
Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 1

Sensors & Transducers
Published by IFSA Publishing, S. L., 2019

http://www.sensorsportal.com1

Learning Binary Data Representation for Optical

Processing Units
1, * Bogdan Kozyrskiy, 1 Maurizio Filippone, 2Iacopo Poli, 2,3Ruben Ohana,

2Laurent Daudet, 2Igor Carron
1 Department of Data Science, EURECOM, 450 Route des Chappes, 06410 Biot, France

2 LightOn, 2 rue de la Bourse, F-75002 Paris, France
3 Laboratoire de Physique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France

1 Tel.: +33 4 93 00 81 00
* E-mail: Bogdan.Kozyrskiy@eurecom.fr

Received: Accepted: Published:

Abstract: Optical Processing Units (OPUs) are computing devices that perform random projections of input data

by exploiting the physical phenomenon of scattering a light source through a diffusive medium. Random

projections calculated by OPUs have been used successfully for approximating kernel ridge regression for large

datasets with low power consumption and at high speed. However, OPUs require the input data to be binary. In

this paper, we propose to use shallow and deep neural networks (NN) as binary encoders to perform input data

binarization. The difficulty in developing a binarization strategy which is learned in an end-to-end fashion along

with kernel ridge regression parameters, is due to the non-differentiability of the operation performed by the OPU.

We overcome this difficulty by considering OPUs as a black-box and by employing the REINFORCE gradient

estimator, which allows us to calculate the gradient of the loss function with respect to the weights of the

binarization encoder and to optimize these together with the parameters of kernel ridge regression with gradient-

based optimization.

 Through our experimental campaign on a variety of tasks and datasets, we show that our method outperforms

alternative unsupervised and supervised binarization techniques.

Keywords: optimization, random features, linear regression, optical processing unit.

1. Introduction

Statistical models based on kernel methods offer

powerful and theoretically well-understood tools for

complex data modeling problems. The limitation of

employing these kernel-based models in practice is

that a naive implementation scales poorly with the size

of the data set, and there has been a tremendous

amount of work in the direction of mitigating this issue

by introducing approximations.

In this context, Nyström approximations [1] and

random features [2] are very popular techniques to

scale kernel methods virtually to any number of data,

thanks to mini-batch formulations [3], [4].

The focus of this work is on random feature

approximations, where by kernel-based models are

"linearized" by an equivalent linear model with a set

of suitably constructed random basis functions. The

motivation behind this work is to considerably

accelerate the construction of random features, while

reducing power consumption, by resorting to a

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 2

dedicated hardware, which we refer to Optical

Processing Units (OPUs).

OPUs are computing devices which perform

random projections of input vectors by exploiting the

physical phenomenon of scattering a light source

through a diffusive medium [5]. The random

projection is then followed by a nonlinear operation,

making the whole pipeline of computation exactly

what is needed to construct random features to

approximate kernel-based models. Crucially, OPUs

offer the possibility to operate with a number of

random features at the speed of light and with low-

power consumption, representing a unique solution to

further improve scalability of kernel machines. As an

example, OPU-based random feature approximations

have successfully been proposed to carry out

approximate kernel ridge regression in [6], [7].

One limitation associated with working with OPUs

is that, because of the hardware setup, input vectors

need to be binarized. In addition, the random

projection matrix characterizing the device is

unknown, and can only be retrieved through an

expensive calibration procedure.

In this paper, we propose a novel binarization

strategy for OPUs which is learned along with the

regression/classification task in an end-to-end manner,

meaning that the parameters of the binarization part

are learned along with the kernel-based model

parameters. In order to achieve this, we overcome the

limitation that OPU projection matrices are unknown

by employing the so-called REINFORCE gradient

estimator, which allows us to treat the OPU as a black-

box. Through experiments on several UCI

classification/regression problems, we show that our

proposal outperforms alternative unsupervised and

supervised binarization techniques. This paper is an

extended version of [8]; compared to the shorter

version, we expand on the methods by analyzing the

bounds on the objective functions of the proposed

approaches, and we expand on the experiment by

considering a larger class of kernels and image-based

classification problems.

2. Related work

In neural networks, binarization is generally

targeting intermediate layer activations, and it may

also stem from binarization of model parameters; in

these cases, binarization is mostly introduced to

reduce computational cost and memory consumption

[9]. Neural networks with binary hidden layers find

applications in binary autoencoders for hashing [10],

data compression [11], and hard attention mechanism

[12]. The binarization of layer activations is obtained

by a suitable choice of activation functions; for

instance, the sign or Heaviside functions for the

deterministic case, or the sigmoid or 𝑡𝑎𝑛ℎ functions

combined with the Bernoulli distribution for the

stochastic case [13], [14]. The most popular technique

to propagate gradients through such activation

functions is the so called straight-through estimator

(STE) [15]. More recently, there have been proposals

to replace the STE with another estimator through a

relaxation technique, also known as the Gumbel

Softmax-trick [16]. Also, different kinds of target

propagation are used to learn suitable targets for each

binary layer and then train the associated parameters

with relaxation techniques or combinatorial

optimization [17], [18], [19].

Focusing on OPUs, currently the standard

approach to binarize data makes use of a binary

autoencoder [11]. Such a binary autoencoder is

trained independently from the OPU device, and it

gives the possibility to perform the binarization

operation by means of its encoder part. The

autoencoder consists of a fully-connected encoder and

decoder. The hidden layer has a Heaviside activation

function, so its output is binary. The training

procedure updates the weights of the decoder with

backpropagation and weights of the encoder are forced

to be equal to the weights of the decoder in order to be

able to reproduce the input.

In this work, we aim to develop a supervised

binarization model which is learned together with the

supervised learning task. That is, we aim to provide a

training procedure for the heterogeneous model

consisting of the kernel ridge regression model

approximated with random features and the

binarization encoder before the OPU. In this context,

a general-purpose framework called Method of

Auxiliary Coordinates (MAC) was proposed in [19]

with examples of application in [10] and [20]. The

authors propose to introduce auxiliary variables into a

deep neural network. These auxiliary variables are

assigned the role of pre-activations for each layer, and

they get replaced during the forward pass. The first

step of the optimization targets the auxiliary variables,

and, after this step, the parameters of each layer are

optimized to regress on these variables, which take the

role of layer-specific labels. This is very beneficial

when some layers are discrete and vanilla

backpropagation is not applicable. In [20], this

approach is used to train a fully connected network

with binary activation functions, using a STE to

propagate a learning signal through the non-

differentiable parts. Reference [10] is especially

interesting because authors illustrate, how discrete

binary layers can be optimized withing larger, non-

binary model.

While splitting the optimization of the binarization

and the model is a viable option, we still need a way

to training each part individually. There is a wide

variety of ways to obtain a solution for kernel ridge

regression with the random feature approximation, so

the most difficult point is how to optimize the part

consisting of the binary encoder and the OPU, because

it combines a non-differentiable function with an

implicit random projection. These make the STE from

[20] inapplicable. Also, we found that the

combinatorial approach used in [10] and [17] is

inapplicable for our case for two reasons. First, it is

suitable only when the binary dimension is relatively

small, which might be a limitation for a general

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 3

solution. Second, the combinatorial approach

combined with MAC converges in one iteration to

poor local optima, and this happens because of the

model setup which is different from the ones in [10]

and [17].

From a different point of view, it is possible to

view our problem through the lenses of reinforcement

learning, where it is necessary to propagate binary

codes through the OPU instead of discrete actions

through the black-box environment. Instead of

maximizing the reward from the environment, we are

trying to minimize the loss function. The classical

algorithm to solve this problem is REINFORCE [1].

This allows one to calculate gradients of the reward

with respect to parameters of the policy that generates

actions. The applicability of this method to other

settings with black-box elements was shown in [21].

There are various versions of this algorithm intended

to reduce variance of the gradient of the parameters.

Very frequently they are based on relaxations of the

non-differentiable sampling procedure [22], or

approximation of the black-box part of the model [23].

It also worth noting that there exist competitive

alternatives to REINFORCE, such as the one in [24],

later extended with variance reduction [25] or

relaxation [26].

3. Background

3.1. Kernel Ridge Regression

In this paper, we focus on kernel ridge regression

for supervised learning tasks. Let 𝐗 = 𝐱1, … , 𝐱𝑛 be a

set of input vectors 𝐱 ∈ ℝ𝑑 and let 𝐲 = 𝑦1, … 𝑦𝑛 be a

set of labels associated with the input vectors.

The labels 𝑦𝑖 can be continuous or binary

depending on whether the task is regression or

classification. Kernel ridge regression is a statistical

model which constructs a functional relationship

between the inputs and the labels which belongs to the

so-called Reproducing Kernel Hilbert Space (RKHS).

The properties of such functions, such as smoothness,

are characterized by the choice of a so-called kernel

function 𝑘(∙,∙): ℝ𝑑 × ℝ𝑑 → ℝ [27], which is a

positive semi-definite function of pairs of input points

returning a scalar. The reproducing property of kernel

functions is 〈𝑘(𝐱,∙), 𝑘(𝐲,∙)〉 = 𝑘(𝐱, 𝐲). Positive

definiteness of kernel functions implies that we can

express 𝑘(𝐱𝒊, 𝐱𝒋) = 𝜑(𝐱𝒊)
𝑇𝜑(𝐱𝒋) for some set of

(possibly infinite) basis functions 𝜑(∙).

In order to derive the conventional formulation of

kernel ridge regression, it is useful to start from linear

regression, where a set of model parameters 𝐰 is

introduced to express a linear relationship between

input and labels. Then, one introduces the following

optimization problem:

�̂� = argmin
𝑤

1

2
∑(𝑦 − 𝐰⊤𝐱)

2 −
𝜆

2
||𝐰||2

2

𝑛

𝑖=1

(1)

The objective function contains two terms; the

first is a model fitting term, while the second is a

regularization term, which prevents the weights to

become too large. The solution to this optimization

problem is available in closed form, given that the

objective is quadratic with respect to the parameters,

yielding:

�̂� = (𝐗⊤𝐗 + 𝜆𝐈)−1𝐲 (2)

Using standard algebraic manipulations involving

the Woodbury identity, we can re-express the

solution as:

�̂� = 𝐗𝑇(𝐗 𝐗⊤ + 𝜆𝐈)−1𝐲 (3)

While this is costly than the previous expression

in the common case where 𝑑 < 𝑛 (inversion of a

𝑛 × 𝑛 matrix rather than a d × 𝑑 matrix), this

formulation is useful to derive kernel ridge

regression.

Imagining to introduce basis functions 𝜙(⋅) =

(𝜙1(⋅), … , 𝜙𝐷(⋅))
⊤

, we can solve this new

optimization problem

�̂� = argmin
𝑊

1

2
∑(𝑦𝑖 − 𝐰⊤𝜙(𝐱𝑖))

2
𝑛

𝑖=1

+
λ

2
||𝐰||2

(4)

with solution

�̂� = Φ⊤(Φ Φ⊤ + 𝜆𝐈)−1𝐲 (5)

Evaluating the model at a given input 𝐱∗ yields:

𝜙(𝐱∗)⊤�̂� = 𝜙(𝐱∗)⊤𝚽⊤(𝚽𝚽⊤ + λ𝐈)−1𝐲 (6)

In this expression, we recognize the scalar product

of vectors of basis functions. What we can do then, is

to express these scalar products as a kernel function

and obtain:

𝜙(𝐱)⊤�̂� = 𝐤∗(𝐊 + λ𝐈)−1𝐲 (7)

where 𝐤∗ = (𝑘(𝐱1, 𝐱∗), … , 𝑘(𝐱𝑛, 𝐱∗))
⊤

 and 𝐾𝑖𝑗 =

𝑘(𝐱𝑖, 𝐱𝑗). In practice, one first chooses a kernel

function, and this induces a set of basis function; the

beauty of this formulation is that one never explicitly

works with the set of basis functions and all we need

to use this model in practice is the evaluation of kernel

functions among inputs.

3.2. Random Feature Approximation

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 4

One of main limitations of kernel methods is

scalability to large datasets. The problem arises from

the need to evaluate and perform algebraic operations

with the so-called Gram matrix 𝐊. Because 𝐊 is an

𝑛 × 𝑛 matrix, evaluating and storing 𝐊 requires 𝒪(𝑛2)

computations and storage, while any algebraic

operations, such as factorizations to handle the inverse

of 𝐊 + λ𝐈, requires 𝒪(𝑛3) operations. These prevent

the applicability of kernel methods in their exact form

to datasets of size beyond a few thousand. It is worth

noting that some approaches have been proposed to

solve algebraic operations in an iterative fashion and

without the need to store 𝐊 [28], [29], [30], but they

still require 𝒪(𝑛2) computations for each iteration of

their solvers. Furthermore, while the number of

iterations of the solvers is much lower than 𝑛 in

practice, in the worst case it can be 𝒪(𝑛), leading to a

worst-case complexity of 𝒪(𝑛3).

The literature offers a number of solutions to scale

kernel methods to large data linearly in the number of

data, such as Nyström approximations [31] and

random features [2]. In this work we focus in

particular on random feature approximations, given

that these have a practical implementation in hardware

in the optical processing units that we consider in this

work.

The random feature approximations form a class of

approximations which attempt to construct a finite set

of basis functions 𝜙(⋅)  ∈ ℝ𝐷 such that

𝑘(𝐱𝑖 , 𝐱𝑗) ≈ 𝜙(𝐱𝑖)⊤𝜙(𝐱𝑗) (8)

There are different ways to construct such sets of

basis functions, depending on the kernel. For example,

so-called random Fourier features are commonly

employed to approximate the Gaussian kernel:

𝑘(𝐱𝑖 , 𝐱𝑗) = exp (−‖𝐱𝑖 − 𝐱𝑗‖
2

) (9)

Appealing to Bochner's theorem [2], this kernel,

which is shift-invariant due to dependence on 𝛕 =
𝐱𝑖 − 𝐱𝑗, admits an alternative expression as:

𝑘(𝛕) = ∫ 𝑝(𝛚) exp(i2π𝛚𝛕) 𝑑𝝎
(10)

where 𝑝(𝛚) is a proper density function and i = √−1.

Interpreting this as an expectation under 𝑝(𝛚), it is

possible to approximate the integral as an expectation

using Monte Carlo.

𝑘(𝛕) =
1

𝐷
∑ exp(i2𝜋𝛚(𝑟)𝛕)

𝑟

(11)

with 𝛚(𝑟) ∼ 𝑝(𝛚). Furthermore, it is possible to use

simple trigonometric identities to verify that the

complex exponential can be broken down as a scalar

product with terms depending on 𝐱𝑖 and 𝐱𝑗

respectively

𝑘(𝐱𝑖 , 𝐱𝑗) =
1

𝐷
𝜙(𝐱𝑖)⊤𝜙(𝐱𝑗)

(12)

with

𝜙𝑟(𝐱) = (sin(𝐱⊤𝛚(𝑟)) , cos(𝐱⊤𝛚(𝑟))) (13)

We refer the reader to [2], [32], [3], [33] for

random features derived from alternative integral

representation to the Fourier transform.

3.3. Random Features on Optical Processing

Units

In this section we discuss Optical Processing Units

(OPUs) in the context of random features. In the

previous section we discussed random features as a

way to approximate models involving kernels; for

OPUs, instead, the device produces random features

(fast and with little power consumption) and the

question that we aim to address here is how to use

these to implement approximate kernel machines.

OPU are computing devices which exploit the

physical process of scattering of light to perform a

random projection operation of a given vector. In

particular, given a binary vector 𝐱i ∈ ℝ𝑑, OPUs

perform a multiplication by a random matrix 𝐑 and

apply the nonlinear activation function || ⋅ ||2. In

other words,

𝜙(𝐱) =
1

√𝐷
‖𝐑𝐱‖2

(14)

The matrix 𝐑 ∈ 𝒞𝐷×𝑑 is a complex Gaussian matrix

with elements 𝑅𝑖𝑗 ∼ 𝒞𝒩(0,1). Previous works have

established that in the limit of an infinite number of

random features, the equivalent kernel is the following

[6]:

𝑘(𝐱, 𝐲) ≈ 𝜙(𝐱)𝜙(𝐲) =
𝐷→∞

||𝐱||2||𝐲||2 + (𝐱𝑇𝐲)2 (15)

Therefore, when using OPUs for kernel ridge

regression, we are implicitly working with this

polynomial kernel.

Recently a new version of OPUs has been

proposed and developed in [34], which allows one to

perform linear random feature projections

𝜓(𝐱) = 𝐶𝐑𝐱 (16)

where 𝐶 is a fixed constant.

This novel type of OPU opens to the possibility to

approximate a wide variety of kernels by choosing an

appropriate activation function [2], [33]. For example,

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 5

it is possible to apply trigonometric activation

functions to the outputs of the OPU:

𝜓′(𝐱) = [
sin(𝜓(𝐱))

cos(𝜓(𝐱))
]

(17)

This type of random features is called Random

Fourier Features (RFF). It was proven in [2] that this

kind of random features allows to approximate RBF

kernels.

1

𝐷
∑ 𝜓(𝐱)⊤𝜓(𝐲)

𝐷

𝑖=1

=
1

𝐷
∑ ([

sin(𝜓(𝐱))

cos(𝜓(𝐱))
]

⊤

[
sin(𝜓(𝐲))

cos(𝜓(𝐲))
]) =

𝐷

𝑖=1

= 𝔼𝛚[𝑐𝑜𝑠(𝛚(𝐱 − 𝐲))] = 𝑘𝑅𝐵𝐹(𝐱, 𝐲)

(18)

As mentioned before, an important aspect of OPUs

is that their input should be binary; this paper proposes

a novel way to carry out a binarization of its input

along with the kernel ridge regression task in an end-

to-end fashion.

4. Methods

4.1. REINFORCE for Kernel Ridge

Regression with Binarized Inputs

In order to be able to implement kernel ridge

regression on OPUs we need to binarize the inputs 𝐱𝑖,

and we propose to do so by employing an encoder,

implemented as a neural network, parameterized by a

set of weights 𝐖enc. The encoder transforms the inputs

to kernel-based models 𝐱𝑖 and turns them into a set of

Bernoulli-distributed binary random variables 𝐳𝑖.

In particular, we denote by 𝑓𝑘
(𝐱, 𝐖enc) the

function implemented by the encoder which

parameterizes the Bernoulli distribution associated

with the kth element of the output, that is 𝑧𝑘
.

Recalling the random feature formulation of linear

regression of Section 3, we propose the following

approach to construct an approximate kernel-based

model with binary inputs:

𝑦 ̃ = 𝔼𝐳
[𝐰regr

⊤ 𝜙(𝐳)] + ε (19)

where 𝐳 ∼ Bernoulli(𝑓(𝐱, 𝐖enc)) and 𝐰regr are

parameters of the linearized regression model. Note

how in this formulation the binary vectors 𝐳 are treated

stochastically due to the expectation under the

Bernoulli distribution induced by the encoder. The

reason for this is that it allows us to employ the so-

called REINFORCE gradient estimator, as we discuss

next.

REINFORCE, also known as the log-derivative

trick or score function estimator, offers a way to

estimate the gradient of the expectation of a non-

differentiable function 𝑓(𝑧) under the distribution of

the input random vector variables z:

∇𝜃𝐸𝑝(𝑧;𝜃)𝑓(𝑧) = ∇𝜃 ∫ 𝑝(𝑧; 𝜃)𝑓(𝑧)𝑑𝑧 =

∫ ∇𝜃𝑝(𝑧; 𝜃)𝑓(𝑧)𝑑𝑧 =

∫ 𝑝(𝑧; 𝜃)
∇𝜃𝑝(𝑧; 𝜃)

𝑝(𝑧; 𝜃)
𝑓(𝑧)𝑑𝑧

= 𝔼𝑝(𝑧;𝜃)∇𝜃log 𝑝(𝑧; 𝜃)𝑓(𝑧)

≈
1

𝑀
∑ ∇𝜃

𝑀

𝑖=1

log 𝑝(𝑧; 𝜃)𝑓(𝑧)

(20)

where 𝑀 is number of samples drown from 𝑝(𝑧, 𝜃).

Applying REINFORCE to our approximate kernel-

based model yields the following optimization

objective:

min
𝐰regr,𝐖enc

𝔼𝐳∼Bernoulli(𝑓(𝐱,𝐖enc)) [ℒ (𝐲, 𝜙(𝐙)𝐰 regr
)]

+𝜆enc‖𝐖enc‖2 + 𝜆regr
‖𝐰regr‖

2

(21)

In this expression, we denoted by ℒ(𝐲, �̃�) the loss

function associated with the task at hand and by 𝐙 the

matrix that contains binary encoded variables for the

whole training set 𝐗. We can optimize this objective

by means of gradient-based techniques; for this we

require that we are able to compute the gradient of the

objective with respect to all parameters. The gradient

of the first term of the objective with respect to 𝐖enc,

which is the most involved part, is:

∇𝐖enc
𝔼𝐳∼𝑞(𝐳) [ℒ (𝑦, 𝐰 regr

⊤ 𝜙(𝐳))] ≈

≈
1

𝑀
∑ ℒ

𝑀

𝑖=1

(𝑦, 𝐰 regr
⊤ 𝜙(𝐳)) ∇𝐖enc

log 𝑞 (𝐳)

(22)

while the derivatives of the other terms are

straightforward to compute. With this derivation, we

observe that it is then possible to jointly optimize all

parameters, leading to what it is commonly referred to

as an end-to-end approach. In the remainder of this

paper, we refer to this method as End-to-End SE,

where SE stands for Supervised Encoder.

4.2. Variance Reduction

REINFORCE is known to suffer from large

variance of the gradients. In order to reduce the

variance of this estimator, we employ control variates

[25]. In this approach, we add a set of random

variables to the estimator, such that these variables

have zero mean, so they do not alter the expectation

of the gradient. The aim is to construct such variables

so as to reduce the overall variance of the estimator:

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 6

∇𝐖enc
𝔼𝐳∼𝑞(𝐳) [ℒ (𝑦, 𝐰 regr

⊤ 𝜙(𝐳))] ≈

1

𝑀
∑ ∇𝐖enc

log 𝑞 (𝐳) (ℒ (𝑦, 𝐰 regr
⊤ 𝜙(𝐳)) − 𝐯)

𝑀

𝑖=1

where 𝐯 =
1

𝑀 − 1
∑ ℒ

𝑖≠𝑗

(𝑦, 𝐰 regr
⊤ 𝜙(𝐳))

(23)

4.3. Lowering the Cost of REINFORCE

The estimation of the gradient of the End-to-End

SE with respect to 𝐖enc can be expensive when the

number of random features is large. This is due to the

fact that this requires multiple samples to be passed

from the encoder through the random projection and

the approximate kernel ridge regression model. In this

section we propose a strategy to reduce the complexity

of REINFORCE applied to our model, whereby we

average set of basis functions under the resampling of

the binary variables as follows:

�̃� = 𝐰regr
⊤ 𝔼𝐳

[𝜙(𝐳)] + 𝜀 (24)

where 𝐳 ∼ Bernoulli(𝑓(𝐱, 𝐖enc))

With this new modeling assumption, the training is

based on a modified optimization problem as follows:

min
𝐰regr

 𝐖enc

ℒ (𝐲, 𝔼𝐳∼Bernoulli(𝑓(𝐱,𝐖enc))[𝜙(𝐙)]𝐰regr
)

+𝜆enc‖𝐖enc‖2 + 𝜆regr
‖𝐰regr‖

2

(25)

Again, we can perform gradient-based

optimization. Focusing on the first term, which is the

nontrivial one to differentiate in the objective, we

obtain

∇𝐖enc
ℒ =

𝑑ℒ

𝑑(𝔼𝜙(𝐳))
∇𝐖enc

𝔼(𝜙(𝐳))
(26)

where ∇𝐖enc
𝔼(𝜙(𝐳)) is calculated with the

REINFORCE estimator. In the remainder of the paper,

we will refer to this method as Isolated Supervised

Encoder (SE).

Regarding the comparison of the End-to-End SE

and Isolated SE, we can note the following

relationship between these models in the case of

regression problems. In the data term of the

optimization objective (25) we can put an expectation

over the whole matrix product of the random features

map and the regression weights instead of an

expectation over the random features only. Then we

can move the expectation in such a way that it is taken

over the whole term within the squared norm. We can

do this because within one gradient step iteration,

neither 𝐲 nor 𝐖enc are considered as random variables.

In this case the data term looks as follows:

‖𝐲 − 𝔼[𝜙(𝐙)]𝐰regr‖
2

= ‖𝐲 − 𝔼[𝜙(𝐙)𝐰regr]‖
2

= ‖𝔼[𝐲 − 𝜙(𝐙)𝐰regr]‖
2

(27)

In turn, End-to-End SE has a following data term as

part of its optimization objective (21):

𝔼 [‖𝐲 − 𝜙(𝐙)𝐰regr‖
2

] (28)

We can note that the squared loss is convex function.

Thus, we can apply Jensen's inequality to obtain the

following expression:

𝔼 [‖𝐲 − 𝜙(𝐙)𝐰regr‖
2

] ≥ ‖𝔼[𝐲 − 𝜙(𝐙)𝐰regr]‖
2

= ‖𝐲 − 𝔼[𝜙(𝐙)𝐰regr]‖
2

(29)

As a result, End-to-End SE optimizes upper bound of

the Isolated SE objective.

5. Results

5.1 Experiments on the UCI datasets

We compared the performance of the proposed

approaches for a non-linear OPU (End-to-End SE and

Isolated SE) and a linear OPU that uses trigonometric

activations (End-to-End SE with RFF) against a

model based on unsupervised autoencoder proposed

in [11], an encoder trained with direct feedback

alignment (DFA) [35] and a Kernel Ridge Regression

(KRR) based on a Radial Based Function kernel

(RBF). Results are reported in Fig. 1 for several UCI

regression and classification problems [36]. We want

to emphasize that the main competitors of the

proposed methods are the ones based on unsupervised

autoencoder and encoder trained by DFA, because

kernel ridge regression is unable to work with large

datasets, and OPU-based regression just approximates

this method and is intended to replace it on large

datasets.

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 7

Fig. 1. Mean squared error (MSE) for regression (top) and

negative error on classification (bottom) datasets

comparison.

For KRR experiments we used Mean Squared Error

(MSE) as a loss function. To apply KRR to the

classification problems we replaced 0 and 1 in class

labels with -1, 1 and solved a classification problem

as a regression one using MSE loss as an

optimization objective. For all other models we used

MSE loss for the regression problems and Cross

Entropy (CE) loss for the classification problems. We

used a logistic activation function on the last layer for

the classification tasks.

For Isolated SE and End-to-End SE as an

encoding function 𝑓(𝐱, 𝐖enc) providing parameters

for the Bernoulli distribution, we chose a single linear

layer with a sigmoid activation.

𝑓(𝐱, 𝐖enc) = σ(𝐖enc
⊤

𝐱) (30)

All hyperparameters for the DFA encoder, End-to-

End SE and Isolated SE models (size of binary

embedding, learning rate, l2 regularization for the

encoder and the regression layer) were chosen with a

random search during cross-validation. Kernel

parameters of KRR were tuned by random search with

cross-validation. This poses computational challenges

for the large datasets (MiniBoo, MoCap), so we resort

to random Fourier feature approximations for these

cases.

For the models involving random features (both

Fourier and OPU-generated ones) we have tuned the

variance of the distribution that generates these

random features. Concretely, assuming that the

elements of the 𝐑 matrix generating the random

projections are distributed through the standard

Normal distribution, we can obtain a new random

matrix 𝐑′ by multiplying 𝐑 by any variance, for

instance:

𝜙′(𝐱) = 𝑐|𝐑′𝐱|2 = 𝑐|
𝐑

𝛼
𝐱|2 = 𝑐

1

𝛼2 |𝐑𝐱|2
(31)

It is enough to multiply the output of the OPU by

an additional parameter 𝛾, such that 𝛾2 =
1

𝛼2, and

optimize them with standard gradient descent. The

parameter 𝛾 is not equivalent to the lengthscale

parameter of the RBF kernel. In practice, it has an

effect of outputscale parameter of RBF kernel, as it

has simply a scaling effect on the kernel.

On the regression problems, both proposed

methods outperformed their main competitors. On the

classification problems, the DFA-based approach was

better only on one dataset, and on all other datasets the

proposed methods performed better or equally well.

Regarding the type of a kernel approximated by the

OPU, the experiments show that the linear OPU with

trigonometric activations performs as good as OPU

kernel for most of the datasets. It gives performance

gains only for some classification problems.

Considering the comparison between the proposed

methods, we see that End-to-End SE is more stable

and requires a significantly fewer number of samples

from the encoder, although Isolated SE showed

slightly better results on classification problems.

We considered including results obtained by

running these models on the real OPU (Fig. 2).

Unfortunately, the regression problems required such

a large number of epochs that we could not perform

the experiments in a reasonable amount of time.

Fig. 2. Error comparison on classification (bottom) datasets

for experiments on a real hardware.

We also tested the performance of our approach

with respect to the number of samples required to

employ REINFORCE. We found that End-to-End SE

can achieve good results with a small amount of

samples from the encoder, and the increase of amount

of samples does not seem to improve performance.
Finally, we evaluated the effect of variance

reduction on convergence speed and performance for

End-to-End SE model. In Fig. 3 we report results for

one classification and one regression problem. The

convergence curves indicate that the convergence

speed is benefits from the gradient variance reduction.

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 8

Fig. 3. Convergence of the training procedure on

classification problem: mocap dataset (bottom) and

regression problem: boston dataset (top).

5.2. Experiments on image data

In this section we evaluate an optical random

feature regression approach for image classification

tasks with several different binarization techniques

including the proposed methods.

The kernel generated by the OPU (15) is an

example of a polynomial kernel. Polynomial kernels,

unlike more popular RBF kernels, take into account

interaction between different feature dimensions.

This property is especially important for image data

because a relative alignment of pixels is crucial for

image classification. Of course, when we are working

with OPUs, kernel takes into account an alignment of

different dimensions of the binary embedding of an

image instead of the pixels. The relative alignment of

different dimensions of the binary embedding most

probably does not contain exactly the same

information as the mutual alignment of pixels. But

until the binary encoder does not have

disentanglement properties, the mutual interaction of

dimensions of the binary embedding have to contain

an additional information about the image. That is

why it is still important to use a kernel that is capable

to take into account these relationships.

For the experiments on image data, we used two

convolutional architectures of the binary encoder.

First architecture was inspired by the LeNet model

(Table 1).

Table 1. LeNet-based binary encoder architecture

Layer Dimensions

Conv2D 5×5, 6 filters

MaxPooling 2×2

Conv2D 5×5, 16 filters

MaxPooling 2×2

Linear 576×512

Linear 512×𝑑binary

Binarization layer 𝑑binary

We performed experiments on three classical

image classification datasets (Table 2). We compared

End-to-End SE with a model that used autoencoder to

train the encoder (AE) and a model that used direct

feedback alignment (DFA) for the same purpose. The

results are shown in Table 3.

Tab. 2. Image datasets used in the experiments

Dataset Train/test

size

Classes Dimension

MNIST 60000/10000 10 1×28×28

F-MNIST 60000/10000 10 1×28×28

CIFAR10 50000/10000 10 3×32×32

Tab. 3. Classification error obtained by the model with the

LeNet encoder

Dataset AE DFA End-to-End

SE

MNIST 0.06±0.02 0.31±0.03 0.01±0.00

F-MNIST 0.20±0.01 0.47±0.01 0.09±0.00

CIFAR10 0.55±0.01 0.81±0.02 0.32±0.01

We used the same encoder architecture with the

same hyperparameters for each binarization method.

The size of the binary embedding was set to 400,

except of the unsupervised AE method. The reason

why we trained the unsupervised AE differently for

these experiments is because we were using complex

convolutional models and it was hard to adapt the

method proposed in [11]. This binarization approach

requires to use exactly the same values of weights

both for the encoder and for the decoder models. It

means that this method requires to build a decoder

model that is symmetrical to the encoder model.

Achieving this property for convolutional neural

networks is difficult because for the decoder it is

difficult to pick equivalent symmetric operations for

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 9

convolutional and pooling layers in the encoder.

Transposed convolutions and interpolation

operations, that are used in decoders for image data,

are suitable for training of the autoencoder by end-to-

end backpropagation. They learn operations that are

not symmetric to convolutions and pooling layers of

the encoder. The method proposed in [11] assumes

that only the decoder is trained and the encoder copies

weights from it, that is impossible to do for

asymmetric operations in decoder and encoder. That

is why we trained the autoencoder model in a different

way. The encoder of the AE model used a 𝑡𝑎𝑛ℎ

activation function at the output. We used a parameter

𝛽 that controls steepness of the 𝑡𝑎𝑛ℎ function. We

slowly increased the value of this parameter from 𝛽 =
1 to 𝛽 = 100 in the process of training. At the end of

the training, the function 𝑡𝑎𝑛ℎ with a high value of the

parameter 𝛽 is almost equivalent to a shifted and

scaled Heaviside function.

2ℎ(𝑥) − 1 ≈ 𝑡𝑎𝑛ℎ(𝛽𝑥), 𝛽 → ∞ (32)

The results of the DFA approach signify that this

type of gradient updates is not suitable for

convolutional models. This observation is supported

by other researchers [37], [38].

Unsupervised AE was able to provide acceptable

accuracy for the MNIST dataset, but on CIFAR-10 its

performance dropped significantly. A possible

explanation is that simple convolutional AE is unable

to extract reasonable binary representation of complex

images. The AE model used in the experiments was

able to reconstruct simple images from MNIST

dataset. But the reconstruction quality of the same

model was much worse for the CIFAR-10 dataset.

When the dimensionality of the binary embedding

was equal to 400, the AE model was unable to

generate any sensible images. Thus, we had to

increase the size of the binary embedding to 1024.

But the reconstructed images were very blurry even

with this modification.

Because of the poor performance of the

unsupervised AE baseline, we decided to add another

baseline to the comparison. For this experiment we

used a RESNET-based convolutional network as the

encoder. LBAE approach proposed in [39]

implements an autoencoder with a binary latent space.

The training procedure of this method is based on

straight-through gradient estimator. The architecture

of the binary encoder is represented in Table 4 and

Table 5. This encoder used leaky ReLU as an

activation function. Batch-normalization was used

before each activation function.

Tab. 4. Architecture of the RESNET-based binary encoder

Layer Dimensions

Conv2D 3×3, 64 filters

Conv2D 4×4, 64 filters

Residual Block 3×3, 64 filters

Conv2D 4×4, 64 filters

Residual Block 3×3, 64 filters

Conv2D 4×4, 128 filters

Linear 4096×𝑑binary

Binarization layer 𝑑binary

Tab. 5. Residual block structure. The number of filters is

specified in Tab. 4

Layer Dimensions

Conv2d 3×3

Conv2d 3×3

Table 6 contains the results of the comparison

between the LBAE-based and End-to-End SE-based

encoders in terms of classification error.

Tab. 6. Classification error for models with the RESNET

encoder

Dataset LBAE End-to-End

SE

MNIST 0.15±0.01 0.01 ±0.00

F-MNIST 0.24±0.02 0.06±0.01

CIFAR-10 0.63±0.02 0.17±0.01

Both binarization approaches used the same

RESNET-based architecture of the encoder network.

We dropped the DFA approach from the comparison

because of its poor performance.

The results of this experiment showed interesting

property of the unsupervised approach for training of

the binary encoder. The LBAE-based encoder with a

deeper network performed worse than the simpler

autoencoder with 𝑡𝑎𝑛ℎ annealing in terms of

classification error, while the LBAE approach was

better in image reconstruction task. It seems, that the

binary latent projection of image data, that is suitable

for image reconstruction, is unsuitable for image

classification.

As with the UCI data we evaluated the effect of

variance reduction.

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 10

Fig. 4. Training loss with and without variance reduction

As we can see, variance reduction plays a crucial

role for image classification. Without this technique

the proposed method is unable to train the model for

CIFAR-10. We assume, that it happens because in

deeper models variance has a multiplicative effect

when the number of layers increases.

6. Conclusion

Recent advances in alternatives to transistor-based

hardware are bringing a new wave of sustainable

computing solutions for machine learning [40]. This

paper focuses on optical-based computing through

OPUs [5], which perform randomized projections of

binary input vectors at the speed of light with low

energy consumption. In this paper, we considered

these randomized computations to implement kernel-

based models for regression and classification tasks

through random feature approximations. In particular,

we proposed a novel strategy to binarize the inputs of

the given task so as to be able to employ OPUs

inspired by reinforcement learning. The proposed

strategy uses an encoder to map the inputs to a set of

binary variables and employs the REINFORCE

gradient estimator to estimate its parameters jointly

with the parameters of the kernel-based model. We

also explored ways to reduce the variance of the

gradient estimator and accelerate convergence, which

is key in a number of challenging modeling tasks such

as image classification. Through a series of

experiments, we showed that our proposal

outperforms competitors based on unsupervised

binarization and those that do not employ gradient

information.

We are currently investigating our approach in the

context of other kernel-based models, such as

Gaussian processes [41], and their extension to deep

models, such as Deep Kernel Learning [42] and Deep

Gaussian processes [3].

References

[1] R. J. Williams, "Simple statistical gradient-following

algorithms for connectionist reinforcement learning,"

Machine learning, vol. 8, p. 229–256, 1992.

[2] A. Rahimi and B. Recht, "Weighted Sums of

Random Kitchen Sinks: Replacing minimization with

randomization in learning," in Advances in Neural

Information Processing Systems, 2009.

[3] K. Cutajar, E. V. Bonilla, P. Michiardi and M.

Filippone, "Random feature expansions for deep

Gaussian processes," in International Conference on

Machine Learning, 2017.

[4] J. Hensman, N. Fusi and N. D. Lawrence, "Gaussian

Processes for Big Data," in Proceedings of the

Twenty-Ninth Conference on Uncertainty in Artificial

Intelligence, Arlington, 2013.

[5] A. Saade, F. Caltagirone, I. Carron, L. Daudet, A.

Drémeau, S. Gigan and F. Krzakala, "Random

projections through multiple optical scattering:

Approximating kernels at the speed of light," in 2016

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2016.

[6] R. Ohana, J. Wacker, J. Dong, S. Marmin, F.

Krzakala, M. Filippone and L. Daudet, "Kernel

computations from large-scale random features

obtained by optical processing units," in ICASSP

2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP),

2020.

[7] A. Cappelli, R. Ohana, J. Launay, L. Meunier, I. Poli

and F. Krzakala, "Adversarial Robustness by Design

through Analog Computing and Synthetic

Gradients," arXiv preprint arXiv:2101.02115, 2021.

[8] B. Kozyrskiy, I. Poli, R. Ohana, L. Daudet, I. Carron

and M. Filippone, "Binarization for Optical

Processing Units via REINFORCE," in Proceedings

of the 3rd International Conference on Advances in

Signal Processing and Artificial Intelligence.

[9] H. Qin, R. Gong, X. Liu, X. Bai, J. Song and N.

Sebe, "Binary neural networks: A survey," Pattern

Recognition, vol. 105, p. 107281, 2020.

[10] M. A. Carreira-Perpinán and R. Raziperchikolaei,

"Hashing with binary autoencoders," in Proceedings

of the IEEE conference on computer vision and

pattern recognition, 2015.

[11] J. Tissier, C. Gravier and A. Habrard, "Near-lossless

binarization of word embeddings," in Proceedings of

the AAAI Conference on Artificial Intelligence, 2019.

[12] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R.

Salakhudinov, R. Zemel and Y. Bengio, "Show,

attend and tell: Neural image caption generation with

visual attention," in International conference on

machine learning, 2015.

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 11

[13] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv

and Y. Bengio, "Binarized neural networks: Training

deep neural networks with weights and activations

constrained to+ 1 or-1," arXiv preprint

arXiv:1602.02830, 2016.

[14] J. W. T. Peters and M. Welling, "Probabilistic binary

neural networks," arXiv preprint arXiv:1809.03368,

2018.

[15] Y. Bengio, N. Léonard and A. Courville, "Estimating

or propagating gradients through stochastic neurons

for conditional computation," arXiv preprint

arXiv:1308.3432, 2013.

[16] E. Jang, S. Gu and B. Poole, "Categorical

reparameterization with gumbel-softmax," arXiv

preprint arXiv:1611.01144, 2016.

[17] A. L. Friesen and P. Domingos, "Deep learning as a

mixed convex-combinatorial optimization problem,"

arXiv preprint arXiv:1710.11573, 2017.

[18] D.-H. Lee, S. Zhang, A. Fischer and Y. Bengio,

"Difference target propagation," in Joint european

conference on machine learning and knowledge

discovery in databases, 2015.

[19] M. Carreira-Perpinan and W. Wang, "Distributed

optimization of deeply nested systems," in

Proceedings of the Seventeenth International

Conference on Artificial Intelligence and Statistics,

Reykjavik, 2014.

[20] A. Choromanska, B. Cowen, S. Kumaravel, R. Luss,

M. Rigotti, I. Rish, P. Diachille, V. Gurev, B.

Kingsbury, R. Tejwani and others, "Beyond

backprop: Online alternating minimization with

auxiliary variables," in International Conference on

Machine Learning, 2019.

[21] R. Ranganath, S. Gerrish and D. Blei, "Black box

variational inference," in Artificial intelligence and

statistics, 2014.

[22] G. Tucker, A. Mnih, C. J. Maddison, D. Lawson and

J. Sohl-Dickstein, "Rebar: Low-variance, unbiased

gradient estimates for discrete latent variable

models," arXiv preprint arXiv:1703.07370, 2017.

[23] W. Grathwohl, D. Choi, Y. Wu, G. Roeder and D.

Duvenaud, "Backpropagation through the void:

Optimizing control variates for black-box gradient

estimation," arXiv preprint arXiv:1711.00123, 2017.

[24] M. Yin and M. Zhou, "ARM: Augment-

REINFORCE-merge gradient for stochastic binary

networks," arXiv preprint arXiv:1807.11143, 2018.

[25] W. Kool, H. van Hoof and M. Welling, "Buy 4

REINFORCE Samples, Get a Baseline for Free!,"

Deep Reinforcement Learning Meets Structured

Prediction Workshop at the International Conference

on Learning Representations, 2019.

[26] Z. Dong, A. Mnih and G. Tucker, "DisARM: An

antithetic gradient estimator for binary latent

variables," arXiv preprint arXiv:2006.10680, 2020.

[27] K. P. Murphy, Machine learning: a probabilistic

perspective, MIT press, 2012.

[28] M. Filippone and R. Engler, "Enabling scalable

stochastic gradient-based inference for Gaussian

processes by employing the Unbiased LInear System

SolvEr (ULISSE)," in Proceedings of the 32nd

International Conference on Machine Learning,

Lille, 2015.

[29] K. Cutajar, M. A. Osborne, J. P. Cunningham and M.

Filippone, "Preconditioning Kernel Matrices," in

Proceedings of the 33rd International Conference on

International Conference on Machine Learning -

Volume 48, New York, NY, USA, 2016.

[30] K. Wang, G. Pleiss, J. Gardner, S. Tyree, K. Q.

Weinberger and A. G. Wilson, "Exact Gaussian

Processes on a Million Data Points," in Advances in

Neural Information Processing Systems, 2019.

[31] C. Fowlkes, S. Belongie and J. Malik, "Efficient

spatiotemporal grouping using the nystrom method,"

in Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition. CVPR 2001, 2001.

[32] Y. Cho and L. Saul, "Kernel methods for deep

learning," Advances in neural information processing

systems, vol. 22, 2009.

[33] J. Wacker, M. Kanagawa and M. Filippone,

"Improved Random Features for Dot Product

Kernels," arXiv preprint arXiv:2201.08712, 2022.

[34] I. Poli, J. Launay, K. Müller, G. Pariente, I. Carron,

L. Daudet, R. Ohana and D. Hesslow, "Method and

system for machine learning using optical data".

USA Patent US 2021/0287079 A1, 16 September

2021.

[35] A. Nøkland, "Direct feedback alignment provides

learning in deep neural networks," arXiv preprint

arXiv:1609.01596, 2016.

[36] D. Dua and C. Graff, UCI Machine Learning

Repository, 2017.

[37] S. Bartunov, A. Santoro, B. Richards, L. Marris, G.

E. Hinton and T. Lillicrap, "Assessing the scalability

of biologically-motivated deep learning algorithms

and architectures," Advances in neural information

processing systems, vol. 31, 2018.

[38] J. Launay, I. Poli and F. Krzakala, "Principled

training of neural networks with direct feedback

alignment," arXiv preprint arXiv:1906.04554, 2019.

[39] J. Fajtl, V. Argyriou, D. Monekosso and P.

Remagnino, "Latent Bernoulli Autoencoder," in

International Conference on Machine Learning,

2020.

[40] K. Berggren, Q. Xia and K. Likharev, "Roadmap on

emerging hardware and technology for machine

learning," Nanotechnology, vol. 31, no. 1, p. 012002,

2020.

[41] C. E. Rasmussen, "Gaussian processes in machine

learning," in Summer school on machine learning,

2003.

[42] A. G. Wilson, Z. Hu, R. R. Salakhutdinov and E. P.

Xing, "Stochastic variational deep kernel learning,"

Advances in Neural Information Processing Systems,

vol. 29, 2016.

Published by International Frequency Sensor Association, IFSA Publishing, S. L., 2019

Sensors & Transducers, Vol. 0, Issue 0, Month 2019, pp.

 12

(http://www.sensorsportal.com)

