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Abstract

Deep learning has brought impressive progress in the
study of both automatic speaker verification (ASV) and
spoofing countermeasures (CM). Although solutions are
mutually dependent, they have typically evolved as stan-
dalone sub-systems whereby CM solutions are usually
designed for a fixed ASV system. The work reported in
this paper aims to gauge the improvements in reliability
that can be gained from their closer integration. Results
derived using the popular ASVspoof2019 dataset indicate
that the equal error rate (EER) of a state-of-the-art ASV
system degrades from 1.63% to 23.83% when the evalu-
ation protocol is extended with spoofed trials. However,
even the straightforward integration of ASV and CM sys-
tems in the form of score-sum and deep neural network-
based fusion strategies reduce the EER to 1.71% and
6.37%, respectively. The new Spoofing-Aware Speaker
Verification (SASV) challenge has been formed to en-
courage greater attention to the integration of ASV and
CM systems as well as to provide a means to benchmark
different solutions.

Keywords: automatic speaker verification, anti-
spoofing, spoofing-aware speaker verification, spoofing
countermeasures.

1. Introduction
Recent years have seen rapid progress in automatic
speaker verification (ASV) [1–3]. Even for unconstrained
in the wild scenarios, the latest systems deliver low
equal error rates (EERs) that are close to those for well-
constrained conditions [2, 4, 5]. However, there is evi-
dence that these improvements might not offer protection
against spoofing attacks – the presentation of utterances
specially crafted to deceive the ASV system.

∗These authors contributed equally to this work.

Solutions to protect ASV systems from such attacks
take the form of countermeasures (CMs), typically sepa-
rate sub-systems designed to detect manipulated or syn-
thetic utterances [6]. The threat of spoofing attacks has
intensified in recent times due to the rapid advances in
other speech technologies which can be used to gener-
ate spoofed utterances. They include: speech-to-speech
voice conversion (VC); text-to-speech (TTS) speech syn-
thesis; replay attacks. Since ASV systems are increas-
ingly deployed in security-critical operations as a part of a
biometric authentication system, vulnerabilities to spoof-
ing attacks are unacceptable.

In response to the threat, the ASVspoof initiative has
held biennial challenges to promote the development of
research in spoofing detection [6]. Two different use case
scenarios have been defined, namely physical access (PA)
and logical access (LA). The work in this paper relates to
the latter, typically telephony applications and robustness
to TTS and VC spoofing attacks. When assessed using
the ASVspoof 2019 LA evaluation set, today’s leading
CM systems deliver EERs of less than 2% [7–17].

While the EER metric was adopted in almost all
early assessments of standalone CM performance, the
ASVspoof community has now transitioned to the min-
imum tandem detection cost function (min t-DCF) [18]
as the primary metric. The t-DCF reflects the impact
of spoofing and countermeasures upon a typically-fixed
ASV system. Even with this strategy, CMs are often de-
signed in standalone fashion, independently from ASV.
Until now, and with only few notable exceptions [19–26],
very little work has investigated the benefit of jointly op-
timised, or integrated CM+ASV solutions.

The Spoofing-Aware Automatic Speaker Verifica-
tion (SASV) challenge1, a special session at INTER-
SPEECH 2022, aims to promote greater research in this
direction and extends the traditional ASV scenario to

1https://sasv-challenge.github.io
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Figure 1: Back-end fusion of CM and ASV sub-systems.
(a): cascaded combination, a form of decision level fu-
sion. (b): parallel fusion which can operate at either de-
cision, score, or embedding levels. When parallel fusion
operates at the decision level, it is the same as the cas-
caded combination.

consider spoofing attacks. The first SASV challenge [27]
utilises existing ASVspoof databases with metrics ex-
tended to support the evaluation of integrated CM+ASV
solutions. Ultimately, SASV aims to strengthen the foun-
dations between research in spoofing detection and ASV.

New contributions reported in this paper include:
(i) baseline SASV solutions to integrated CM+ASV
leveraging state-of-the-art sub-systems; (ii) metrics de-
signed specifically for the SASV task; (iii) experimental
results and detailed, per-attack analyses.

2. Related work
The majority of previous related work focuses upon the
development of independent CM and ASV solutions.
Comparatively very little work has explored their inte-
gration. The literature can be divided into two strands:
(i) back-end fusion using independent ASV and CM sub-
systems and (ii) single SASV systems.

The earlier works in the first strand investigated
decision-level cascade or parallel combinations [19, 20,
28]. As shown in Fig. 1-(a), the cascaded combination
typically involves the use of a CM as a gate prior to ASV
so that the latter treats only input utterances labelled by
the CM as bona fide. It can be regarded as a form of
decision level fusion. For parallel combinations, as il-
lustrated in Fig. 1-(b), every input utterance is treated by
both sub-systems before the outputs are fused. Fusion
can be performed at decision, score or embedding levels.
Given decision level fusion and identical CM and ASV
thresholds, cascade and parallel solutions give identical
results.

Beyond straightforward score fusion, [20] reports a

Gaussian back-end fusion strategy with different front-
ends for CM and ASV sub-systems. The Gaussian back-
end fusion method is used to model ASV and CM scores
as two-dimensional vectors from which single scores are
derived. The Gaussian back-end is shown to outperform
both cascade and straightforward score fusion parallel
combination strategies by a large margin.

The second strand of single SASV systems has been
also explored [21, 22, 24, 25]. An approach to the joint
training of CM and ASV systems using multi-task learn-
ing (MTL) [29] is reported in [21, 22]. However, the
framework requires DNN training towards the speakers
in the enrolment set and cannot incorporate new speak-
ers, making the framework somewhat inflexible. The first
single SASV system adaptable towards unlimited speak-
ers is reported in [24]. However, the single SASV system
is outperformed by a back-end DNN fusion approach (the
former strand) by a large margin.

While some of the above referenced works were per-
formed with standard databases, none used common pro-
tocols to assess ensemble or integrated CM+ASV ap-
proaches. The absence of benchmarking frameworks
means that results for different approaches cannot be
compared meaningfully and hinders the development of
integrated systems. The SASV challenge has been de-
signed to address these issues, to establish such a com-
mon benchmarking framework and to promote progress
in the integration and joint optimisation of CM+ASV so-
lutions. The remainder of this paper introduces our base-
line systems, protocol, metrics, and results.

3. Embedding extraction
Our DNN-based baseline system, depicted in Fig. 2 and
introduced in Section 4, is inspired by the solution in [24]
and is based upon an ensemble of three embeddings. The
first and second are speaker (ASV) embeddings extracted
from enrolment and test utterances respectively. The third
is a spoofing (CM) embedding extracted only from the
test utterance. Described in this section are the backbone
models used for their embedding extraction.

3.1. Speaker embedding

Driven by the availability of massive datasets, e.g. Vox-
Celeb [30], and competitive challenges, the performance
of ASV systems has improved substantially in recent
years [1, 2]. The majority of today’s best-performing
ASV systems utilise some form of speaker embedding
in a latent space in which linear classifiers can be ap-
plied (e.g., cosine similarity, probabilistic LDA). We use
the ECAPA-TDNN2 speaker embedding extractor, one of
the most popular models in the recent ASV literature [2].
It consists of a Res2net backbone architecture [31] with
squeeze-excitation (SE) modules [32]. The model oper-

2https://github.com/TaoRuijie/ECAPATDNN
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Figure 2: Illustration of the back-end DNN fusion. Three embeddings are fed to the DNN; only a speaker embedding
is extracted from enrolment utterance and both speaker and spoofing embeddings are extracted from test utterance. In
the training phase, ‘mean’ is removed because only one enrolment utterance is involved. In both the development and
evaluation phases, there exist multiple enrolment utterances, hence, embeddings are averaged element-wise before being
fed to the DNN.

ates upon cepstral acoustic features and uses three SE-
Res2net blocks where three-block outputs are all concate-
nated. Concatenated frame-level embeddings are then ag-
gregated into a single utterance-level embedding leverag-
ing an attentive statistical pooling (ASP) layer. The ASP
layer is a variant of the original reported in [33] which is
also dependent on channel and context statistics among
frame-level embeddings. 192-dimensional speaker em-
beddings are obtained by applying an affine transform
with a fully-connected layer to the ASP layer output. The
model is trained using an additive angular margin soft-
max (AAM-softmax) objective function [34]. Further de-
tails are available in [2].

3.2. Spoofing embedding

Progress in spoofing detection has been led by the
ASVspoof initiative3 and associated challenge series [35]
which provide benchmarking using common datasets,
protocols, and metrics. The state-of-the-art methods ap-
ply end-to-end (E2E) DNNs with diverse architectures
and strategies such as graph neural networks and graph
attention networks (GATs) [9, 16].

We use the E2E AASIST4 spoofing detection model
which delivers state-of-the-art performance for the
ASVspoof 2019 LA database [16]. It operates di-
rectly upon raw waveform inputs using a variant of the
RawNet2 encoder [36] to generate three-dimensional fea-
ture maps (channel, spectral, and temporal). Two differ-
ent views, (channel, spectral) and (channel, temporal),
are then composed by applying an element-wise max-
imum operation to spectral and temporal axes. Those

3https://www.asvspoof.org/
4https://github.com/clovaai/aasist

two views are further processed using graph modules
that consist of GATs and a graph pooling layer. Spe-
cially designed heterogeneous graph attention layers and
max graph operations are then used to integrate the two
views thereby combining temporal and spectral cues. A
two-class prediction output is finally generated using a
readout operation comprising a hidden fully connected
(FC) layer. 160 dimensional spoofing embeddings are ex-
tracted immediately prior to the FC output layer. Further
details are available in [16].

4. SASV
Described in this section are three different approaches
to combine CM and ASV sub-systems. They involve:
i) score-sum fusion; ii) non-linear embedding fusion us-
ing DNNs; and iii) cascaded combination. Each of the
three strategies is described in the following.

4.1. B1: Score-sum fusion
The simplest strategy to system combination involves
a straightforward score-sum. score-sum fusion is used
widely and needs neither training nor fine-tuning. Our
approach is based upon the ASV cosine similarity score
(derived from enrolment and test utterances) and the CM
output score (derived from the test utterance). ASV
scores are calculated using cosine similarity with the
range of -1 to 1. CM scores are the softmax non-linearity
outputs with the range of 0 to 1. The score-sum back-
end fusion serves as baseline1 (B1) for the SASV 2022
Challenge.5

5 Performance is different to that stated in the evaluation plan [27]
on account of the softmax applied to the CM output which improves
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Table 1: Description of EERs. The system involves en-
rolment utterance(s) and a test utterance. The enrolment
utterance(s) is bona-fide (i.e. genuine) and test utterance
belongs to either of the three types.

Target Non-target Spoof
SV-EER + -
SPF-EER + -
SASV-EER + - -

4.2. B2: DNN back-end fusion

The DNN-based fusion strategy is illustrated in Fig. 2. It
operates upon the set of three embeddings described in
Section 3: a pair of speaker (ASV) embeddings extracted
from enrolment and test utterances; a spoofing (CM) em-
bedding extracted from the test utterance alone. As il-
lustrated in Fig. 2, ASV embeddings and the CM em-
bedding are combined using back-end DNN fusion. The
DNN back-end fusion serves as baseline2 (B2) for the
SASV 2022 Challenge. The DNN model contains three
fully connected layers with leaky ReLU non-linear acti-
vation functions. The last layer consists of two neurons
which correspond to two classes: (i) target, (ii) non-target
/ spoof. Element-wise average speaker embeddings are
used in the case of multiple enrolment utterances.

4.3. Cascaded combination

Though not an SASV baseline, a cascaded combination is
also reported here for reference and is the same approach
as illustrated in Fig. 1-(a). In practice, we utilise separate
CM and ASV thresholds set using development data to
make false acceptance rates and false rejection rates equal
for both sub-systems. Separate thresholds, optimised for
the CM and ASV systems using the development proto-
col, are then applied without modification to evaluation
data. The gate applied in the cascaded approach effec-
tively combines CM and ASV systems at the decision
level. While the CM produces a score, the ASV system
produces scores only for trials labelled by the CM as bona
fide (the gated decision). Only decisions, not scores, are
made consistently for each trial and, as a result, there is
no straightforward way to estimate the EER. Thus, to es-
timate performance in the case of cascaded combination,
we resort to error counting and estimation of the half-
total error rate (HTER). Given that we use the EER for
the two baseline systems, but the HTER for the cascaded
combination, we stress that results are not comparable.

5. Databases and protocols
We describe the databases used in this work: (i) the Vox-
Celeb2 database [30] used for training the ASV system;
(ii) the ASVspoof 2019 LA database [37] used for train-

results notably.

ing the CM system and for SASV assessment.

5.1. VoxCeleb2

The ECAPA-TDNN model used to extract speaker em-
beddings was trained using the development partition of
the VoxCeleb2 database. The dataset was collected by
crawling online videos of celebrities’ interviews. Its de-
velopment partition includes data collected from 5,994
speakers of which 61% are male and 39% are female.
Network inputs are 80-dimensional mel filterbank acous-
tic features. The network was trained following the recipe
described in [38], where data augmentation is based on
use of the room impulse response (RIR) database [39]
and additive noise recordings contained in the MUSAN
database [40].

5.2. ASVspoof 2019

CM experiments were performed following the standard
ASVspoof 2019 LA CM protocol described in [37]. It
consists of disjoint train, development, and evaluation
partitions. Each partition contains both bona fide and
spoofed utterances where the latter are generated using
19 VC and TTS algorithms (6 for the train and develop-
ment sets, 13 for the evaluation set). SASV evaluation is
performed using the ASVspoof 2019 LA ASV protocol.
The ASV protocol is not used by ASVspoof participants
and is, instead, used only by the ASVspoof organisers to
estimate ASV performance and tandem CM+ASV per-
formance using the min t-DCF metric. For the SASV
challenge, the ASV protocol is used by participants for
experimentation involving three different trials:

1. target bona fide trials uttered by the same speaker
as the enrolment utterance(s);

2. non-target (zero-effort impostor) bona fide trials
uttered by a different speaker as the enrolment ut-
terance(s);

3. spoofed trials which are synthesised or converted
to spoof the voice of the speaker in the enrolment
utterance(s).

Both development and evaluation protocols are pro-
vided with the freely available ASVspoof 2019 LA
dataset6 or with the open-source SASV baseline imple-
mentations.7

• development protocol: ASVspoof2019.LA.
asv.dev.gi.trl.txt;

• evaluation protocol: ASVspoof2019.LA.
asv.eval.gi.trl.txt.

6https://datashare.ed.ac.uk/handle/10283/
3336

7https://github.com/sasv-challenge/
SASVC2022_Baseline
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Table 2: The three different EERs (%) for the SASV 2022 development and evaluation partitions. SASV-EER for all
baselines are calculated using the entire protocol that includes trials used to measure the SV-EER (target vs. non-target)
and those used to measure the SPF-EER (target vs. spoof). Results are shown for a conventional ASV system (ECAPA-
TDNN) and the two baseline solutions. B1 and B2 are baseline systems used for the SASV challenge

SV-EER SPF-EER SASV-EER

Dev Eval Dev Eval Dev Eval

ECAPA-TDNN 1.88 1.63 20.30 30.75 17.38 23.83

B15: Score-sum 1.99 1.66 0.23 1.76 1.01 1.71

B2: DNN fusion 12.87 11.48 0.13 0.78 4.85 6.37

Table 3: HTERs (%) of the cascade solution for the
SASV 2022 development and evaluation partitions. We
use the thresholds that give equal false acceptance and
false rejection rates for each of the ASV and CM systems
(i.e., the ones that are used to measure EER).

SV-HTER SPF-HTER SASV-HTER
Dev Eval Dev Eval Dev Eval

Cascade 1.90 1.60 0.99 1.40 1.18 1.47

6. Metrics
We use the classical EER (SASV-EER) as the pri-
mary metric. In keeping with the metrics used in [19,
20], the SASV-EER does not distinguish between non-
target/zero-effort impostor and spoofed access attempts.
Additional insights into performance can be gained from
comparisons between the SASV-EER and: (i) more tradi-
tional estimates of speaker verification performance (SV-
EER) estimated from a set of target and non-target bona
fide trials; (ii) estimates of performance when non-target
trials are replaced with spoofed trials (SPF-EER).

Table 1 illustrates the trials types and ground-truth la-
bels used to measure each of the three different EERs. As
shown, all three EERs are estimates of ASV performance,
with both the SV-EER and SPF-EER being estimated us-
ing different subsets of the full set of trials that are used
for estimating the SASV-EER.

7. Experiments
We describe specific implementation details relating to
embedding extraction, DNN-based fusion and hardware,
followed by the presentation of experimental results.

7.1. Implementation details

Speaker and spoofing embeddings – We used open
source implementations for both the ECAPA-TDNN2 and
AASIST4 models described in Sections 3.1 and 3.2, re-
spectively. We used pre-trained weight parameters mak-
ing embedding extraction fully reproducible.

DNN-based back-end fusion, B2: We used a simple
multi-layer perceptron for the back-end fusion with three
hidden layers comprising 256, 128 and 64 nodes respec-
tively, without regularisation (e.g., dropout, batch nor-
malisation, and weight decay). The DNN model for back-
end fusion is trained on the ASVspoof 2019 LA train par-
tition. The Adam optimiser was applied, and the learn-
ing rate was scheduled with warm starts between 0.1 to
0.001 [41]. The output node indicates whether the utter-
ance is a target or not (non-target or spoof). The fusion
model is also publicly available.7

Hardware specification – All experiments reported in
this paper were preformed using a single Nvidia 3090
GPU. The provided scripts can also be run on GPUs with
less memory, e.g. an Nvidia 1080ti GPU.

7.2. Results

Results are presented in Table 2 which shows all three
EERs for both development and evaluation partitions for
the ECAPA-TDNN system and the two SASV baselines.
Results for the cascaded ensemble system in terms of
HTERs are shown in Table 3.

ECAPA-TDNN – Results for the ECAPA-TDNN are il-
lustrated in the first row of Table 2. In view of the domain
mismatch between ASVspoof data and the VoxCeleb2
data used for ASV training, the system performs reliably,
with SV-EERs of 1.88% and 1.63% for the development
and evaluation protocols respectively. The SPF-EERs of
20.30% and 30.75% indicate that the system is vulner-
able to spoofing attacks. The SASV-EERs, at 17.38%
and 23.83%, are also high, confirming that the standalone
ASV system provides little robustness to spoofing at-
tacks.

Score-sum fusion, B1 – The second row of Table 2
shows results using score-sum fusion described in Sec-
tion 4.1. SV-EER results are inline with results for the
ECAPA-TDNN system. SPF-EER results, however, are
substantially reduced. Together, these results indicate the
potential of the B1 baseline to improve robustness to both
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Table 4: Breakdown of SPF-EER (%) and their pooled (P) EER for all 13 different spoofing attacks in the ASVspoof
2019 LA evaluation set, measured using SASV protocol without non-target trials.

System A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 P

ECAPA-TDNN 32.66 18.80 2.20 50.61 47.08 39.56 11.62 35.39 36.54 60.71 1.85 2.38 4.77 30.75

B15:Score-sum 2.05 0.69 0.07 7.19 0.32 4.42 0.07 0.08 1.75 1.18 0.73 1.18 0.63 1.76

B2:DNN fusion 0.50 0.34 0.00 1.28 0.20 1.20 0.16 0.10 0.55 0.85 0.77 1.87 0.42 0.78

non-target trials and spoofing attacks, without impacts
upon target trials. This finding is confirmed by SASV-
EERs of 1.01% and 1.71% for the development and eval-
uation protocols. The SASV-EER of 1.71% remains 5%
higher relative to the ECAPA-TDNN SV-EER of 1.63%
implying that, while results are encouraging, impacts of
spoofing remain.

DNN fusion, B2 – The last row of Table 2 shows re-
sults for DNN-based back-end embedding-level fusion.
With speaker and spoofing embeddings projected to a
new representation space via an affine transformation, we
expected DNN-based embedding-level fusion to outper-
form score-level fusion. Relative to B1, the SPF-EER of
1.76% is reduced by more than 50% for the evaluation
protocol. However, the SV-EER increases from 1.66%
for B1 to 11.48%, meaning that, with a vanilla multi-
layer perception, the discriminative power of the speaker
embedding is degraded in the joint representation space.
This explains the increase in the SASV-EER, to 6.37%.

Cascade ensemble – Table 3 shows results in terms of the
HTER for cascaded CM and ASV systems as described
in Section 4.3. Lower error rates below the SV-HTER are
observed for both the SPF-HTER and the SASV-HTER
which drops to 1.47%. While error rates for the cascaded
ensemble are lower than those for the two SASV baseline
systems, results for the cascaded system are HTER esti-
mates, not EER estimates. Therefore, they are not com-
parable and should not be interpreted as meaning that the
cascaded ensemble is the best approach. They might be
interpreted, instead, as scope to improve SASV-EER re-
sults for the B1 and B2 baselines.

Breakdown of SPF-EER – Table 4 shows a breakdown
of SPF-EER results for each of the 13 different spoofing
attacks, with pooled results to the right. B2 outperforms
B1 for the majority of attacks. B1 outperforms B2 for
A13, A14, A17, and A18 attacks, but the difference is al-
most negligible. For B2, the SPF-EER is under 1% for
all attacks except three. For A10 and A12, B1 SPF-EERs
are 461% and 268% higher relative to B2 results. While
B1 gives a lower SV-EER, B2 better harnesses the protec-
tion of the CM in deflecting spoofing attacks which hence
leads to a lower SPF-EER. It is the relative weakness in
terms of the SV-EER that results in B2 having a higher
SASV-EER.

Further analysis. The trends shown in Table 2 are un-
expected; we expected better results for the DNN-based
back-end. Using current ASV and CM sub-systems, sim-
ple fusions that operate at embedding or score levels give
the best performance. However, we remain convinced
in the merit of DNN-based embedding-level fusion ap-
proaches and predict that further research can reduce er-
ror rates considerably. B2 has better potential to harness
the synergy between CM and ASV sub-systems; this is
not the case for B1. With advanced architectures, regular-
isation, and training strategies that better exploit the syn-
ergy, ASV and CM embedding fusion should give better
performance and might even deliver SASV-EERs below
the SV-EER. We expect to observe such improvements in
the forthcoming SASV 2022 Challenge. We argue that,
with better potential for joint optimisation and hence bet-
ter performance, future work should focus on the devel-
opment of single, integrated SASV solutions. Their de-
velopment is the ultimate goal of the SASV challenge.

8. Conclusions
We found that, despite rapid advances in ASV, the state-
of-the-art ECAPA-TDNN system remains vulnerable to
spoofing attacks, hence, motivating either (i) its combi-
nation with a standalone CM system or (ii) the devel-
opment of integrated spoofing aware ASV (SASV) so-
lutions. We explored different back-end integration (fu-
sion) techniques, a straightforward score-sum fusion and
a more sophisticated DNN-based approach. Surprisingly,
the simple score-sum ensemble outperforms the DNN-
based approach. This result may imply that simple back-
end fusions which operate upon ASV and CM scores
may be a sufficient solution. Nonetheless, DNN-based
back-end solutions and single integrated approaches have
greater potential for joint-optimisation to better exploit
the synergy between CM and ASV solutions. We hope to
encourage this work through the SASV 2022 Challenge.
In the end, there is only a single, common task - reli-
able ASV – a task that might best be solved with a single
SASV system.
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