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Abstract— Industry 5.0 is rapidly growing as the next industrial
evolution, aiming to improve production efficiency in the 21st cen-
tury. This evolution relies mainly on advanced digital technologies,
including Industrial Internet of Things (IIoT), by deploying multiple
IIoT devices within industrial systems. Such a setup increases the
possibility of threats, especially with the emergence of IIoT bot-
nets. This can provide attackers with more sophisticated tools to
conduct devastating IIoT attacks. Besides, Machine/Deep Learning
(ML/DL) are considered as powerful techniques to efficiently detect
IIoT attacks. However, the centralized way in building learning
models and the lack of up-to-date datasets that contain the main
attacks are still ongoing challenges. In this context, Multi-access
Edge Computing (MEC) and Federated Learning (FL) are two
promising complementary technologies. MEC brings computing
capabilities at the edge of the industrial systems, while feder-
ated learning leverages the edge resources to enable a privacy-
aware collaborative learning, especially in multi-industrial systems
context. In this paper, we design a novel MEC-based framework
to secure IIoT applications leveraging federated learning, called
FedGame. Specifically, FedGame enables multiple MEC domains
to collaborate securely to deal with IIoT attack, while preserving
the privacy of IIoT devices. Moreover, a non-cooperative game is
formulated on top of FedGame, to enable MEC nodes acquiring the
needed virtual resources from the centralized MEC orchestrator, to
deal with each type of IIoT attacks. We evaluate FedGame using
real-world IIoT attacks; the experimental results show not only the
accuracy of FedGame against centralized ML/DL schemes while
preserving the privacy of Industrial systems, but also its efficiency
in providing required MECs resources, and thus dealing with IIoT
attacks.

Index Terms— Edge Computing, Federated Learning,
IIoT, Non-Cooperative Game, Security threats.

I. INTRODUCTION

Industry 5.0 is rapidly growing as the next industrial evolution
towards more resilient, sustainable, and human-centric industry [1].
Industry 5.0 complements and extends Industry 4.0, in order to
optimize the productivity of manufacturing systems in the 21st

century. This evolution combines physical operations and production
with advanced digital technologies and Artificial Intelligence (AI) to
build a better and more holistic connected ecosystem, for companies
that focus on supply chain management and manufacturing [1] [2].
According to the Industry 4.0 standard [2] [3], Industrial Internet
of Things (IIoT) will play a vital role in taking decentralized and
autonomous decisions, by monitoring and supervising manufacturing
systems in real time. IIoT refers to a set of interconnected actuators,
sensors, robots, and machines, which build a complex network of
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services [4]. This connectivity enables data collection, transmission,
and analysis. Thus, it will help to optimize the whole production
process. However, such a setup may lead to escalating security threats,
that can target the IIoT network.

Indeed, new emerging IIoT attacks have been increasing in strength
and sophistication; these attacks have become destructive causing
huge collateral damage and financial losses of $10.5 Trillion (USD)
by 2025 [5]. In addition, the recent emergence of IIoT botnets, such
as Mirai botnet, and the rapidly increasing number of insecure IIoT
devices (i.e., about 75 billion IIoT devices by the end of 2025 [6]),
can give attackers more powerful tools to conduct IIoT attacks. As
example, on the 2nd of October 2016, Mirai botnet conducted a huge
attack using IIoT devices (i.e., Closed Circuit Television Cameras
(CCTV)), hence, several common Internet services, including Ama-
zon and Twitter were unavailable for a number of hours. To alleviate
these issues, Intrusion Detection Systems (IDSs) must be properly
conceived to protect the IIoT network from attacks ranging from
Distributed denial-of-service (DDoS) attacks to scanning attacks. In
this context, machine and deep learning (ML/DL) are considered as
powerful techniques to efficiently detect IIoT attacks. However, the
centralized way in building learning models, that needs to share all
data, even privacy ones, at a central node, in addition to the lack of
up-to-date data that covers all the main IIoT attacks, are still ongoing
challenges, making it difficult to train efficient ML/DL-based models.

Federated learning (FL) has emerged as a promising technique
to train a global attack detection model on several edge devices,
without sharing their private sensitive data [7] [8]. Hence, FL can
significantly reduce the privacy risks, which makes it an ideal
candidate in multi-industrial systems. Besides, Multi-access Edge
Computing (MEC) has emerged as a novel architecture that brings
cloud computing capabilities, i.e., processing and storage capacity, at
the edge of networks [9]. We note that a MEC node comprises a set
of applications’ instances that run as virtual machines, or containers,
on top of a virtualization platform. Thus, one pertinent solution is to
deploy the IDS application at the MEC nodes, to secure industrial
systems. However, deploying such application may be not supported
by the MEC computing resources, such as storage, CPU, and memory,
especially when considering that 5G network is mainly based on
MEC, to deploy several services such as collision avoidance, virtual
and augmented reality, and data caching. Noting also that MEC nodes
are limited in terms of resources, as compared to traditional cloud
computing. Therefore, it is critical for the network operators to ensure
an efficient share of MECs’ resources, and hence optimizing the MEC
resource usage.

In this paper, we design a two-stage distributed and secure collab-
orative architecture, called FedGame. FedGame first leverages MEC
and FL to allow multiple MEC based domains, to collaboratively
build an efficient learning model. The latter is able to detect IIoT
attacks, while preserving the privacy of IIoT devices’ data. Then,
when detecting an IIoT attack, the MEC nodes compete to get more
virtual resources (i.e., memory, storage, and CPU), to be able in
dealing with such attacks. However, the required quantity of virtual
resources depends mainly on the type of detected attack as well as
the other critical applications that are already executed on top of each
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MEC node. Therefore, we model a non-cooperative game between
MEC collaborators to scaling up or down their virtual resources,
based on both the type of detected attack and each MEC’s critical
applications. We evaluate FedGame using UNSW-NB15 dataset [10],
[11], which contains the main IIoT attacks, including, shellcode,
generic, analysis, reconnaissance, fuzzers, exploits, DDoS, backdoors,
and worms. The main contributions of this paper can be summarized
as follows:

• We design a two-stage distributed collaborative architecture
(FedGame) that leverages MEC and FL to allow multiple MEC
based domains, to collaboratively build an efficient learning
model.

• We model a non-cooperative game between MEC collaborators
to scaling up or down their virtual resources, based on both the
type of detected attack and each MEC’s critical applications.

• We evaluate FedGame in accuracy, detection rate, and F1 score
using the UNSW-NB15 dataset. The results of the experi-
ments show that FedGame outperforms centralized ML and
DL schemes in accuracy and F1 score, while preserving the
privacy of industrial systems. Also, FedGame demonstrates the
efficiency of our non-cooperative game in providing required
MECs resources, and thus dealing with IIoT attacks.

The rest of this paper is organized as follows. In Section II, we
present a review of related works. Section III describes the design
and specification of the proposed two-stage, FedGame. In Section IV,
we evaluate FedGame. Finally, section V concludes the paper.

II. RELATED WORK

The rapid development of ML and DL techniques has revo-
lutionized many domains, including security domain; since then,
several schemes have adopted ML and DL techniques to improve
the efficiency of their IDSs. Li et al. [12] designed a two-stage intru-
sion/anomaly detection framework based on artificial intelligence to
detect intrusions in Software defined Internet of Things networks(SD-
IoT). The authors used Bat scheme with two emergent techniques
(i.e., swarm division and binary differential mutation) to select the
most informative input features. Then, the authors used Random
Forest (RF) for classification. The proposed solution achieved high
accuracy in detecting illegitimate flows with lower overhead. Luo
et al. [13] proposed a novel framework, called EDL-WADS, that
uses ensemble Deep Learning (DL) techniques to detect IoT attacks,
including web attacks. More specially, the authors designed three DL
models, namely the MRN model, the LSTM model, and the CNN
model to detect these attacks. Then, the authors designed an ensemble
leaning classifier for final classification/decision. Then, an ensemble
classifier has been used to make the final decision. The authors
have evaluated EDL-WADS using CSIC 2010 dataset. Jia et al. [14]
proposed an edge-centric IoT defense scheme, called FlowGuard, to
detect IoT Distributed Denial-of-Service (DDoS) attacks. FlowGuard
includes the detection, classification, and the mitigation of this attack;
it uses a novel algorithm that is based on traffic variation metric
along with two ML algorithms (i.e., LSTM and CNN) to detect
malicious traffic. They have evaluated the efficiency of FlowGuard
with the well-known CICDDoS2019 dataset. Ashfaq et al. [15]
proposed Fuzzy-IDS, a novel method that uses NN along with Sample
Categorization (SC) to detect network anomalies/attacks. Sudheera et
al. [16] proposed a distributed framework, called Adept, to effectively
detect and identify individual IoT attack. Adept is a hierarchically
distributed framework that works in three phases. First, Adept
processed locally IoT network traffic for detecting malicious IoT
devices. Then, once an IoT attack is detected, the security manager
received a potential anomaly alert to detect patterns correlated across

space and time. Finally, the authors used machine learning schemes
(i.e., k-Nearest Neighbor (k-NN), Random Forest (RF), and support
vector machine (SVM)) to identify individual attacks stages in the
generated alert. Ravi et al. [18] proposed LEDEM, a novel method to
detect DDoS attacks in SDN. LEDEM focused on mitigating DDoS
attacks triggered by malicious IoT devices; it used a semi supervised
machine-learning algorithm i.e., extreme learning machine (ELM) to
detect DDoS attacks.

McDermott et al. [19] developed a new model that makes use
of SVM and NN to detect network anomalies in wireless sensor
networks (WSNs). Moustafa et al. [20] developed a new model that
makes use a Gaussian mixture of outliers (OGM)-based architecture
to detect web attacks; it consists of (1) An Association Rule Mining
(ARM) scheme to extract input features dynamically; and (2) An
OGM classifier to detect network attacks using the best/informative
features. The same authors [21] designed a novel framework that uses
beta mixture-hidden Markov models (MHMMs) to detect network
attacks/anomalies in the context of the industry 4.0. MHMMs was
evaluated on both well-known public datasets i.e., UNSW-NB15 and
CPS dataset of sensors.

Based on our review of these existing ML and DL-based
schemes [12]–[21], they are based on some specific networks; which
generally leads to inaccurate IIoT attack detection models, especially
when encountering new IIoT attacks. Besides, in [22], the authors
proposed a survey on MEC-based schemes for resource provisioning.
However, most of cited works addressed the question of where
should MEC nodes be deployed? or how to enable an efficient users’
tasks offloading while ensuring a low latency delay?, to the best
of our knowledge, we found only one work that addresses virtual
resources provisioning from the centralized orchestrator to the MEC
nodes, proposed in [23]. However, this work targets a very specific
application of collision detection/avoidance between vehicles. In our
game formulation, we consider not only the requirement of IDS
application, but also the other applications that are running at the
MEC level.

III. FEDGAME: TWO STAGE MEC-ENABLED SCHEME

In this section, we describe the main steps of our FedGame scheme.
Fig. 1 illustrates the general flow diagram of FedGame steps.

A. Stage1: A Federated Learning-based Model
In this subsection, we describe our federated learning based model,

ranging from the distributed architecture, to the developed multi-
classifier model, through the used dataset.
MEC-enabled architecture: Fig. 2 shows the system architecture
of our proposed solution. We consider four MEC domains (i.e.,
MECs: A, B, C, D), where each MEC-based domain supports the
requirements defined for the MEC ETSI standards, each one covers
a particular geographical area in which a set of IIoT devices are
already deployed. In addition, the four MEC domains are connected
to the MEC Orchestrator (MEO) and the organization. MEO is in
charge of deploying the MEC applications, such as IDS, Collision
detection/avoidance between mobile robots, and entertainment ap-
plications, on top of virtualized platform at each MEC server. Our
architecture enables not only building learning models for IIoT-related
intrusion detection, but also to deploy efficiently the IDS application
at the MEC domain level, as detailed in the next sub-sections.
Description of IIoT Dataset: In our study, we use UNSW-NB15
dataset, which covers the main real-world IIoT attacks. UNSW-NB15
contains a variety of IIoT attacks, including 2218761 records for
normal behavior, in addition to several IIoT attacks, divided as fol-
lows: analysis (2677 records), fuzzers (24246 records), DDoS (16353
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Fig. 1: Flow Diagram of FedGame.
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Fig. 2: MEC-Based Architecture for IIoT attack detection.

records), backdoors (2329 records), reconnaissance (13987 records),
generic (215481 records), exploits (44525 records), shellcode (1511
records), and worms (174 records).
Federated learning-based Model: We formalize the problem of
federated collaborative learning across multiple MEC-based domains
as a problem of optimization et al. [7]. For optimization, we use
a local Stochastic Gradient Descent (SGD) on each MEC-based
domain. At the beginning of each round r, each MEC-based domain
calculates the average gradient independently at the actual shared
global model wr using its own local dataset (see steps 1 and 2 in
Fig. 1). To test FedGame, we use a deep neural network with an input
layer of 49 neurons that corresponds to the dimension of UNSW-
NB15 dataset, four hidden layers with LeakyReLU, and an output
layer of ten neurons that correspond to the category of the attack

class. Algorithm 1 illustrates the steps executed by MEC collaborator
i. Finally, the MEC orchestrator, i.e. MEO, aggregates local updates
and transmits the aggregated value to the MEC collaborators(see steps
3 and 4 in Fig. 1). This procedure is then repeated until a maximum
round rmax is achieved. Algorithm 2 describes the main steps of
the global model runs at the MEC orchestrator level.

B. Stage2: MEC Resources Provisioning

Once detecting an IIoT attack (step 5 in Fig. 1), the MEC nodes
compete to get more virtual resources from the centralized MEO, in
order to be able in dealing with such attacks. However, the required
quantity of virtual resources (storage, CPU and bandwidth) depends
mainly on the type of detected attack as well as the other critical
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Algorithm 1 MEC Collaborator i

Require: Local Data Di, size of batches Siz, Epochs e, learning
rate η.

Ensure: Updated model Updk+1.
1:
2: MECUpdate(i, Upd)
3: for epoch from 1 to e do
4: batches ← Di / Siz
5: for Batch B ∈ batches do
6: Upd← Upd− η∇f(Upd, T ) (∇f(Upd, T ) is the average

gradient on batch B at the model Upd)
7: end for
8: end for
9: return Upd to server aggregator.

Algorithm 2 The global MEO

Require: Number of MEC collaborators M and rounds Round, Size
of batches Siz, Local epochs e, Learning rate η.

Ensure: Aggregated model GLMk+1.
1:
2: Initialize GLM0

3: for r = 1 to Round do
4: M = set of MEC collaborators
5: for MEC domain i ∈M in parallel do
6: Lr+1

i ←MECUpdate(i, Lr)
7: end for
8: GLMr+1 ← 1

|M |
∑i=|M |

i=1 Lr+1
i

9: end for
10: return GLMr+1 to MEC collaborators.

applications that are already executed on top of each MEC node. For
instance, the MEC nodes need more vCPU resources to deal with
a DDoS attack, as compared to scanning attacks e.g., User to Root
Attack (U2R). Therefore, we model a non-cooperative game between
MEC collaborators to scaling up or down their virtual resources,
based on both the type of detected attack and each MEC’s critical
applications (steps 6, 7, and 8 in Fig. 1). We note that we focus
more on virtual CPU (vCPU) resources, however, our scheme can
be easily extended/applied for other virtual resources such as storage
and bandwidth.

1) Non-cooperative game formulation: We model the compet-
itive behavior of MEC nodes to get vCPU resources using a non-
cooperative game, G = (P, Si,Φi)i∈P , as follows:

1) Players (p1, . . . , pi, . . . , pm): a set P of m MEC players that
are connected to the same MEC orchestrator, MEOj .

2) Players’ strategies, Si: the actions that each MEC player pi can
take during the game, ∀i ∈ P . MEC players may ask for vCPU
resources between zero and ηmax. Thus, Si = [0, ηmax

i ] and
S =

∏m
i=1 Si = [0, ηmax

1 ]× . . .× [0, ηmax
i ]× . . .× [0, ηmax

m ]
represents the strategy profile for all MEC players.

3) Payoff function, Φi : Si → R: each MEC player, pi; ∀i ∈ P ,
has to maximize Φ, in order to increase its profit in getting
more vCPU (ηi).

Beside, we model the MECs’ payoff function to include three main
functions: (i) MEC nodes objectives to maximize the obtained vCPU
resources from the centralized MEO (utility), (ii) priority of the
detected attack (Attack priority cost), (iii) and critical applications
that are executed at each MEC node (Critical applications cost). These
functions are defined as follows:

1) Utility: it reflects MECs profit when they got more vCPU

resources. We note that there exist many functions, which can
be used as utility functions such as sigmoidal, logarithmic,
exponential, linear, and square root [24]. We select the square
root function for each MEC player pi, due to its strictly
concave, as follows:

υi (ηi) =
√
ηi + 1, with i = 1, 2, . . . ,m (1)

2) Attack Priority Cost: this cost reflects both the priority of each
attack, j, and the number of attackers performing such attack.
We assign a priority, Prij = ]0, 1], to each attack type based
on the needed vCPU. So, attacks need more vCPU resources
have more priority than those require less vCPUs, to deal with.
In addition, this cost is directly impacted by the number of
involved attackers (Attackers). Indeed, attack with multiple
source has a high impact on the network and thus will require
more vCPU resources. We define this cost as follows:

Υi (ηi, j) =


ηi ∗

(
1

Prij∗Attackers

)
, if there is an attack

1,Otherwise
(2)

3) Critical Applications Cost: the quantity of assigned vCPU
resources to each MEC node must consider the other MEC’s
applications. We classified the IIoT applications into two main
classes: (i) critical applications, which include safety-related
application requiring ultra-low latency, such as collision detec-
tion/avoidance between mobile robots in industrial systems. (ii)
no-critical applications that cover the other type of applications
such as entertainment and publicity applications. In our model,
we choose to assign more resources to MEC nodes ensuring
safety critical applications (Cri App). Thus, we define the
critical applications cost of player pi as follows:

ϱi (ηi, Cri Appi) = ηi ∗
(
1− Cri Appi

Total Appsi

)
, ∀i ∈ P (3)

Where Cri Appi is the number of critical applications ex-
ecuted at the MEC node i, while Total Appsi is the total
number of MEC i applications (critical and no critical).

Finally, the payoff function of each MEC player pi is defined as
follows:

Φi (ηi, η−i) = αiυi (ηi)−βiΥi (ηi, j)−ψiϱi (ηi, Cri Appi) (4)

With η−i = [ηL]L∈P and i ̸= L is the requested vCPU resources
by all MEC players (strategies) except MEC player pi, and αj , βj ,
and ψj are MECs’ coefficients for the three functions υi, Υi, and
ϱi, respectively, where αi, βi, and ψi > 0, ∀i ∈ P . The values of
these parameters are chosen in such way that the global requirement
of our model are met. For instance, if the value of ψi is greater,
the difference between vCPU resources (ηi) of MEC nodes having
high number of critical applications and those having low number of
applications is higher and vice versa.

2) Proof of Nash equilibrium: Nash Equilibrium (NE) reflects
the state where no MEC player can benefit by changing its strategy,
while the other players keep theirs unchanged. Therefore, if this state
exists, the modeled game admits a solution.
In our game, a set of requested vCPU resources (strategies), s∗ ∈ S
with s∗ = [η∗1 , . . . , η

∗
i , . . . , η

∗
m], corresponds to a Nash equilibrium

state if no MEC node can improve its payoff, as it changes its action.
More specifically, NE is N-tuple {η∗i } ensuring:

Φ
(
η∗i , η

∗
−i

)
≥ Φ

(
ηi, η

∗
−i

)
, ∀i ∈ P, η∗i ̸= ηi (5)

In this subsection, we prove the uniqueness and existence of NE for
our game G.
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Nash Equilibrium Existence:
To show the existence of NE state, we are based on Nikaido-Isoda
theorem [25]:

Theorem 1 (Nikaido-Isoda): Our game G = (P, Si,Φi)i∈P ad-
mits a NE state if and only if, the set of MECs’ strategies Si is convex
and compact, and MECs’ payoff function Φ(ηi, η−i) is concave in
Si, and continuous on all the strategies s ∈ S. Proof:

• Since Si = [0, ηmax
i ], ∀i ∈ P , the set of MECs’ strategy is

bounded and closed. So, Si is compact.
Considering a1, a2 ∈ Si and = [0, 1]. Thus, it is clear that
0 ≤ a1 + (1−) a2 ≤ ηmax

i . As the point a1 + (1−) a2 ∈ Si,
the strategy set, Si, ∀i ∈ P , is convex.

• We are based on the Hessian matrix of our payoff function,
Φ(s), to prove its concavity propriety:

H (s) =


h11 h12 · · · h1m
h21 h22 · · · h2m

...
...

. . .
...

hm1 hm2 · · · hmm

 (6)

Where hkl =
(

∂2Φk
∂ηk∂ηl

)
, ∀k, l ∈ P . Thus, we get:

hkl =

−
αk

(2
√

ηk+1)
2 < 0 ifk = l; ∀k, l ∈ P

0 ifk ̸= l; ∀k, l ∈ P
(7)

We clearly see that H (s) is negative definite for each strategy
s ∈ S. Thus, Φ(ηi, η−i) is strictly concave in Si, according to
leading principal minor of H (s). Based on the Nikaido-Isodra
theorem, we can deduce that our game G has at least one Nash
Equilibrium state.

Nash Equilibrium Uniqueness:
We consider an array of positive random values r = (r1, r2, . . . , rm).
According to the theorem of Rosen [26], the weighted positive sum
of Φ(ηi, η−i), ∀i ∈ P , is defined as follows:

δ (ηi, η−i; r) =

m∑
i=1

riΦi (ηi, η−i) , ri ≥ 0, ∀i ∈ P. (8)

And the pseudo-gradient of δ (ηi, η−i; r) is equal to:

g (ηi, η−i; r) =


r1∇Φ1 (η1, η−1)
r2∇Φ2 (η2, η−2)

...
rm∇Φm (ηm, η−m)

 (9)

Where ∇Φi (ηi, η−i) = αi
2
√
ηi+1

− βi

(
1

Prij∗Attackers

)
−

ψi

(
1− Cri Appi

Total Appsi

)
Then, we compute the Jacobian matrix J (ηi, η−i, r) of g:

J (ηi, η−i, r) =


b11 b12 · · · b1m
b21 b22 · · · b2m

...
...

. . .
...

bm1 bm2 · · · bmm

 (10)

With bij = rihij ; ∀i, j ∈ P .
As the symmetric matrix

[
J + JT

]
is negative definite for all

(ηi, η−i) ∈ S. Based on Rosen’s theorem [26], we can deduce that
the function δ (ηi, η−i; r) is diagonally strictly concave. Therefore,
our game G admits an unique NE, based on the same theorem.

TABLE I: Simulation Parameters.

Parameters Values
Simulation Time 600 s
Learning Parameters Values
Deep learning tool Pytorch
Number of hidden layers 4
Regularization technique Dropout
Loss function Cross-Entropy
Optimiser gradient Adam (Adaptive Moment Estimation)
Activation function Leaky Rectified Linear Unit
Game Parameters Values
vCPU resources 500 vCPUs
MEC nodes 4
Critical applications [0, 20] Apps
Generated IIoT Attacks UNSW-NB15 dataset

TABLE II: Performance metrics of FedGame

Rounds Accuracy DR Precision F1 Time(s)
10 98% 99% 98% 98% 58
25 99% 99% 99% 99% 172

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our two-stage
FedGame, in terms of several metrics.

To test the effectiveness of our Multi-class classifier (i.e., federated
learning-based IDS), we use several metrics, including Accuracy,
detection rate (DR), Precision, and F1-score. The F1 score merges
the precision and detection rate measures into a single measure. Also,
we study the performance of our proposed Multi-class classifier using
ROC curves and confusion matrices. ROC curves show True Positive
Rate (TPR) according to False Positive Rate (FPR). When training
the global model, we try to maximize the accuracy and F1-score and
to minimize the cross entropy loss function, defined as follows:

L = − 1

N

n∑
i=1

zi ∗ log(ẑi) (11)

where zi and ẑi represent the actual and the predicted value of the
jth class, receptively.

We test the global shared model on a realistic IIoT dataset UNSW-
NB15. We have been varying the number of rounds and epochs
from 10 to 25 and from from 1 to 5, respectively. On the other
hand, we consider a MEC orchestrator (MEO) that has 500 vCPU
resources to share among the four MEC nodes (A, B, C, and D).
Each MEC node ensures a number of critical applications that we
varied between 2 to 20. Once an IIoT attack is detected at a MEC
domain, our non-cooperative game is established between the MEC
players and the centralized MEO, till a Nash Equilibrium state is
reached. Moreover, we compared our game-based scheme with two
other schemes: (i) Selfish scheme, where each MEC node competes
to get a maximum of vCPU resources in selfish way, i.e. without
considering the performance of the centralized MEO as well as the
other MEC nodes. Thus, MEO assigns a maximum number of vCPU
to each MEC node. (ii) Minimum vCPUs scheme, the centralized
MEO in this case allocates a minimum number of vCPUs to each
MEC. Table I gives more details about the simulation parameters.

A. Evaluation of Federated-based Multi-classifier

Table II shows detailed performance of FedGame. For 10 rounds
of training, FedGame achieves 98%, 98%, 98%, 99% in recall,
accuracy, F1 score, and precision, respectively, with only 58 seconds
of federated training. For 25 rounds of training, FedGame achieves
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(a) (b)

Fig. 3: Model loss for FedGame using UNSW −NB15 dataset for: a) 10 rounds case; and b) 25 rounds case.
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Fig. 4: Confusion matrices of FedGame using UNSW −NB15 dataset for: a) 10 rounds case; and b) 25 rounds case.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve of Normal (area = 0.99)
ROC curve of DoS (area = 0.96)
ROC curve of Generic (area = 0.99)
ROC curve of Exploits (area = 0.99)
ROC curve of Fuzzers (area = 0.99)
ROC curve of Reconnaissance (area = 0.97)
ROC curve of Backdoors (area = 0.99)
ROC curve of Analysis (area = 0.97)
ROC curve of Shellcode (area = 0.99)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve of Normal (area = 1.00)
ROC curve of DoS (area = 0.99)
ROC curve of Generic (area = 1.00)
ROC curve of Exploits (area = 1.00)
ROC curve of Fuzzers (area = 1.00)
ROC curve of Reconnaissance (area = 0.99)
ROC curve of Backdoors (area = 0.99)
ROC curve of Analysis (area = 1.00)
ROC curve of Shellcode (area = 1.00)

(b)

Fig. 5: ROC curves of FedGame using UNSW −NB15 dataset for: a) 10 rounds case; and b) 25 rounds case.



Z. ABOU EL HOUDA et al.:WHEN FEDERATED LEARNING MEETS GAME THEORY: A COOPERATIVE FRAMEWORK TO SECURE IIOT APPLICATIONS ON EDGE
COMPUTING 7

(a) (b)

(c) (d)

Fig. 6: Performance evaluation of FedGame, when generating IIoT’s single source attacks at 180s. (a) A DDoS attack on MEC A; (b) An
analysis attack on MEC B; (c) A fuzzers attack on MEC C; (d) A backdoors attack on MEC D.

(a) (b) (c)

Fig. 7: Performance comparison between FedGame, selfish, and min vCPUs schemes.

99% in recall, accuracy, F1 score, and precision, respectively, with
only 172 seconds of federated training.
Fig. 3 shows the learning curves of our MEC-based tested models
over rounds; it shows the loss values during, training and testing
phases, for 10 rounds and 25 rounds of training, respectively.
We observe that, during the federated training phase, the loss of
each MEC-based model decreases until a minimum is reached
(almost zero in the test case). Fig. 4 shows Confusion matrices of
FedGame using the UNSW − NB15 dataset for 10 rounds and
25 of federated training, respectively. For 10 rounds of training,
we observe that 99% of almost all IIoT attack traffic is correctly
classified as malicious traffic and also 99% of Normal traffic (i.e.,
benign data samples) is correctly classified as benign traffic. For 25
rounds of training, we observe that 99% of almost all IIoT attack
traffic is correctly classified as malicious traffic and also 99% of
benign traffic is correctly classified as benign traffic. Fig. 5 shows
the roc curves of FedGame on the UNSW −NB15 dataset for 10
rounds and 25 rounds of federated training, respectively. The ROC
curves show TPR according to FPR. For 10 rounds of training, we

observe that FedGame has an Area Under the ROC Curve (AUC)
score of 0.99, while it has a AUC score of 0.99 for 25 rounds of
training.

We compared the results achieved by FedGame with the following
recent ML and DL models: Fuzzy-IDS [15], RF-IDS [17], WSN-
IDS [19], OGM [20], and MHMM [21]. Table III shows the metric
values of FedGame and the centralized ML and DL models. We
observe that FedGame achieves the highest accuracy of 99%, the
highest DR of 99%, and the highest F1 score of 99% with only 172
seconds of training time. The results of experiments confirm that
FedGame outperforms centralized ML and DL models, in accuracy,
DR, and F1 score, while preserving the privacy of industrial systems’
users.

B. Evaluation of Game-based MEC resource provisioning
Fig. 6 shows the vCPUs assignment to each MEC node during

600s. We generated different types of IIoT attacks: DDoS, analysis,
fuzzers, and backdoors, addressing MEC A, B, C, D, respectively,
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TABLE III: Comparison of performance metrics.

Model Accuracy DR Precision F1-
score

Time
(second)

Fuzzy-IDS
[15]

0.86 0.85 N/A N/A N/A

RF-IDS [17] 0.93 0.92 N/A N/A N/A
WSN-IDS
[19]

0.92 0.91 N/A N/A N/A

OGM [20] 0.95 0.94 N/A N/A N/A
MHMM [21] 0.96 0.95 N/A N/A N/A
FedGame 0.99 0.99 0.99 0.99 172

at instant t=180s. Once generating an attack, Fig. 6 shows that the
number of allocated vCPUs increases at the corresponding MECs,
while it remains stable in the other MEC nodes. However, the number
of assigned vCPUs differs from a MEC to another (120 vCPUs for
MEC A, 75 vCPUs for MEC B, 70 vCPUs for MEC C, and 65 vCPUs
for MEC D). This is mainly due to the type of generated attack at
each MEC. Indeed, in our scheme, the vCPUs assignment depends
strongly on the attacks’ priority in addition to the number of attackers
(see Equation 2). In addition, it is clear that DDoS attack requires
more vCPUs to deal with, as compared to the other attacks. Moreover,
these results show clearly that our scheme enables to provide the
needed vCPUs resources, to the compromised MEC nodes, while
also ensuring a minimum and stable vCPUs resources for the other
MEC nodes, to meet the other MEC applications’ requirement.
Fig. 7 shows the performance comparison between the FedGame,
Selfish, and Min vCPU schemes, in terms of vCPU assignment in
the MEC node B and during 600s. Fig. 7(a) shows that the number
of allocated vCPU is almost stable over time for both selfish and
Min vCPU schemes, while it may vary for the FedGame. This is
because either the number of critical applications which may increase
or decrease, or IIoT attacks that may be produced at any time.
To study the impact of the number of critical applications on the
vCPU assignment, Fig. 7(b) shows that the FedGame increases the
number of allocated vCPUs, as the number of critical applications
increases. However, the number of assigned vCPU remains stable
for both selfish and Min vCPU schemes, whatever the number of
critical applications. Indeed, the FedGame considers the number of
critical applications, in allocating the vCPU resources to the MEC
nodes, and the higher the number of applications, the more vCPUs
are assigned (see Equation 3). Fig. 7(c) compares between the three
schemes when generating a DDoS attack at t=180s and an analysis
attack at t=480s. We clearly observe that the number of assigned
vCPUs increases at t=180s to the maximum number of 125 vCPUs,
before starting to decrease till 80 vCPUs. This is due to the generated
DDoS attack at t=180. Afterwards, it increases again to 100 vCPUs,
at t=480s due the analysis attack. We note that both selfish and Min
vCPU schemes give a stable assignment behavior, given that they
did not consider neither the IIoT attacks nor the critical applications,
in their vCPUs assignment. Even the selfish way can provide the
needed vCPUs to deal with IIoT attacks, however, most of time the
allocated vCPUs remain unused, especially when there is no attack
and critical applications, which may degrade the global performance
of the system. In general, we can deduce that FedGame enables
to detect collaboratively IIoT-related attacks in efficient way, while
preserving the privacy of industrial systems’ users. Furthermore, once
an attack is detected, FedGame ensures a dynamic and efficient virtual
resources allocation to MEC domains, which considers both attack
priority and MECs’ critical applications, in addition to the global
system performance.

V. CONCLUSION

In this paper, we designed a new two-stage scheme, called
FedGame, to secure Industrial systems against IIoT-based attacks.
FedGame first leverages deep learning in a federated way to build a
MEC-enabled prediction model for intrusion detection, while preserv-
ing users’ privacy of industrial systems. In addition, once detecting
an intrusion, a non-cooperative game is established between MEC
nodes to ensure provisioning the required virtual resources, in order
to deal with the attack. Therefore, FedGame enables not only to
detect industrial systems’ intrusions, but also to provide the needed
resources, and thus dealing with any type of intrusion. Experimental
results demonstrated the efficiency of FedGame, while improving
users’ privacy. As future work, we plan to consider different datasets
including other single source as well as multi-source attacks, to cover
most of attacks that can target industrial systems.
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