(𝛕) = ∫ 𝑝(𝛚) exp(i2π𝛚𝛕) 𝑑𝝎 
(10) 

 

where 𝑝(𝛚) is a proper density function and i = √−1.   

Interpreting this as an expectation under 𝑝(𝛚), it is 

possible to approximate the integral as an expectation 

using Monte Carlo. 

 

𝑘(𝛕) =
1

𝐷
∑ exp(i2𝜋𝛚(𝑟)𝛕)

𝑟

 
(11) 

 

with 𝛚(𝑟) ∼ 𝑝(𝛚). Furthermore, it is possible to use 

simple trigonometric identities to verify that the 

complex exponential can be broken down as a scalar 

product with terms depending on 𝐱𝑖 and 𝐱𝑗 

respectively 

 

𝑘(𝐱𝑖 , 𝐱𝑗) =
1

𝐷
𝜙(𝐱𝑖)⊤𝜙(𝐱𝑗) 

(12) 

 

with 

 

𝜙𝑟(𝐱) = (sin(𝐱⊤𝛚(𝑟)) , cos(𝐱⊤𝛚(𝑟))) (13) 

 

We refer the reader to [2], [32], [3], [33] for 

random features derived from alternative integral 

representation to the Fourier transform. 

 

3.3. Random Features on Optical Processing 

Units 

 
In this section we discuss Optical Processing Units 

(OPUs) in the context of random features. In the 

previous section we discussed random features as a 

way to approximate models involving kernels; for 

OPUs, instead, the device produces random features 

(fast and with little power consumption) and the 

question that we aim to address here is how to use 

these to implement approximate kernel machines. 

OPU are computing devices which exploit the 

physical process of scattering of light to perform a 

random projection operation of a given vector. In 

particular, given a binary vector 𝐱i ∈ ℝ𝑑, OPUs 

perform a multiplication by a random matrix 𝐑 and 

apply the nonlinear activation function  || ⋅ ||2.  In 

other words, 

 

𝜙(𝐱) =
1

√𝐷
‖𝐑𝐱‖2 

(14) 

 

The matrix 𝐑 ∈ 𝒞𝐷×𝑑 is a complex Gaussian matrix 

with elements 𝑅𝑖𝑗 ∼ 𝒞𝒩(0,1). Previous works have 

established that in the limit of an infinite number of 

random features, the equivalent kernel is the following 

[6]: 

 

𝑘(𝐱, 𝐲) ≈ 𝜙(𝐱)𝜙(𝐲) =
𝐷→∞

||𝐱||2||𝐲||2 + (𝐱𝑇𝐲)2 (15) 

 

Therefore, when using OPUs for kernel ridge 

regression, we are implicitly working with this 

polynomial kernel. 

Recently a new version of OPUs has been 

proposed and developed in  [34], which allows one to 

perform linear random feature projections 

 

𝜓(𝐱) = 𝐶𝐑𝐱 (16) 

 

where 𝐶 is a fixed constant.  

This novel type of OPU opens to the possibility to 

approximate a wide variety of kernels by choosing an 

appropriate activation function  [2], [33]. For example, 
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it is possible to apply trigonometric activation 

functions to the outputs of the OPU: 

 

𝜓′(𝐱)  =  [
sin(𝜓(𝐱))

cos(𝜓(𝐱))
] 

(17) 

 

This type of random features is called Random 

Fourier Features (RFF). It was proven in [2] that this 

kind of random features allows to approximate RBF 

kernels. 

1

𝐷
∑ 𝜓(𝐱)⊤𝜓(𝐲)

𝐷

𝑖=1

 

=  
1

𝐷
∑ ([

sin(𝜓(𝐱))

cos(𝜓(𝐱))
]

⊤

[
sin(𝜓(𝐲))

cos(𝜓(𝐲))
]) =

𝐷

𝑖=1

 

=  𝔼𝛚[𝑐𝑜𝑠(𝛚(𝐱 − 𝐲))]  =  𝑘𝑅𝐵𝐹(𝐱, 𝐲) 

(18) 

 

As mentioned before, an important aspect of OPUs 

is that their input should be binary; this paper proposes 

a novel way to carry out a binarization of its input 

along with the kernel ridge regression task in an end-

to-end fashion. 

 

4. Methods 

 
4.1. REINFORCE for Kernel Ridge 

Regression with Binarized Inputs 

 
In order to be able to implement kernel ridge 

regression on OPUs we need to binarize the inputs 𝐱𝑖, 

and we propose to do so by employing an encoder, 

implemented as a neural network, parameterized by a 

set of weights 𝐖enc. The encoder transforms the inputs 

to kernel-based models 𝐱𝑖 and turns them into a set of 

Bernoulli-distributed binary random variables 𝐳𝑖.  

In particular, we denote by 𝑓𝑘 
(𝐱, 𝐖enc) the 

function implemented by the encoder which 

parameterizes the Bernoulli distribution associated 

with the kth element of the output, that is 𝑧𝑘 
. 

Recalling the random feature formulation of linear 

regression of Section 3, we propose the following 

approach to construct an approximate kernel-based 

model with binary inputs: 

 

𝑦 ̃ = 𝔼𝐳 
[𝐰regr

⊤ 𝜙(𝐳 )] + ε  (19) 

 

where 𝐳 ∼ Bernoulli(𝑓(𝐱, 𝐖enc)) and 𝐰regr are 

parameters of the linearized regression model. Note 

how in this formulation the binary vectors 𝐳 are treated 

stochastically due to the expectation under the 

Bernoulli distribution induced by the encoder. The 

reason for this is that it allows us to employ the so-

called REINFORCE gradient estimator, as we discuss 

next. 

REINFORCE, also known as the log-derivative 

trick or score function estimator, offers a way to 

estimate the gradient of the expectation of a non-

differentiable function 𝑓(𝑧) under the distribution of 

the input random vector variables z: 

 

∇𝜃𝐸𝑝(𝑧;𝜃)𝑓(𝑧) = ∇𝜃 ∫ 𝑝(𝑧; 𝜃)𝑓(𝑧)𝑑𝑧 = 

∫ ∇𝜃𝑝(𝑧; 𝜃)𝑓(𝑧)𝑑𝑧 = 

∫ 𝑝(𝑧; 𝜃)
∇𝜃𝑝(𝑧; 𝜃)

𝑝(𝑧; 𝜃)
𝑓(𝑧)𝑑𝑧  

= 𝔼𝑝(𝑧;𝜃)∇𝜃log 𝑝( 𝑧; 𝜃)𝑓(𝑧) 

≈
1

𝑀
∑ ∇𝜃

𝑀

𝑖=1

log 𝑝(𝑧; 𝜃)𝑓(𝑧) 

(20) 

 

where 𝑀 is number of samples drown from 𝑝(𝑧, 𝜃). 

Applying REINFORCE to our approximate kernel-

based model yields the following optimization 

objective: 

 

min
𝐰regr,𝐖enc

𝔼𝐳∼Bernoulli(𝑓(𝐱,𝐖enc)) [ℒ (𝐲, 𝜙(𝐙)𝐰 regr
 )] 

+𝜆enc‖𝐖enc‖2 + 𝜆regr 
‖𝐰regr‖

2
 

(21) 

 

In this expression, we denoted by ℒ(𝐲, �̃�) the loss 

function associated with the task at hand and by 𝐙 the 

matrix that contains binary encoded variables for the 

whole training set 𝐗. We can optimize this objective 

by means of gradient-based techniques; for this we 

require that we are able to compute the gradient of the 

objective with respect to all parameters. The gradient 

of the first term of the objective with respect to 𝐖enc, 

which is the most involved part, is: 

 

∇𝐖enc
𝔼𝐳∼𝑞(𝐳) [ℒ (𝑦, 𝐰 regr

⊤ 𝜙(𝐳))] ≈

≈
1

𝑀
∑ ℒ

𝑀

𝑖=1

(𝑦, 𝐰 regr
⊤ 𝜙(𝐳 )) ∇𝐖enc

log 𝑞 (𝐳 ) 

(22) 

 

while the derivatives of the other terms are 

straightforward to compute. With this derivation, we 

observe that it is then possible to jointly optimize all 

parameters, leading to what it is commonly referred to 

as an end-to-end approach. In the remainder of this 

paper, we refer to this method as End-to-End SE, 

where SE stands for Supervised Encoder. 

 

4.2. Variance Reduction 

 
REINFORCE is known to suffer from large 

variance of the gradients. In order to reduce the 

variance of this estimator, we employ control variates 

[25]. In this approach, we add a set of random 

variables to the estimator, such that these variables 

have zero mean, so they do not alter the expectation 

of the gradient. The aim is to construct such variables 

so as to reduce the overall variance of the estimator: 
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∇𝐖enc
𝔼𝐳∼𝑞(𝐳) [ℒ (𝑦, 𝐰 regr

⊤ 𝜙(𝐳))] ≈ 

1

𝑀
∑ ∇𝐖enc

log 𝑞 (𝐳 ) (ℒ (𝑦, 𝐰 regr
⊤ 𝜙(𝐳 )) − 𝐯 )

𝑀

𝑖=1

 

where 𝐯 =
1

𝑀 − 1
∑ ℒ

𝑖≠𝑗

(𝑦, 𝐰 regr
⊤ 𝜙(𝐳 )) 

(23) 

 

4.3. Lowering the Cost of REINFORCE 

 
The estimation of the gradient of the End-to-End 

SE with respect to 𝐖enc can be expensive when the 

number of random features is large. This is due to the 

fact that this requires multiple samples to be passed 

from the encoder through the random projection and 

the approximate kernel ridge regression model. In this 

section we propose a strategy to reduce the complexity 

of REINFORCE applied to our model, whereby we 

average set of basis functions under the resampling of 

the binary variables as follows: 

 

�̃� = 𝐰regr
⊤ 𝔼𝐳 

[𝜙(𝐳 )] + 𝜀  (24) 

 

where 𝐳 ∼ Bernoulli(𝑓(𝐱, 𝐖enc)) 

With this new modeling assumption, the training is 

based on a modified optimization problem as follows: 

 

min
𝐰regr

 𝐖enc

ℒ (𝐲, 𝔼𝐳∼Bernoulli(𝑓(𝐱,𝐖enc))[𝜙(𝐙)]𝐰regr
 ) 

+𝜆enc‖𝐖enc‖2 + 𝜆regr 
‖𝐰regr‖

2
 

(25) 

 

Again, we can perform gradient-based 

optimization. Focusing on the first term, which is the 

nontrivial one to differentiate in the objective, we 

obtain 

 

∇𝐖enc
ℒ =

𝑑ℒ

𝑑(𝔼𝜙(𝐳))
∇𝐖enc

𝔼(𝜙(𝐳)) 
(26) 

 

where ∇𝐖enc
𝔼(𝜙(𝐳)) is calculated with the 

REINFORCE estimator. In the remainder of the paper, 

we will refer to this method as Isolated Supervised 

Encoder (SE). 

Regarding the comparison of the End-to-End SE 

and Isolated SE, we can note the following 

relationship between these models in the case of 

regression problems. In the data term of the 

optimization objective (25) we can put an expectation 

over the whole matrix product of the random features 

map and the regression weights instead of an 

expectation over the random features only. Then we 

can move the expectation in such a way that it is taken 

over the whole term within the squared norm. We can 

do this because within one gradient step iteration, 

neither 𝐲 nor 𝐖enc are considered as random variables.  

In this case the data term looks as follows: 

 

‖𝐲 − 𝔼[𝜙(𝐙)]𝐰regr‖
2

= ‖𝐲 − 𝔼[𝜙(𝐙)𝐰regr]‖
2

= ‖𝔼[𝐲 − 𝜙(𝐙)𝐰regr]‖
2
 

(27) 

 

In turn, End-to-End SE has a following data term as 

part of its optimization objective (21): 

 

𝔼 [‖𝐲 − 𝜙(𝐙)𝐰regr‖
2

] (28) 

 

We can note that the squared loss is convex function. 

Thus, we can apply Jensen's inequality to obtain the 

following expression: 

 

𝔼 [‖𝐲 − 𝜙(𝐙)𝐰regr‖
2

] ≥ ‖𝔼[𝐲 − 𝜙(𝐙)𝐰regr]‖
2

= ‖𝐲 − 𝔼[𝜙(𝐙)𝐰regr]‖
2

 

(29) 

 

As a result, End-to-End SE optimizes upper bound of 

the Isolated SE objective. 

 

5. Results 

 
5.1 Experiments on the UCI datasets 

 
We compared the performance of the proposed 

approaches for a non-linear OPU (End-to-End SE and 

Isolated SE) and a linear OPU that uses trigonometric 

activations (End-to-End SE with RFF) against a 

model based on unsupervised autoencoder proposed 

in [11], an encoder trained with direct feedback 

alignment (DFA) [35] and a Kernel Ridge Regression 

(KRR) based on a Radial Based Function kernel 

(RBF). Results are reported in Fig. 1 for several UCI 

regression and classification problems [36]. We want 

to emphasize that the main competitors of the 

proposed methods are the ones based on unsupervised 

autoencoder and encoder trained by DFA, because 

kernel ridge regression is unable to work with large 

datasets, and OPU-based regression just approximates 

this method and is intended to replace it on large 

datasets. 
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Fig. 1. Mean squared error (MSE) for regression (top) and 

negative error on classification (bottom) datasets 

comparison. 

For KRR experiments we used Mean Squared Error 

(MSE) as a loss function. To apply KRR to the 

classification problems we replaced 0 and 1 in class 

labels with -1, 1 and solved a classification problem 

as a regression one using MSE loss as an 

optimization objective. For all other models we used 

MSE loss for the regression problems and Cross 

Entropy (CE) loss for the classification problems. We 

used a logistic activation function on the last layer for 

the classification tasks. 

For Isolated SE and End-to-End SE as an 

encoding function 𝑓(𝐱, 𝐖enc) providing parameters 

for the Bernoulli distribution, we chose a single linear 

layer with a sigmoid activation. 

 

𝑓(𝐱, 𝐖enc) = σ(𝐖enc
⊤

 
𝐱) (30) 

 

All hyperparameters for the DFA encoder, End-to-

End SE and Isolated SE models (size of binary 

embedding, learning rate, l2 regularization for the 

encoder and the regression layer) were chosen with a 

random search during cross-validation. Kernel 

parameters of KRR were tuned by random search with 

cross-validation. This poses computational challenges 

for the large datasets (MiniBoo, MoCap), so we resort 

to random Fourier feature approximations for these 

cases. 

For the models involving random features (both 

Fourier and OPU-generated ones) we have tuned the 

variance of the distribution that generates these 

random features. Concretely, assuming that the 

elements of the 𝐑 matrix generating the random 

projections are distributed through the standard 

Normal distribution, we can obtain a new random 

matrix 𝐑′ by multiplying 𝐑 by any variance, for 

instance: 

 

𝜙′(𝐱) = 𝑐|𝐑′𝐱|2 = 𝑐|
𝐑

𝛼
𝐱|2 = 𝑐

1

𝛼2 |𝐑𝐱|2 
(31) 

 

It is enough to multiply the output of the OPU by 

an additional parameter 𝛾, such that 𝛾2 =
1

𝛼2, and 

optimize them with standard gradient descent. The 

parameter 𝛾 is not equivalent to the lengthscale 

parameter of the RBF kernel. In practice, it has an 

effect of outputscale parameter of RBF kernel, as it 

has simply a scaling effect on the kernel. 

On the regression problems, both proposed 

methods outperformed their main competitors. On the 

classification problems, the DFA-based approach was 

better only on one dataset, and on all other datasets the 

proposed methods performed better or equally well. 

Regarding the type of a kernel approximated by the 

OPU, the experiments show that the linear OPU with 

trigonometric activations performs as good as OPU 

kernel for most of the datasets. It gives performance 

gains only for some classification problems. 

Considering the comparison between the proposed 

methods, we see that End-to-End SE is more stable 

and requires a significantly fewer number of samples 

from the encoder, although Isolated SE showed 

slightly better results on classification problems. 

We considered including results obtained by 

running these models on the real OPU (Fig. 2). 

Unfortunately, the regression problems required such 

a large number of epochs that we could not perform 

the experiments in a reasonable amount of time. 

 
Fig. 2. Error comparison on classification (bottom) datasets 

for experiments on a real hardware. 

We also tested the performance of our approach 

with respect to the number of samples required to 

employ REINFORCE. We found that End-to-End SE 

can achieve good results with a small amount of 

samples from the encoder, and the increase of amount 

of samples does not seem to improve performance. 
Finally, we evaluated the effect of variance 

reduction on convergence speed and performance for 

End-to-End SE model. In Fig. 3 we report results for 

one classification and one regression problem. The 

convergence curves indicate that the convergence 

speed is benefits from the gradient variance reduction. 



Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp. 

 8 

 
Fig. 3. Convergence of the training procedure on 

classification problem: mocap dataset (bottom) and 

regression problem: boston dataset (top). 

5.2. Experiments on image data 

 
In this section we evaluate an optical random 

feature regression approach for image classification 

tasks with several different binarization techniques 

including the proposed methods. 

The kernel generated by the OPU (15) is an 

example of a polynomial kernel. Polynomial kernels, 

unlike more popular RBF kernels, take into account 

interaction between different feature dimensions. 

This property is especially important for image data 

because a relative alignment of pixels is crucial for 

image classification. Of course, when we are working 

with OPUs, kernel takes into account an alignment of 

different dimensions of the binary embedding of an 

image instead of the pixels. The relative alignment of 

different dimensions of the binary embedding most 

probably does not contain exactly the same 

information as the mutual alignment of pixels. But 

until the binary encoder does not have 

disentanglement properties, the mutual interaction of 

dimensions of the binary embedding have to contain 

an additional information about the image. That is 

why it is still important to use a kernel that is capable 

to take into account these relationships. 

For the experiments on image data, we used two 

convolutional architectures of the binary encoder. 

First architecture was inspired by the LeNet model 

(Table 1). 

 

Table 1. LeNet-based binary encoder architecture 

Layer Dimensions 

Conv2D 5×5, 6 filters 

MaxPooling 2×2 

Conv2D 5×5, 16 filters 

MaxPooling 2×2 

Linear 576×512 

Linear 512×𝑑binary 

Binarization layer 𝑑binary 

 

We performed experiments on three classical 

image classification datasets (Table 2). We compared 

End-to-End SE with a model that used autoencoder to 

train the encoder (AE) and a model that used direct 

feedback alignment (DFA) for the same purpose. The 

results are shown in Table 3. 

 
Tab. 2. Image datasets used in the experiments 

Dataset Train/test 

size 

Classes Dimension 

MNIST 60000/10000 10 1×28×28 

F-MNIST 60000/10000 10 1×28×28 

CIFAR10 50000/10000 10 3×32×32 

 
Tab. 3. Classification error obtained by the model with the 

LeNet encoder 

Dataset AE DFA End-to-End 

SE 

MNIST 0.06±0.02 0.31±0.03 0.01±0.00 

F-MNIST 0.20±0.01 0.47±0.01 0.09±0.00 

CIFAR10 0.55±0.01 0.81±0.02 0.32±0.01 

 

We used the same encoder architecture with the 

same hyperparameters for each binarization method. 

The size of the binary embedding was set to 400, 

except of the unsupervised AE method. The reason 

why we trained the unsupervised AE differently for 

these experiments is because we were using complex 

convolutional models and it was hard to adapt the 

method proposed in [11]. This binarization approach 

requires to use exactly the same values of weights 

both for the encoder and for the decoder models. It 

means that this method requires to build a decoder 

model that is symmetrical to the encoder model. 

Achieving this property for convolutional neural 

networks is difficult because for the decoder it is 

difficult to pick equivalent symmetric operations for 



Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp. 

 9 

convolutional and pooling layers in the encoder. 

Transposed convolutions and interpolation 

operations, that are used in decoders for image data, 

are suitable for training of the autoencoder by end-to-

end backpropagation. They learn operations that are 

not symmetric to convolutions and pooling layers of 

the encoder. The method proposed in [11] assumes 

that only the decoder is trained and the encoder copies 

weights from it, that is impossible to do for 

asymmetric operations in decoder and encoder. That 

is why we trained the autoencoder model in a different 

way. The encoder of the AE model used a 𝑡𝑎𝑛ℎ 

activation function at the output. We used a parameter 

𝛽 that controls steepness of the 𝑡𝑎𝑛ℎ function. We 

slowly increased the value of this parameter from 𝛽 =
1 to 𝛽 =  100 in the process of training. At the end of 

the training, the function 𝑡𝑎𝑛ℎ with a high value of the 

parameter 𝛽  is almost equivalent to a shifted and 

scaled Heaviside function. 

 

2ℎ(𝑥) − 1 ≈ 𝑡𝑎𝑛ℎ(𝛽𝑥),  𝛽 → ∞ (32) 

 

The results of the DFA approach signify that this 

type of gradient updates is not suitable for 

convolutional models. This observation is supported 

by other researchers [37], [38]. 

Unsupervised AE was able to provide acceptable 

accuracy for the MNIST dataset, but on CIFAR-10 its 

performance dropped significantly. A possible 

explanation is that simple convolutional AE is unable 

to extract reasonable binary representation of complex 

images. The AE model used in the experiments was 

able to reconstruct simple images from MNIST 

dataset. But the reconstruction quality of the same 

model was much worse for the CIFAR-10 dataset. 

When the dimensionality of the binary embedding 

was equal to 400, the AE model was unable to 

generate any sensible images. Thus, we had to 

increase the size of the binary embedding to 1024.  

But the reconstructed images were very blurry even 

with this modification. 

Because of the poor performance of the 

unsupervised AE baseline, we decided to add another 

baseline to the comparison. For this experiment we 

used a RESNET-based convolutional network as the 

encoder.  LBAE approach proposed in [39] 

implements an autoencoder with a binary latent space. 

The training procedure of this method is based on 

straight-through gradient estimator. The architecture 

of the binary encoder is represented in Table 4 and 

Table 5. This encoder used leaky ReLU as an 

activation function. Batch-normalization was used 

before each activation function. 

 
Tab. 4. Architecture of the RESNET-based binary encoder 

Layer Dimensions 

Conv2D 3×3, 64 filters 

Conv2D 4×4,  64 filters 

Residual Block 3×3, 64 filters 

Conv2D 4×4, 64 filters 

Residual Block 3×3, 64 filters 

Conv2D 4×4, 128 filters 

Linear 4096×𝑑binary 

Binarization layer 𝑑binary 

 
Tab. 5. Residual block structure. The number of filters is 

specified in Tab. 4 

Layer Dimensions 

Conv2d 3×3 

Conv2d 3×3 

 
Table 6 contains the results of the comparison 

between the LBAE-based and End-to-End SE-based 

encoders in terms of classification error. 

Tab. 6. Classification error for models with the RESNET 

encoder 

Dataset LBAE End-to-End 

SE 

MNIST 0.15±0.01 0.01 ±0.00 

F-MNIST 0.24±0.02 0.06±0.01 

CIFAR-10 0.63±0.02 0.17±0.01 

 
Both binarization approaches used the same 

RESNET-based architecture of the encoder network. 

We dropped the DFA approach from the comparison 

because of its poor performance. 

The results of this experiment showed interesting 

property of the unsupervised approach for training of 

the binary encoder. The LBAE-based encoder with a 

deeper network performed worse than the simpler 

autoencoder with 𝑡𝑎𝑛ℎ annealing in terms of 

classification error, while the LBAE approach was 

better in image reconstruction task. It seems, that the 

binary latent projection of image data, that is suitable 

for image reconstruction, is unsuitable for image 

classification. 

As with the UCI data we evaluated the effect of 

variance reduction. 
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Fig. 4. Training loss with and without variance reduction 

As we can see, variance reduction plays a crucial 

role for image classification. Without this technique 

the proposed method is unable to train the model for 

CIFAR-10. We assume, that it happens because in 

deeper models variance has a multiplicative effect 

when the number of layers increases. 

 

6. Conclusion 

 
Recent advances in alternatives to transistor-based 

hardware are bringing a new wave of sustainable 

computing solutions for machine learning [40]. This 

paper focuses on optical-based computing through 

OPUs [5], which perform randomized projections of 

binary input vectors at the speed of light with low 

energy consumption. In this paper, we considered 

these randomized computations to implement kernel-

based models for regression and classification tasks 

through random feature approximations. In particular, 

we proposed a novel strategy to binarize the inputs of 

the given task so as to be able to employ OPUs 

inspired by reinforcement learning. The proposed 

strategy uses an encoder to map the inputs to a set of 

binary variables and employs the REINFORCE 

gradient estimator to estimate its parameters jointly 

with the parameters of the kernel-based model. We 

also explored ways to reduce the variance of the 

gradient estimator and accelerate convergence, which 

is key in a number of challenging modeling tasks such 

as image classification. Through a series of 

experiments, we showed that our proposal 

outperforms competitors based on unsupervised 

binarization and those that do not employ gradient 

information. 

We are currently investigating our approach in the 

context of other kernel-based models, such as 

Gaussian processes [41], and their extension to deep 

models, such as Deep Kernel Learning [42] and Deep 

Gaussian processes [3]. 
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