
BEERR: Bench of Embedded system Experiments for Reproducible Research

Paul Olivier
EURECOM

paul.olivier@eurecom.fr

Xuan-Huy Ngo
EURECOM

xuan.ngo@eurecom.fr

Aurélien Francillon
EURECOM

aurelien.francillon@eurecom.fr

Abstract—Reproducing experiments is a key component to
further research and knowledge. Testbeds provide a con-
trolled and configurable environment in which experiments
can be conducted in a repeatable and observable manner.
In the field of system security, and binary analysis, sev-
eral challenges hinder reproducible research, in particular
when code is interacting tightly with low level hardware
and physical devices. In those conditions, dynamic analysis
techniques often require the physical device to correctly
complete (hardware-in-the-loop). In recent years many re-
hosting techniques have been developed and evaluating their
respective performance requires to compare them with an
hardware-in-the-loop evaluation. However, it is challenging
to share, acquire or maintain the original devices.

In this paper, we tackle this problem by proposing a
new infrastructure, and online service called “Bench of
Embedded system Experiments for Reproducible Research”
(BEERR). It aims to both make physical devices available re-
motely and facilitate the setup and reproduction of published
experiments.

Index Terms—security, dynamic analysis, embedded systems,
reproducible research, hardware-in-the-loop

1. Introduction

A core aspect in the journey to expand the knowledge
is experimenting. Experiments help to validate or refute
hypothesis. One of experiments’ most important attribute
is reproducibility. The modification of experiments pa-
rameters is crucial in observing the impact of results
and improvements. In this way, the experimenters better
understand and study the phenomena at play. This is part
of the reason why Science is an iterative process. By
sharing reproducible experiments, other scientists can in
turn add their own expertise into them and progress.

In particular, an emphasis has been recently put in
making research more reproducible in computer science,
and in system security in particular [3], [7], [44], [47].
For this purpose conferences promote the publication of
the code and data that have produced the results along
with the paper. Several conferences now award badges
to publications whose artifacts have successfully been
reproduced by an evaluation committee [6], [20], [31],
[33], [45]. These badges characterize the way the artifacts
have been audited and how reproducible they are. For
instance, the ACM Artifact Review and Badging version
2.0 [6] defines three independent type of badges: Artifacts
Evaluated, Artifacts Available and Results Validated. Each

describes a qualitative set of requirements applied to the
artifacts associated with the research.

According to the type of artifacts the experiment ma-
nipulates, different challenges may arise at the time of
publication. First, it is often the source code that is the
most easily published along the paper. This bring trans-
parency on experiments by providing the exact operations
executed. However, source code alone isn’t sufficient to
make an experiment reproducible. The second difficulty
with reproducibility is if, and how, to share the data used
during an experiment. Data copyright may raise concerns
while malware studies face ethical issues to openly share
datasets. User privacy also limits the scope of legitimate
traffic, behavior and traces that can be collected and
published. More trivially, the size of the dataset has a
direct influence on its ease to be shared.

Third, the environment of the experiment has a great
impact on its results. Thanks to virtualization technolo-
gies, sharing the exact environment for software is often
straightforward. In contrast, trade-offs have to be made
with hardware. For dynamic analysis, emulation is the
primary solution to abstract hardware requirements. But
it is not always feasible, as shown by Fasano et al. [15]:
the task itself can be onerous and it exists a large variety
of devices to support. To circumvent these obstacles, a
different approach is to record the execution into traces
that can be replayed later and somewhere else [13], [43].
It is however impossible to explore new execution paths
with a replay. Both approaches suffer from limitations,
highlighting the importance of using physical devices into
the analysis loop.

Fourth, the experiment setup has an essential influence
on the measured results. A wrong configuration can yield
a different outcome from the original study. It is a crucial
aspect for fair comparison between methodologies.

Experiments interacting with hardware devices intro-
duce four challenges:

1) the cost of the device: How expensive is it? Is
the budget available for purchasing it?

2) availability: Is the device still produced and sold?
Is the device available and legal to operate in
user’s region of the world?

3) storage: Where to keep the device? How to make
it accessible to use it?

4) safety: Can the device be dangerous when ma-
nipulated?

In this paper, we want to address these last questions
by proposing the Bench of Embedded systems Experiments
for Reproducible Research, BEERR. It is an infrastructure

aiming to ease the access to physical devices used in
system security publications by making them available
remotely. In addition, we want to congregate and propose
a collection of experiment code and data which can be
easily used with these devices. We focus on dynamic
firmware analysis with a strong emphasis on studies look-
ing at interactions with the hardware. We believe BEERR
can help future researchers by simplifying the access to
published experiments, removing the burden of hardware
management, promoting fair comparison between studies
and be a key to foster new ideas. The website is accessible
at https://beerr.s3.eurecom.fr.

The remainder of this paper is structured as follows.
Section 2 describes relevant background information on
computer testbeds and their potential applications in the
context of system security and embedded systems. Sec-
tion 3 proposes a high level survey of publications and
their artifact status for hardware-in-the-loop papers. In
Section 4, we present an overview of our testbed and its
workflow. Section 5 describes the software and hardware
implementation of our infrastructure. Lastly, section 6
discusses the security aspect of the proposed infrastructure
and sketches future works.

2. Background

2.1. Terminology

To clear any confusion within the rest of the publica-
tion with the terms repeatable, reproducible and replica-
ble, we refer to the definition provided by ACM artifact
review and badging [6]:

• Repeatability: [...] a researcher can reliably re-
peat her own computation.

• Reproducibility: [...] an independent group can
obtain the same result using the author’s own
artifacts.

• Replicability: [...] an independent group can ob-
tain the same result using artifacts which they
develop completely independently.

2.2. Computer Testbeds

To overcome the difficulties in reproducing, sharing
and comparing experiments, scientific communities are
building testbeds. They take a wide variety of forms
depending on their objectives and the problems to be
studied. They can be small robots placed in an arena to
study swarm intelligence as done in the Robotarium [36];
a grid of radio transceiver to analyze wireless interference
and performance on different topology (R2Lab [34]);
inspect IoT devices interactions within an environment
(FIT IoT-LAB [9] and CorteXLab [25]); or to study
distributed systems networking and services such as
Emulab [46], CloudLab [14], PlanetLab [35] and more
recently EdgeNet [40].

To simplify administrative work, management and
to be accessible to as many people as possible, front
end projects have been created to federate multiple
testbeds [2], [10] and offer a common interface. A recent
example of this case is the Fed4FIRE+ project which ran

for 5 years. It gathered 20 different testbeds in Europe
and led to an large number of publications [2].

In the context of system security, building a testbed
is an effective approach to study a system [16], [32],
[39], [49]. A diverse range of applications are reasonable:
benchmarking [27], training [8], [26], or investigating
multi-stage attacks on distributed systems. In other words,
all situations where the reproduction of the environment
is crucial to understand the events that are at stake.
Examples of such case are often related to networking
attacks like DDoS [19], industrial control systems such as
SCADA [8], [26], [28], [37], or Internet-of-Things [39]
where physical devices communicate with external ser-
vices often located on the Internet.

Fuzzing has recently experienced a considerable inter-
est in software testing and vulnerability research because
of its efficiency in bug finding. Yet establishing good
methodologies and metrics to compare fuzzing techniques
remain a challenge for researchers. For this reason, Google
proposes a service called FuzzBench [27] to evaluate and
compare fuzzers against a set of benchmarks.

2.3. Hardware-in-the-loop

Hardware-in-the-loop (HIL) testing consists in the in-
tegration of physical components within a simulation [12],
[21], [22], [24], [28], [29], [32], [38], [42]. In this way, the
physical devices are fed with inputs from the simulation
while its outputs are monitored. This technique brings
the benefit to only require an access of the interface
with the physical component to join. This interface is
often standardized (JTAG, I2C, MMIO) which removed
the burden to have knowledge of the internal structure of
the device: it is considered as a black box.

Cars are increasingly filled with embedded systems in
complex and sensitive architectures. The automotive sec-
tor has strong incentives from regulations to extensively
test their systems. HIL helps to build realistic testbeds to
establish the reliability of the system [16], [32].

In the context of system security, HIL gained a lot
of interest recently with the dynamic firmware analysis
technique called rehosting [15], [48]. The core idea of
rehosting is to move the firmware into a virtualized envi-
ronment where it is easier to instrument and apply other
general testing techniques such as debugging, tracing, fuzz
testing and symbolic execution [5], [18].

Another essential advantage of HIL lies in its high fi-
delity of outputs returned to the simulation. In contrast, the
approach presents several drawbacks: it only scales with
the number of physical devices employed and requires an
access to debug them. Depending on the approach taken,
the execution overhead introduced by forwarding accesses
may impact the analysis speed significantly.

2.4. Continuous Integration

Continuous Integration (CI) helps developers to auto-
matically merge their changes into the main development
tree. However, before merging, the changes need to be
tested to minimize new bugs or regressions. Embedded
systems are known to be a very heterogeneous ecosys-
tem. It is therefore difficult to know upfront if a specific
code change would work on all the hardware the project

https://beerr.s3.eurecom.fr

TABLE 1. EXPERIMENTS DESCRIPTION IN SURVEYED PAPERS.

Publication Experiment Hardware Artifact availability
hardware1 source code

Wycinwyc [30] study effects of memory corruption on different class of embedded systems

Beaglebone Black ✓

✗
Linksys EA6300v1 ✗
Foscam FI8918W ✗
STM32 L152RE ✓

measure mitigation execution overheads with fuzzing STM32 L152RE ✓ ✓

Avatar² [29]
reproduce existing study PLC Allen Bradley 1769-L16ER-BB1B

✓ ✓state transfer between concrete and symbolic execution modes
record firmware execution STM32 L152RE

Avatar² examples
forward memory accesses between emulators

✓ ✓state transfer between different targets STM32 L152RE
state transfer & peripheral modeling nRF51-DK

Avatar [50]
backdoor detection in a masked ROM bootloader Seagate ST3320413AS HDD ✗

✓vulnerability research in a commercial Zigbee device Redwire Econotag ✗
helping reverse engineering the GSM stack of a phone Motorola C118 ✓

Charm [42]

feasibility (how long it takes to port a new driver)

Nexus 5X ✓ ✓

performance (driver fuzzing with Syzkaller, driver initialization)
record-and-replay (record bug PoC, measure execution overhead)
bug finding (fuzzing with Syzkaller, sanitizing with KASAN)
analyzing vulnerabilities with GDB (CVE-2016-3903,
CVE-2016-2501, CVE-2016-2061)
build driver exploit using GDB

Prospect [21] performance impact on forwarding driver accesses using strace 324MHz embedded Linux MIPS
with 16MiB RAM ✗ ✗

case study on proprietary fire alarm system (network fuzzing) not disclosed

Surrogates [22] measure performance impact of MMIO forwarding

Pico Computing E17FX70T
custom JTAG adapter board
custom JTAG breakout / debug board
FriendlyARM Mini2440

✗ ✗

Inception [12]

measure vulnerability detection via synthetic tests (Klocwork Test Suite)

✓ ✓

validation tests (53200 tests) LPC1850-DB1 & STM32 L152RE
comparison with binary-only approaches Xilinx ZedBoard FPGA

STM32 L152RE

measure timing overhead (Dhrystone benchmark and real world applications)
compare recovering semantic from a binary to the source code with libopencm3
security flaw detection with Juliet Test Suite 1.3 on FreeRTOS
analysis of products during development phase (bootloader,
chip SDK, payment terminal) not disclosed ✗ ✗

Mousse [24]
performance evaluation Pixel 3

Nexus 5X
Nexus 5

✓ partiallymeasure coverage
bugs and vulnerabilities research

Pretender [18] generate models for hardware peripherals (record, build and emulate)
STM32 L152RE

✓ ✓STM32 F072RB
Maxim MAX32600MBED

Conware [41] generate models for hardware peripherals (record, build and emulate) Arduino Due (Atmel SMART SAM3X/A) ✓ ✓

Frankenstein [38] heap overflow in device inquiry (CVE-2019-11516) CYW20735
CYW20819 ✓ ✓heap overflow in the reception of BLE PDUs (CVE-2019-13916)

heap overflow on ACL packets buffer (CVE-2019-18614)

FirmCorn [17]

accuracy between virtual execution approaches DLink (DIR-816, DIR-629, DIR-859, DIR-823G)
TPLink (WR940N, WR941N)
Ezviz C6CDahua (HFW5238M, HFW3236M)

partially partiallyefficiency (benchmark nbench)
stability
effectiveness

Incision [43]

correctness (control flow extraction, region inference, database
improvement and error correction) Huawei LTE R216h (ARMv7)

Renault BCM (Renesas V850ES) ✓ ✗real-world usability (emulate Renault BCM, analysis the cryptography
of Huawei R216h)
human effort (qualitative measure of complexity of manual
intervention in database correction)

1. The availability of the devices has been checked on google.com, amazon.com, digikey.com and ebay.com at the date 2021/12/15.

wants to support. An example of such case is the Linaro
Automated Validation Architecture (LAVA) [23], which
aims to test deployments on Linux-based systems for the
ARM architecture.

3. Survey

In this section we survey papers related to embedded
device security testing, using HIL, and inspect their arti-
facts to estimate their reproducibility. We will also discuss
which experiments we integrate in the initial BEERR
setup. Table 1 reports all experiments from the surveyed
papers while table 2 presents a summary of their artifacts
status.

Muench et al. [30] address the state of memory cor-
ruptions in embedded devices and the lack of mechanisms
to mitigate silent memory corruptions. For this purpose
they insert multiple vulnerabilities with independent trig-
ger conditions on different class of embedded systems.
They observe different behavior ranging from crash, re-
boot, hang, malfunctioning to no effect. They propose

mitigations against these vulnerabilities and measure their
performance costs on a fuzz testing. It is these last exper-
iments which are available to reproduce.

Emulation facilitates the use of generic dynamic ana-
lysis techniques on firmware, but suffers from limited
support in device emulation. Therefore, many publications
explore the idea of dynamically forwarding I/O operations
to the physical device to improve emulation.

Avatar² [29] is a framework written in Python which
aims to facilitate the interoperability between different
dynamic binary analysis tools. In particular, it offers the
power to use HIL techniques to plug devices into an
emulator with the help of a debugger. Three use cases
are presented within the publication. The first experiment
reproduces the analysis of the HARVEY rootkit, while the
second shows the ability to move firmware execution state
between concrete and symbolic execution modes. The
third experiment demonstrates the capabilities of avatar² to
forward peripherals accesses on the physical device from
an emulator. This helps recording traces to replay and
analyze them later without the device. We decide to focus

TABLE 2. ARTIFACTS STATUS IN HARDWARE IN THE LOOP PAPERS SURVEYED
: SOURCE CODE : CONTAINER ±: VIRTUAL MACHINE

Publication Artifacts Packaging Hardware Link
Tool Dataset

Wycinwyc [30] ± ± STM32 L152RE https://github.com/avatartwo/ndss18 wycinwyc

Avatar² [29] ±
PLC Allen Bradley 1769-L16ER-BB1B
STM32 L152RE https://github.com/avatartwo/bar18 avatar2

Avatar² examples N/A
STM32 L152RE
nRF51-DK https://github.com/avatartwo/avatar2-examples

Avatar [50] ±
Seagate ST3320413AS HDD
Econotag development board
Motorola C118

https://github.com/avatarone

Charm [42] Nexus 5X https://trusslab.github.io/charm

Inception [12]
Xilinx ZedBoard FPGA
STM32 L152RE
LPC1850-DB1

https://github.com/Inception-framework

Mousse [24] Pixel 3 https://github.com/trusslab/mousse

Pretender [18]
STM32 L152RE
STM32 F072RB
Maxim MAX32600MBED

https://github.com/ucsb-seclab/pretender

Conware [41] Arduino Due https://github.com/ucsb-seclab/conware

Frankenstein [38]
CYW20735
partially CYW20819 https://github.com/seemoo-lab/frankenstein

FirmCorn [17]
DLink (DIR-816, DIR-629, DIR-859, DIR-823G)
TPLink (WR940N, WR941N)
Ezviz C6CDahua (HFW5238M, HFW3236M)

https://github.com/FIRMCORN-Fuzzing/FIRMCORN

Incision [43] Huawei LTE R216h (ARMv7)
Renault BCM (Renesas V850ES) https://github.com/UoBAutoSec/INCISION

on the first and third experiments because they operate on
physical devices.

As an ancestor of avatar², Avatar [50] shares a similar
objective and characteristics. Experiments gather around
three case studies: backdoor detection in a masked ROM
bootloader from a hard drive, vulnerability research in
a commercial Zigbee device, the Econotag and helping
reverse engineering the GSM stack of a Motorola C118
phone.

Charm [42] focuses on device drivers for smartphones.
It claims to support four different device drivers on
different smartphones: camera and audio for LG Nexus
5X, GPU for Huawei Nexus 6P and IMU sensors for
Samsung Galaxy S7. Experiments try to answer several
questions on its feasibility, performance and capability to
perform dynamic analysis techniques such as interactive
debugging, fuzzing and record-and-replay on a Nexus 5X
smartphone.

Prospect [21] targets embedded Linux systems by
intercepting accesses to character devices in the filesystem
and forwarding them to the physical device. The perfor-
mance of the system is evaluated against an unknown 324
MHz embedded Linux MIPS system with 16MiB RAM
using strace. In addition an undisclosed proprietary fire
alarm system is fuzzed as a security audit. The source code
of the Prospect has not been made public.

Surrogates [22] leverages specialized hardware to en-
able low latency communication between the emulator
and the system under test. It uses a custom FPGA to
bridge the devices’s JTAG interface to the host’s PCI
Express bus. The implementation uses a Pico Computing
E17FX70T with Xilinx Virtex5 FX70T FPGA because of
its included ready-to-use PCI Express card. Unfortunately
this product is not commercially available anymore. The
experiments measure Surrogates’ performance impact on
MMIO forwarding and its ease to port it to two new target
devices.

Inception [12] introduces symbolic execution to em-
bedded systems. Similarly to Surrogates, it includes a

FPGA based debugger to provide high speed and low
latency access to peripherals. But it differs in interfacing
itself with the host via USB3 instead of PCI Express. Ex-
periments focus on validation of the design, benchmarking
the performance, vulnerability detection and several use
cases on proprietary systems.

Mousse [24] brings selective symbolic execution to
environments that are too difficult to emulate because
of specific hardware. The proposed system is evaluated
around three aspect: performance, code coverage and vul-
nerability discovery; and against three smartphones: Pixel
3, Nexus 5X and Nexus 5.

Pretender [18] and Conware [41] focus on the chal-
lenges to automatically model hardware peripherals to
enable better firmware emulation. Both follow a similar
logic: first record traces of peripheral interactions, then
use these traces to generate a model, and finally plug
the model into an emulator to allow the firmware to
execute. Their contributions differ in the way of modeling
the peripheral behavior from a recorded trace. Pretender
uses machine learning while Conware employs automata
representations. Both firmware datasets focus on 32-bit
ARM Cortex-M processor with a wide range of peripher-
als (timer, button, GPIO, I2C, UART, radio, etc).

Frankenstein [38] leverages emulation with HIL to
fuzz wireless firmware, mainly for Bluetooth and WiFi.
The framework is used to discover three heap overflow
vulnerabilities in implementations of the Bluetooth stan-
dard using the CYW20735 evaluation board.

FirmCorn [17] is a framework to fuzz IoT firmware.
A collection of different firmware contexts are captured
from the physical devices to be used as starting point
for the fuzzing phase. Experiments target seven routers
and three cameras. Multiple aspects of proposed system
are evaluated such as accuracy, efficiency, stability and
effectiveness.

Incision [43] tackles the challenge of combining static
with dynamic analysis to help with the task of reverse
engineering complex embedded systems. Execution traces

https://github.com/avatartwo/ndss18_wycinwyc
https://github.com/avatartwo/bar18_avatar2
https://github.com/avatartwo/avatar2-examples
https://github.com/avatarone
https://trusslab.github.io/charm
https://github.com/Inception-framework
https://github.com/trusslab/mousse
https://github.com/ucsb-seclab/pretender
https://github.com/ucsb-seclab/conware
https://github.com/seemoo-lab/frankenstein
https://github.com/FIRMCORN-Fuzzing/FIRMCORN
https://github.com/UoBAutoSec/INCISION

are recorded in order to improve the static firmware ana-
lysis. The evaluation targets two physical devices, a LTE
baseband unit and an automotive Body Control Module.
The artifacts are not available. But at the time of writing,
the authors plan to reimplement the source code with
similar functionalities in a new open source framework
called Fugue1.

We observe that most publications release the source
code of their proposed system and collected dataset. How-
ever, packaging their artifacts within a container or virtual
machine images may improve their usability. In addition,
scripts used to process generated data and plot figures for
papers are rarely shared within the artifacts.

It is worth noting an initiative has been created to
collect monolithic firmware used in publications (https://
github.com/ucsb-seclab/monolithic-firmware-collection).

4. BEERR Overview

We now describe a high level overview of the proposed
testbed for enabling reproducible research on dynamic
security analysis with embedded system.

4.1. BEERR Objective

BEERR aims to help researchers with their experi-
ments by offering an access to environments where dy-
namic security analysis can be performed on embedded
systems. The devices and their experiments are mainly
selected from scientific publications.

The infrastructure can be used for several purposes.
First, it makes a variety of embedded systems available
remotely with their physical components. Secondly, it
helps researchers to reproduce diverse experiments from
published papers. It removes the effort and responsibility
to setup complex bleeding edge prototypes. Therefore, we
believe this would improve the state of fair comparison
between systems. Thirdly, researchers are free to modify
existing experiments to better study influence of various
settings and improvements. The platform can also be
used by binary analysis projects to perform continuous
integration with hardware in the loop.

4.2. BEERR Architecture

BEERR is divided in two parts. The first part is called
the front node. It hosts the website with the scheduler
and stores the experiment codes and data. The website
lets the user register an account and submit tasks to the
scheduler. The latter takes care of allocating and setting
up the resources as well as opening the connection to the
selected experiment node. Code and data for experiments
are combined in portable container images which are
stored in a local registry.

The second part is composed of independent experi-
ment nodes. Each of these nodes holds a gateway which is
the main access to the experiment node for the user. From
it, the user can interact with the available devices, upload
files, download container image from the local registry
and run its analysis. Other components such as debuggers

1. https://github.com/UoBAutoSec/INCISION

and power switches help in controlling the device state
under study.

The initial design was strongly inspired from existing
testbed, in particular R2Lab [34] and FIT IoT-LAB [9],
because they also target embedded systems. However, the
type of analysis we want to perform is very different.
Unlike R2Lab with its anechoic chamber, we don’t aim
to study radio propagation across different nodes in a
controlled environment. Similarly, in contrary to FIT IoT-
LAB, there is no need to work with sensor networks,
routing protocols or distributed applications on distinct
typologies. As shown in the survey (Section 3), the ana-
lysis we target focuses on the firmware and code closely
coupled with low level hardware rather than across a pool
of different devices. It may require powerful computing
resources to handle a partial emulation of the system and
its analysis. That is the reason we made the trade-offs
to divide the testbed in independent bookable experiment
nodes with a more or less powerful gateway. This design
still offers the possibility to build systems composed of
multiple devices behind a single gateway.

4.3. User Workflow

The typical workflow for the user first involves cre-
ating an account on the website and submitting its SSH
public key. Then the user has to wait for the validation of
his account from the person in charge of its affiliation.
To create such group of users (e.g., per university or
company), an application explaining their motivations has
to be sent to the administrators. The access is free of
charge and mainly target scientific activities.

The creation of an experiment requires to select an
experiment node, select a time slot and a duration, select
an image to boot the gateway and optionally fill a public
link to a git repository. This repository is a way for the
user to prepare the experiment code upstream its time slot.
The repository may contain a Dockerfile which would
be build and stored in the local registry.

When the booked time comes, the gateway is powered
with the selected image and an SSH connection is opened
between the front node and the gateway. The user can
use this access to start a shell on the bare-metal gateway
with root permissions. He has the possibility to upload
files, install and configure the gateway as needed. No
direct Internet access is provided on the gateway from
our infrastructure, users can use SSH tunneling to share
their own Internet connection.

Finally, the front node closes the SSH connection,
resets the devices, cleans up the gateway disk and powers
them off. Status of previous experiments is displayed on
the website.

5. BEERR Implementation

5.1. Front Node

The front node hosts the website and the database with
user and experiment data such as credentials, SSH keys,
affiliation, experiment scheduled time, repository link. The
scheduler is integrated into the back end via the Advanced
Python Scheduler library.

https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/UoBAutoSec/INCISION

A local docker registry stores the experiments under
the form of docker images. They are built locally from
the git repository link provided by the user on experiment
submission.

The gateways boot on the network to facilitate the
image selection and management. We use dnsmasq be-
cause of its advantage to offer a complete and lightweight
solution with DNS caching, DHCP and TFTP servers and
its ease of configuration. The root filesystem is mounted
using an union filesystem, OverlayFS. The read-only bot-
tom layer is on an NFS server on the front node while the
read-write upper layer is on the local disk. In this way,
images are easily added and updated by administrators
while users have the possibility to modify the system.
Modifications are cleaned at the end of the experiment
by unlinking files.

5.2. Experiment Nodes

Experiments are assembled in individual container
images. We chose this solution because it facilitates the
packaging, sharing, setup and resetting of experiments and
parts of their environment. The essential advantage to use
precise software versions from the time of publication
offers the possibility to circumvent the hard task of main-
taining experiments in different environments. A corner
case occurs when a special kernel version is required. In
this case, because the user has a root shell access on the
bare-metal gateway, he is free to use a virtual machine.
Nevertheless, we did not observe such situation in our
survey (Section 3).

BEERR provides a set of pre-built images in the local
registry. This allows the user to use them directly or use
them as a base to build new images.

The first set of experiments we propose to reproduce
are from the paper Avatar²: A Multi-target Orchestration
Platform [29]. The second set targets the paper What You
Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices [30] (see Section 3). In addition, we
make available the already existing avatar² examples [1].

The experiments have been grouped in categories of
nodes according to their nature and the devices they use.
A node is composed of a gateway where the analysis is
executed, and one or multiple devices which are subjects
of the analysis. The user has a root shell access on the
bare-metal gateway where he can freely interact with the
devices, build and run container experiments.

The gateways are either a Raspberry Pi 4 Model B
4GB or an Intel NUC BOXNUC8I5BELS1 with CPU In-
tel Core i5-8260U (Quad-Core 1.6/3.9 GHz, 8 threads, 6M
cache), 16GB DDR4, 250Go NVMe SSD. The Raspberry
Pi has the advantage to be relatively cheap, space and
power efficient. Yet its processor architecture is based
on the ARM instruction set, which might cause com-
patibility problems with some experiments. Indeed, most
research experiments work in a limited environment where
portability is not always a main objective. For exam-
ple, the PANDA emulator only supports host machines
with x86 64 architecture. In this situation, the experiment
needs to be carry out within the second node type using
Intel NUC computers. We therefore use two categories of
experiment nodes:

• Alpha nodes. The Alpha nodes are designed as a
low cost entry node. They also allow new users
to familiarize themselves with the environment
through a set of basic experiences. Each are com-
posed of a Raspberry Pi 4 with Nucleo boards and
an USB switch.

• Bravo nodes. The Bravo nodes are more powerful
and have for theme rehosting with powerful emu-
lation. Those experiments rely on an Intel NUC
(instead of raspberry PI) to be able to run more
complex experiments, e.g., those that rely on the
PANDA emulator.

Jlink
Debugger

Intel NUC

Allen Bradley
PLC

Nucleo L152RE
Board

Nucleo F072RB
Board

USB Switchable
Hub

On-board
Debugger

USB

Power
Debugging
Interface

USB
Programmable
Surge Protector

On-board
Debugger

Figure 1. An example layout for a Bravo node

5.3. Devices Overview

The following devices are available on the nodes. We
refer to Table 2 in Section 3 to show which experiments
they allow to reproduce.

• STM32 Nucleo L152RE (ARM Cortex-M3) and
F072RB (ARM Cortex-M0) boards,

• Nordic semiconductor nRF51-DK for BLE (ARM
Cortex-M3),

• Cypress CYW920735Q60EVB-01 BLE Evalua-
tion Kit (SoC CYW20735 with ARM Cortex-M4),

• Allen Bradley 1769-L16ER-BB1B CompactLogix

In addition, other components are present to control
the state of devices:

• Yepkit YKUSH, an USB Switchable Hub to turn
on and off an USB link,

• an USB programmable surge protector to power
devices using power plug,

• SEGGER J-Link Debug Probes to interface with
JTAG ports

6. Discussion

6.1. Infrastructure Security

BEERR is mainly intend for the scientific community,
without excluding other potential collaborations. The af-
filiation link makes the user accountable for its conduct. It
is a best effort approach where we rely on good behavior
from the users. We plan to treat malicious behavior on a
case-by-case basis and terminate the corresponding user
or affiliation accesses.

We nevertheless implemented minimal mechanisms
to protect a fair access to the service and preserve the
integrity of the system. Time spent using BEERR is di-
vided in 55 minutes time slots and daily quotas to avoid
monopolizing all resources. To preserve a clean state at the
start of a session, we use an overlay filesystem with the
read layer stored in the network while the modifications
are written locally on disk. At the end of the booked
session, files are unlinked from the disk.

We do not protect against any attack attending to
modify the gateway bootloader. Systems under tests are
also not protected against modifications. This is a desired
behavior as the user might need to flash different firmware.
However, nothing prevents from permanent modifications
such as a blowing fuse. We have chosen in a first step to
give freedom to the user before restricting its capabilities.
We trust the user to do their best to not intentionally
brick the devices. If users need specific requirements, we
encourage them to contact us to discuss its feasibility. In
the future as more expensive or hard to operate devices
are incorporated, we might consider implementing group
policy for access to categories of experimental nodes.

6.2. Future work

In the future, we plan to include more experiments
from available publications and artifacts. In particular, we
refer to Table 2. We want to first focus on experiments
around firmware analysis and their interactions with hard-
ware components. Then, we consider extending to larger
type of analysis involving both hardware and software
such as fault injection and side channel attacks [11].

We provide a largely unrestricted remote access to
devices, but we do not currently offer a way to control and
monitor their physical environment. However embedded
systems typically interface with physical world via sensors
and actuators. We cannot reproduce all realistic physical
environments, but some preliminary steps are possible. For
example, when physical interaction is needed on a specific
device, such as pressing buttons, we will implement this
using a relay box (e.g., [4]). Similarly a webcam can be
added to be able to monitor the physical status of a device
(such as LEDs, or screen status). Some experiments may
use radio transceivers such as the nRF51-DK. Caution
must be taken to avoid interference with the environment,
both to prevent wrong measurements during the experi-
ments and degrading other wireless systems. Isolation with
Faraday shield can be used.

We also see the benefit in the future to include BEERR
into continuous integration of research projects, notably
avatar².

7. Conclusion

In this paper, we discussed the challenges and the
significance of reproducible research in system security.
Testbeds are a reliable way to tackle this topic. We high-
lighted the importance to reproduce dynamic analysis with
embedded systems.

We presented a new testbed BEERR seeking to help
researchers to reproduce experiments involving physical
devices. For this purpose we collected experiment code
and data from publications and integrated them into ready-
to-use containers. The experiment hardware is set up to-
gether with control nodes. Those nodes are made remotely
accessible via SSH and can be reserved with a booking
system. Our goal is to provide researchers the possibility
to have an easier access to research artifacts, and to
perform better evaluations and comparisons with related
work.

References

[1] avatar² examples repository. [Online]. Available: https://github.
com/avatartwo/avatar2-examples

[2] Fed4fire+ website. [Online]. Available: https://www.fed4fire.eu/

[3] Sharing expertise and artifacts for reuse through cybersecurity
community hub (searcch) project. [Online]. Available: https:
//searcch.cyberexperimentation.org/about

[4] Usb relay module 4 channels, for home automa-
tion - v2. [Online]. Available: https://denkovi.com/
usb-relay-board-four-channels-for-home-automation-v2

[5] “Fuzzware: Using precise mmio modeling for effective firmware
fuzzing,” in 31st USENIX Security Symposium (USENIX Security
22), 2022.

[6] ACM. Artifact review and badging - version 2.0.
[Online]. Available: https://www.acm.org/publications/policies/
artifact-review-badging

[7] ACSAC. Paper artifacts. [Online]. Available: https://www.acsac.
org/2020/submissions/papers/artifacts/

[8] S. Adepu, N. K. Kandasamy, and A. Mathur, “Epic: An electric
power testbed for research and training in cyber physical systems
security,” in Computer Security, 2018.

[9] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton,
T. Noel, R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner,
J. Vandaele, and T. Watteyne, “Fit iot-lab: A large scale
open experimental iot testbed,” 2015. [Online]. Available:
https://hal.inria.fr/hal-01213938

[10] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Ray-
chaudhuri, R. Ricci, and I. Seskar, “Geni: A federated testbed for
innovative network experiments,” Computer Networks, 2014.

[11] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon,
“Screaming channels: When electromagnetic side channels meet
radio transceivers,” in Proceedings of the 25th ACM conference on
Computer and communications security (CCS), 2018.

[12] N. Corteggiani, G. Camurati, and A. Francillon, “Inception:
System-wide security testing of real-world embedded systems soft-
ware,” in USENIX Security Symposium, 2018.

[13] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Re-
peatable reverse engineering with panda,” in Program Protection
and Reverse Engineering Workshop, 2015.

[14] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
and P. Mishra, “The design and operation of cloudlab,” in USENIX
Annual Technical Conference (USENIX ATC 19), 2019.

https://github.com/avatartwo/avatar2-examples
https://github.com/avatartwo/avatar2-examples
https://www.fed4fire.eu/
https://searcch.cyberexperimentation.org/about
https://searcch.cyberexperimentation.org/about
https://denkovi.com/usb-relay-board-four-channels-for-home-automation-v2
https://denkovi.com/usb-relay-board-four-channels-for-home-automation-v2
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acsac.org/2020/submissions/papers/artifacts/
https://www.acsac.org/2020/submissions/papers/artifacts/
https://hal.inria.fr/hal-01213938

[15] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-
Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory et al., “Sok:
Enabling security analyses of embedded systems via rehosting,” in
ACM Asia Conference on Computer and Communications Security
(AsiaCCS), 2021.

[16] D. S. Fowler, M. Cheah, S. A. Shaikh, and J. Bryans, “Towards
a testbed for automotive cybersecurity,” in IEEE International
Conference on Software Testing, Verification and Validation (ICST),
2017.

[17] Z. Gui, H. Shu, F. Kang, and X. Xiong, “Firmcorn: Vulnerability-
oriented fuzzing of iot firmware via optimized virtual execution,”
IEEE Access, 2020.

[18] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel
et al., “Toward the analysis of embedded firmware through auto-
mated re-hosting,” in 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019), 2019.

[19] A. Hussain, D. DeAngelis, E. Kline, and S. Schwab, “Replicated
testbed experiments for the evaluation of a wide-range of ddos
defenses,” in 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS PW), 2020.

[20] IEEE. Submitting a paper to tpds. [Online]. Available: https:
//www.computer.org/csdl/journal/td/write-for-us/15085

[21] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: periph-
eral proxying supported embedded code testing,” in ACM sym-
posium on Information, computer and communications security
(AsiaCCS), 2014.

[22] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems,” in 9th
USENIX Workshop on Offensive Technologies (WOOT 15), 2015.

[23] Linaro. Linaro automated validation architecture (lava). [Online].
Available: https://validation.linaro.org/

[24] Y. Liu, H.-W. Hung, and A. A. Sani, “Mousse: a system for selec-
tive symbolic execution of programs with untamed environments,”
in Fifteenth European Conference on Computer Systems, 2020.

[25] A. Massouri, L. Cardoso, B. Guillon, F. Hutu, G. Villemaud,
T. Risset, and J.-M. Gorce, “Cortexlab: An open fpga-based facility
for testing sdr amp; cognitive radio networks in a reproducible envi-
ronment,” in 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2014.

[26] A. P. Mathur and N. O. Tippenhauer, “Swat: A water treatment
testbed for research and training on ics security,” in 2016 in-
ternational workshop on cyber-physical systems for smart water
networks (CySWater), 2016.

[27] J. Metzman, L. Szekeres, L. Maurice Romain Simon, R. Trev-
elin Sprabery, and A. Arya, “FuzzBench: An Open Fuzzer Bench-
marking Platform and Service,” in ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2021.

[28] S. Mocanu, M. Puys, and P.-H. Thevenon, “An Open-
Source Hardware-In-The-Loop Virtualization System for
Cybersecurity Studies of SCADA Systems,” in C&esar 2019
- Virtualization and Cybersecurity, 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02371133

[29] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar²:
A multi-target orchestration platform,” in Workshop on Binary
Analysis Research (colocated with NDSS Symposium)(February
2018), BAR, 2018.

[30] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices.” in NDSS, 2018.

[31] NISO. NISO RP-31-2021 reproducibility badg-
ing and definitions. [Online]. Available:
https://groups.niso.org/apps/group public/download.php/24810/
RP-31-2021 Reproducibility Badging and Definitions.pdf

[32] P. S. Oruganti, M. Appel, and Q. Ahmed, “Hardware-in-loop based
automotive embedded systems cybersecurity evaluation testbed,” in
ACM Workshop on Automotive Cybersecurity, 2019.

[33] OSF. Center for open science badges. [Online]. Available:
https://osf.io/tvyxz/wiki/1.%20View%20the%20Badges/

[34] T. Parmentelat, M. N. Mahfoudi, T. Turletti, and W. Dabbous, “A
step towards runnable papers using r2lab,” 2019.

[35] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint
for introducing disruptive technology into the internet,” ACM SIG-
COMM Computer Communication Review, 2003.

[36] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron,
and M. Egerstedt, “The robotarium: A remotely accessible swarm
robotics research testbed,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), 2017.

[37] Q. Qassim, N. Jamil, I. Z. Abidin, M. E. Rusli, S. Yussof, R. Ismail,
F. Abdullah, N. Ja’afar, H. C. Hasan, and M. Daud, “A survey
of scada testbed implementation approaches,” Indian Journal of
Science and Technology, 2017.

[38] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein:
Advanced wireless fuzzing to exploit new bluetooth escalation
targets,” in USENIX Security Symposium, 2020.

[39] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov,
S. Bhairav, A. Shabtai, and Y. Elovici, “Security testbed for
internet-of-things devices,” IEEE transactions on reliability, 2019.

[40] M. Simioni, P. Gladyshev, B. Habibnia, and P. R. N. de Souza,
“Monitoring an anonymity network: Toward the deanonymization
of hidden services,” Digital Investigation, 2021.

[41] C. Spensky, A. Machiry, N. Redini, C. Unger, G. Foster, E. Blas-
band, H. Okhravi, C. Kruegel, and G. Vigna, “Conware: Automated
modeling of hardware peripherals,” in ACM Asia Conference on
Computer and Communications Security (AsiaCCS), 2021.

[42] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani, and
Z. Qian, “Charm: Facilitating dynamic analysis of device drivers
of mobile systems,” in USENIX Security Symposium, 2018.

[43] S. L. Thomas, J. Van den Herrewegen, G. Vasilakis, Z. Chen,
M. Ordean, and F. D. Garcia, “Cutting through the complexity
of reverse engineering embedded devices,” in IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021.

[44] USENIX. Usenix security ’20 artifact evaluation infor-
mation. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/artifact-evaluation-information

[45] ——. Usenix security ’22 call for artifacts. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/
call-for-artifacts

[46] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar, “An integrated ex-
perimental environment for distributed systems and networks,” in
Proc. of the Fifth Symposium on Operating Systems Design and
Implementation, 2002.

[47] WOOT. Woot ’19 artifact evaluation information.
[Online]. Available: https://www.usenix.org/conference/woot19/
artifact-evaluation-information

[48] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and ana-
lysis,” ACM Computing Surveys (CSUR), 2021.

[49] M. M. Yamin, B. Katt, and V. Gkioulos, “Cyber ranges and security
testbeds: Scenarios, functions, tools and architecture,” Computers
& Security, 2020.

[50] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A
Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares,” in Network and Distributed System Security
(NDSS) Symposium, 2014.

https://www.computer.org/csdl/journal/td/write-for-us/15085
https://www.computer.org/csdl/journal/td/write-for-us/15085
https://validation.linaro.org/
https://hal.archives-ouvertes.fr/hal-02371133
https://groups.niso.org/apps/group_public/download.php/24810/RP-31-2021_Reproducibility_Badging_and_Definitions.pdf
https://groups.niso.org/apps/group_public/download.php/24810/RP-31-2021_Reproducibility_Badging_and_Definitions.pdf
https://osf.io/tvyxz/wiki/1.%20View%20the%20Badges/
https://www.usenix.org/conference/usenixsecurity20/artifact-evaluation-information
https://www.usenix.org/conference/usenixsecurity20/artifact-evaluation-information
https://www.usenix.org/conference/usenixsecurity22/call-for-artifacts
https://www.usenix.org/conference/usenixsecurity22/call-for-artifacts
https://www.usenix.org/conference/woot19/artifact-evaluation-information
https://www.usenix.org/conference/woot19/artifact-evaluation-information

	Introduction
	Background
	Terminology
	Computer Testbeds
	Hardware-in-the-loop
	Continuous Integration

	Survey
	BEERR Overview
	BEERR Objective
	BEERR Architecture
	User Workflow

	BEERR Implementation
	Front Node
	Experiment Nodes
	Devices Overview

	Discussion
	Infrastructure Security
	Future work

	Conclusion
	References

