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Abstract— When learning to behave in a stochastic environ-
ment where safety is critical, such as driving a vehicle in traffic,
it is natural for human drivers to plan fallback strategies as
a backup to use if ever there is an unexpected change in the
environment. Knowing to expect the unexpected, and planning
for such outcomes, increases our capability for being robust to
unseen scenarios and may help prevent catastrophic failures.
Control of Autonomous Vehicles (AVs) has a particular interest
in knowing when and how to use fallback strategies in the
interest of safety. Due to imperfect information available to
an AV about its environment, it is important to have alternate
strategies at the ready which might not have been deduced from
the original training data distribution.

In this paper we present a principled approach for a model-
free Reinforcement Learning (RL) agent to capture multiple
modes of behaviour in an environment. We introduce an extra
pseudo-reward term to the reward model, to encourage explo-
ration to areas of state-space different from areas privileged
by the optimal policy. We base this reward term on a distance
metric between the trajectories of agents, in order to force
policies to focus on different areas of state-space than the
initial exploring agent. Throughout the paper, we refer to this
particular training paradigm as learning fallback strategies.

We apply this method to an autonomous driving scenario,
and show that we are able to learn useful policies that
would have otherwise been missed out on during training, and
unavailable to use when executing the control algorithm.

I. INTRODUCTION

Implementing a controller for AVs in a driving scenario
is met with many challenges: both from the point of view
of perception and control [1]. As in most applications of
real-world RL, the uncertainty linked to the perception of
the agent’s environment must be considered for an effective
controller to be developed. Even with the best possible road
maps and sensors, it is impossible to eliminate all sources of
uncertainty from a driving scenario, be they epistemic from
imperfections in the vehicle’s sensors, or aleatoric from the
unpredictable interactions with other drivers [2].

Autonomous driving requires a strong notion of safety, and
notably robustness with respect to unexpected changes in the
agent’s environment. For example, sensor perception quality
can be heavily susceptible to adverse weather conditions [3].
Because of this the optimal behaviour is likely to change dy-
namically according to the vehicle’s inputs, and a satisfactory
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control algorithm must be able to adapt on the fly. Safety
criteria in autonomous driving applications are traditionally
based on perceiving when a situation is no longer able to
be handled by the acting controller, and then handing over
the controls to either the driver, or a special-case controller.
For example, [4] implement a deep neural network to detect
the probability of a catastrophic outcome when following
recommended actions, whereas other approaches look to
estimate the confidence of a policy by estimating quantiles of
the return distribution [5], or using an ensemble of networks
to gauge whether an input was included in the policy’s
training data distribution [6].

RL techniques have been shown to be able to tackle the
task of control in progressively more complex environments
[7]. RL algorithms learn by optimizing their expectation
of performance in an environment. In most cases, such as
board games [8] or video games [9], the environment in
which we seek to obtain the optimal behaviour can be
modeled as a Markov Decision Process (MDP) with no
loss of generality in the solution found by the RL agent.
Through advancements in target updates [10], as well as
agent architectures [11], RL agents have become increasingly
efficient at finding the optimal solution to MDPs, even when
requiring high degrees of exploration, where the optimal
sequence of actions is hard to find [12].

Stochastic control environments such as driving scenarios
are more difficult to optimize, given the probabilistic nature
of both the observation and transition dynamics. Stochastic
environments may be modeled as Partially Observable MDPs
(POMDPs) [13]. Solving POMDPs is possible with methods
combining learning and planning, such as [14]. However,
a change in the values of the stochastic model parameters,
for example a change in a vehicle’s sensor accuracy, scene
obstruction, or simply unplanned behaviour from another
vehicle, may induce a sharp drop in the agent’s performance
due to its inability to generalize well to new environment
parameters. Having access to a model of the environment
dynamics allows us to use planning algorithms, such as
MCTS [15], alongside learning to both increase sample
efficiency, and have access to a better representation of
the environment’s state-space structure (model-based RL).
In cases where planning is possible, it is much easier to find
alternative strategies for an agent to solve its environment
and hence be able to better adapt to eventual changes in the
state-space [16].

In the model-free setting we consider in this paper how-
ever, efficient learning is notoriously hard, one of the factors
being the increased variance of target updates from of the



lack of a planner able to average out return values from
multiple simulated runs. A lack of an environment model
also reduces the ability for an agent to adapt to changes to
the environment after training, since we are unable to use a
planner to explore the new dynamics before acting. Works
such as [17] and [18] use deep recurrent Q-networks in order
to build up knowledge of the MDP’s state over time, and use
a latent representation of the history of states and actions in
order to inform an agent about its current state. In the case
of stochastic parameter change, we are unable to predict how
the returns of a policy will be affected.

This work is focused on the problem of training an agent to
be robust to changes in the uncertainty affecting local areas
of state-space affecting either the transition or observation
models in the MDP-defined environment. When uncertainty
arises in a local area of an MDP’s state-space, we can try
to learn policies exploiting different areas of the state-space,
such that we maximize the probability that the return of at
least one of the available policies remains unaffected.

Our main contribution is to implement a novel framework
which aims to learn alternate policies, referred to as fall-
back strategies, which exploit different areas of state-space
than the optimal policy. These fallback strategies serve as
potential alternatives to safely navigate the environment, in
the case of a change in the defining elements in the MDP
model. We consider the model-free RL setting, and provide
experimental validation for this framework by testing it in a
driving scenario.

This paper is organized as follows: in section II we present
the standard framework and notations used in RL. Section
III presents existing methods for affecting agent behaviour in
RL systems. Section IV presents our contribution of learning
fallback strategies, the main topic of this paper, where we
define multi-policy learning in the context of learning and
retaining sub-optimal solutions. Experiments and results are
presented in sections V and VI respectively, and section VII
contains our conclusion along with future work.

II. NOTATION

A finite MDP is defined by the following elements:
• Finite set of states s ∈ S. States are indexed by the

timestep at which they are encountered: st .
• Finite set of actions a ∈A. Actions are also indexed by

their respective timesteps: at .
• Transition model T (s,a,s′) : S ×A×S → [0,1], rep-

resenting the probability of passing from s to s′ after
taking action at , P(st+1 = s′|st = s,at = a).

• Immediate reward function R(s,a,s′) : S ×A×S → R.
• Discount factor γ ∈ (0,1], controlling the weight in value

of states further along the Markov chain.
A POMDP is further augmented by an observation model
O, when we no longer have access to the true state st , but
an observation thereof ot =O(st).

Actions in the MDP are taken by a (stationary) policy
π : S → A mapping states to actions. The value of a state
under a policy π , is given by the state-value function V π :

S →R, which represents the expected future discounted sum
of rewards, if policy π is followed from s:

V π(s) := E

[
∞

∑
t=0

γ
tR(st ,at ,st+1)

]
, (1)

s0 = s,at = π(st),st+1 ∼ T (st ,at).

Actions are chosen by the policy π , so as to maximize
the action-value function Qπ : S ×A → R which assigns
values to actions according to the value of the states that
are reached:

Qπ(st ,at) := Est+1 [R(st ,at ,st+1)+ γ ·V π(st+1)] , (2)
st+1 ∼ T (st ,at).

We use the Q-function in order to define the optimal
policy, which we denote π∗, as the policy taking ac-
tions that maximize the action-value function: π∗(s) :=
argmaxa∈A Qπ∗(s,a). Equation (2) highlights that the state-
action value function is a sort of one-step look-ahead of the
value of the next possible state st+1, in order to determine
the value of actions in the current state st . We denote the
history of states visited by a policy π (trajectory through
state-space) as:

Hπ := {st}t∈[0,T ] , (3)

s0 ∈ S,at = π(st),st+1 ∼ T (st ,at).

III. RELATED WORK

The main element susceptible to engineering in MDPs is
the reward function, which indirectly defines the agent’s goal;
learning about multiple goals can be translated into learning
to solve MDPs with multiple reward functions. One of the
most common uses for augmenting the reward function is to
artificially boost the RL agent’s degree of exploration [19],
[20]. These methods dynamically change the value of the
immediate rewards an agent gains, in order to encourage
actions towards areas of state-space which are deemed more
important. Our approach is similar to these in that we base
an extra reward term on an external factor in order to affect
the behaviour of exploring agents.

Although we base our approach on engineering the MDP’s
reward function, the problem we are tackling with our
approach is distinct from the exploration problem in RL, and
our objective is not to find an optimal exploration scheme.
Exploration boosting methods are used within the context
of a single environment, in order to avoid having the agent
fall victim to being trapped within a local optima. Our
goal however is to have the RL algorithm be able to retain
sub-optimal solutions to the environment, once the training
regime is ended. In a similar spirit to how TRPO [21] seeks
to mitigate the concern that small changes in the parameter
space may lead to sharp drops in performance, we seek to
mitigate sharp drops in performance resulting from changes
to stochastic environment parameters.

Moreover, the approach explored in this paper aims to
learn policies with different behaviours, given the same initial
environment conditions. Compared to methods which learn



only the environment’s optimal policy, this allows us to have
sub-optimal policies to use as fallback strategies which we
can switch through using a hierarchical structure. This has
an advantage over attempting to have a single policy learn
to generalize over the space of MDPs, since this task (meta-
learning) requires many more samples in order for an agent
to achieve a good performance [22], our approach is more
attractive for certain safety-critical applications.

Many previous works aim for agents to generalize to dif-
ferent goals within the same MDP [23], or even self-discover
sub-goals that make learning more efficient [24]. In these
cases, a difference in goals is translated through a change
in the reward function for a goal-state g: R(s,a,g) = Rg > 0.
These methods take advantage of the underlying structure in
the goal-space in order to increase sample efficiency [25],
as well as the generalization capabilities of agents to tasks
with goals that were not present during training [26]. They
provide a good way of finding different behaviours within
a same environment, where the modification of the reward
function is intended for a control algorithm to be robust in
terms of changing objectives. Our problem statement focuses
on dealing with scenarios when the objective (i.e. goal) of
an environment remains the same, but the environment is
expected to change in some unknown way.

IV. LEARNING FALLBACK STRATEGIES
In this section, we motivate the use of a new RL paradigm

aimed at learning policies in the model-free setting which are
robust to changes in the environment’s stochastic parameters,
affecting its dynamics locally. Note that because of the lack
of access to environment models, we can only target the
sampled transitions that are stored in the replay buffer used
during training.

A. Agents’ Behaviour

We can think of an agent’s behaviour as the trajectory
through state-action-space that results from following a pol-
icy π . Policies with similar behaviours (condition which
we formally define later on) will have similar trajectories
through state-action-space. During training while an agent’s
policy is improving, the agent’s behaviour will evolve, until
its optimal policy is reached.

When considering learning multiple policies in an environ-
ment, we must determine which ones are useful to us. We
consider that any policy which sufficiently solves an MDP
is of interest. Sufficiently solved is a criterion that may vary
between different MDPs, hence we identify two ways this
can be implemented into RL algorithms:

Definition (Sufficiently Solved). An agent’s policy π suffi-
ciently solves its respective MDP, if either of the following
conditions are met, depending on the nature of the control
task:
• Agent is able to reach a specific goal-state g ∈ S.
• Agent is able to expect accumulated discounted rewards

above a threshold score V π(s0) > Gmin ∈ R, for s0
sampled from initial state distribution (Note that V π is
the true value function as in (1), not an approximation).

Based on this, we define what we mean by a valid strategy:

Definition (Valid Strategy). A valid strategy in an MDP, is
the behaviour of a policy which sufficiently solves that MDP.

The use of either interpretation for sufficiently solved
depends on the environment, and what it heuristically means
to solve it. For example, in the case of an Atari game
(e.g. Breakout), any behaviour from a policy which reaches
above a threshold score, is typically considered to be a
valid strategy. Another example would be an AV passing
through an intersection, where any behaviour passing the
intersection (reaching goal-state g) without collisions is a
valid strategy. We use this definition to determine which
policies are deemed useful during training.

Definition (Sub-optimal policy). A sub-optimal policy, de-
noted πsub, is a policy whose expectation of return is within
a margin ε , to that of the optimal policy π∗, at some given
initial state s0 sampled from the initial state distribution:

V π∗(s0)−V πsub(s0)< ε. (4)

Condition (4) is equivalent to saying that policy πsub is a
sub-optimal policy, whose behaviour is a valid strategy (in
the threshold-score sense, ε =V π∗(s0)−Gmin). For example
in the case of an Atari game, any agent that achieves a score
higher than the threshold, but less than the one obtained by
the optimal policy π∗, verifies condition (4).

In order for the two policies to be considered as having
different behaviours, they must be sufficiently different in
the state-distributions that are encountered during execution.
This implies the need for a metric M measuring the differ-
ence between agents’ trajectories in state-space, which is not
yet a part of standard reinforcement learning applications.

Definition (Sufficiently different behaviours). We can say
that two policies, π1, π2 have Md-different behaviours, iff:

M(E [Hπ1 ] ,E [Hπ2 ])≥ d. (5)

Condition (5) is equivalent to saying that the behaviours of
π1 and π2 can be described as being heuristically different.
In our approach, we base this heuristic on the similarity
in terms of their respective trajectories through the MDP
state-space. Setting a value d ∈R is subjective: for instance,
human experts may have arbitrary boundaries for when
an agent’s path through state-space is sufficiently different
from a reference path, to consider both as having different
behaviours. Condition (5) can be thought of as a non-
parametric clustering with boundary d, whereM(·,E[Hπre f ])
is the feature map in a policy’s state-trajectory space, with
respect to a reference policy πre f . Once more, the correct
segmentation of this space is subjective and may vary be-
tween experts based on experience.

We propose that in order to increase the robustness of
an RL algorithm to changes in environment parameters, it
should be able to learn sub-optimal strategies which have
sufficiently different behaviours from each other policy in
a training environment, satisfying both conditions (4) and



.

.

.
.

.

.

Fig. 1: Each subsequent pseudo-agent will have its relative
pseudo-reward added onto its regular reward function, each
extra term corresponding to another agent already present in
that environment. This way, we verify that new agents have
behaviours that are sufficiently different from those of all
previous agents’ policies.

(5). Changes in T or O may affect local areas of the en-
vironment’s state-space differently, affecting some policies’
expected returns more than others, depending on whether
the introduced uncertainty affects their respective state-space
paths. Condition (4) ensures that we only learn policies
with satisfactory performance in the environment, whereas
(5) aims to maximize the likelihood that at least one of
the learned policies will have an expected return that is
minimally affected by changes to either T or O.

B. Fallback Strategies

Given an MDP, we wish to find the optimal policy along
with a number N of sub-optimal ones. We consider situations
where the agent is already able to find the optimal policy
π∗, and demonstrate a method for finding policies πsub that
satisfy both (4) and (5).

The approach explored in this paper is to add an extra
pseudo-reward term onto the regular reward for that environ-
ment, denoted Rsub

πre f
≤ 0, as a penalty to agents, for having

similar state-trajectories to πre f . We term the agents which
are not seeking to learn the optimal policy, pseudo-agents.
The pseudo-reward is based on the metric M between
agents’ state-space trajectories in order to satisfy (5). We use
the following equation for the pseudo-reward to discourage
pseudo-agents agents from copying other agents’ expected
path through state-space E

[
Hπre f

]
:

Rsub
πre f

(Hπ) =−
α

M
(
Hπ ,E

[
Hπre f

])
+δ

, (6)

where 0 < δ < 1 avoids infinite penalties for exactly follow-
ing E

[
Hπre f

]
, giving the penalty an upper bound of −α

δ
.

πre f is the reference policy, which may or may not be the
optimal, according to the number of pseudo-agents. α is a
scaling factor to adjust the amplitude of the pseudo-reward
term, compared to the regular rewards. Pseudo-agents will be
training concurrently to the optimal one, aiming to converge
to distinct valid strategies within the same environment.

Fig. 1 illustrates the relationship between subsequent
pseudo agents in the same environment. This approach can
be extended to an arbitrary number N of pseudo-agents, by
imposing condition (5) such that each subsequent agent has a
sufficiently different behaviour to previous ones, hence every
additional pseudo-agent will have one more reward term to
compute. Although this adds complexity to the RL problem,
the number N of total agents should remain reasonably
limited: we should increase N according to the anticipated
uncertainty on the environment parameters. πre f ∈ Π repre-
sents all previous agents (shown by the arrows in Fig. 1).
Π is empty in the case of the optimal agent π∗, Π = {π∗}
for the 1st pseudo-agent, Π = {π∗,π1} for the 2nd pseudo-
agent, and so on. For N pseudo-agents, this approach adds a
computational cost of o(N2) in terms of pseudo-reward term
computation. Increasing state-space size and dimensionality
is susceptible to increase the number N of sub-optimal
agents we wish to maintain as there are more opportunities
for alternate valid strategies. However, N is limited by the
number of expected changes in the MDP’s state-space we
wish the RL agent be robust to, hence the computational cost
is expected to remain within the same order of magnitude as
without the pseudo-reward implementation.

Implementing the additional pseudo-rewards will impact
the new value-function estimate of pseudo-agents learning
sub-optimal policies . So (4) should become:

V π∗(s0)−V πsub(s0)< ε + ∑
πre f∈Π

Rsub
πre f

(
Hπsub

)
, (7)

such that πsub would still be considered a valid sub-optimal
policy.

Algorithm 1 gives a pseudo-code description of our im-
plementation. πre f ∈ Π represents the same set of reference
agents as in Fig. 1.

Algorithm 1 Learning Fallback Strategies with N pseudo-
agents

1: Init π∗,π1, ...,πN
2: while True do
3: for π ∈ {π∗,π1, ...,πN} do
4: while episode not terminated do ▷ play episode
5: at = π(st)
6: st+1 ∼ T (st ,at)
7: rt = R(st ,at ,st+1) ▷ regular step-reward
8: end while
9: rpseudo = ∑πre f∈Π Rsub

πre f
(Hπ) ▷ pseudo-reward

10: for t ∈ [0,T −2] do ▷ store in memory
11: Memory(π)← (st ,at ,rt ,st+1)
12: end for
13: Memory(π)←

(
sT−1,aT−1,rT−1 + rpseudo,sT

)
14: end for
15: end while



Intersect ion

Fig. 2: Intersection environment. The ego vehicle (green)
starts on the bottom-right lane, and makes a left turn. The
ego vehicle can either speed up to pass in front of the
oncoming target vehicles, or slow down to pass in-between
them. The aim is to cross the intersection without crashing
(t2). Collision distance is given by the radius of the blue
ellipses.

V. EXPERIMENTS

In this section we present a control task for an autonomous
vehicle, to demonstrate the ability of our proposed method
to discover and maintain valid sub-optimal policies. In this
use-case, we limit ourselves to a single fallback strategy.

The environment consists of a 2-way intersection, where
the agent’s goal is to complete a left-hand turn, without
crashing into any of the oncoming vehicles that cross straight
through the intersection. Fig. 2 shows a frame of the environ-
ment with oncoming vehicles in the intersection. In driving
scenarios, the controllable agent is usually referred to as the
ego vehicle whereas the other uncontrollable vehicles are
referred to as targets. In this scenario there are two main
solutions for the ego to complete the task: the optimal policy
in terms of performance is to speed up and pass before the
first target vehicle, whereas the sub-optimal policy consists
of slowing down and passing in-between the oncoming target
vehicles. A change in scene detection may affect the variance
in detected positions of the target vehicles, and cause the first
strategy to be considered too risky to follow. In this case,
learning a fallback strategy that may be less affected by a
drop in target position confidence, may be considered safer
and more useful.

In our use-case, the speed of target vehicles is constant (20
m/s). The ego’s initial speed is also 20 m/s, and its action
space corresponds to the following longitudinal acceleration
values: a ∈A= {−4,−2,−1,0,1,2} m/s2. Since the path is
already determined (making a left turn), the problem boils

down to planning a speed profile for the ego which will
complete the task in a minimum amount of time while
avoiding catastrophic collisions. A collision is detected when
the distance between the ego and target vehicles drops below
a threshold value.

To penalize collisions and encourage faster episode termi-
nation, the reward is set-up as follows per time step t:

rt =

{
−5 if collision
−0.1 otherwise . (8)

We concurrently train an optimal agent π∗, along with one
pseudo-agent π1. We use deep Q-networks [8], using double
Q-learning as well as non-prioritized experience replay [11].
The input state to the Q-network is the concatenation of the
position xego and speed ẋego of the ego vehicle, along with the
position and computed time-to-collision (ttc) of the 3 nearest
targets:

s = {xego, ẋego,x1, ttc1,x2, ttc2,x3, ttc3}.

Each of the components of s are normalized with respect to
a maximum value.

We use the following path-metricM between the pseudo-
agent, and the optimal agent’s memory buffers (in practice
we replace the expectation operator by the mean value over
the last 100 samples of the agent’s memory):

M(Hπ1 ,E [Hπ∗ ]) =∫ ∣∣∣µ (φ (Hπ1))−µ (φ (E [Hπ∗ ]))
∣∣∣dφ(s), (9)

where φ is a state-feature function, and µ is the density
function over state features. In this example we use the
speed of the ego vehicle as a state feature φ(s) = ẋego. The
pseudo-reward received at the end of each episode by the
corresponding pseudo-agent will be:

Rsub
π∗ (Hπ1) =−

α

M(Hπ1 ,E [Hπ∗ ])+δ
(10)

with scaling factors:

α = 1, δ = 0.1 .

These determine the relative weight of the pseudo-reward,
with respect to the regular reward function R. A lower value
for α will hardly penalize the pseudo-agent for having a
similar state distribution to the reference agent, whereas
higher weighting will make the pseudo-agent seek to have
a highly different state-space trajectory, disregarding the
original objective of the task given by the regular reward
function. They are fixed by a rough initial sweep.

VI. RESULTS

Fig. 3 shows the training scores for both agents. We
clearly see the second agent’s convergence to its optimal
performance ’lags’ behind that of the optimal agent. This is
most likely due to the fact that the pseudo-reward term Rsub

π∗

depends on the states present in the memory buffer for π∗.
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Fig. 3: Training scores for both agents. Each is trained for
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π∗ calculated for both agents. The

values for π∗ are computed only for comparison to the values
used by π1.
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Fig. 5: Average values for M on the final 100 episodes of
each pseudo-agent, for different pseudo-reward scaling α .

Hence Rsub
π∗ cannot be stable until π∗ has converged, and there

is little change in its memory’s state distribution. This pre-
vents the corresponding pseudo-agent, π1, from converging
earlier. Interestingly, π1 reaches its best score before π∗: in
our implementation, the optimal path (accelerating before the
1st target vehicle) is harder to find through exploration than
the sub-optimal one (passing in-between the target vehicles).
Once the pseudo-reward is stable enough to dissuade the
pseudo-agent from copying the optimal agent’s path, it is
faster to converge to its new optimal policy (being the
original sub-optimal policy).

Looking at Fig. 4, we see that both agents’ path metrics
are similar for approximately the first 50k steps, after which
their policies start diverging. This means both had similar
state distributions (mainly due to a high degree of random
exploration) until that point. The value of Rsub

π∗ (Hπ∗) keeps
decreasing while the optimal agent is converging to its best
policy, and levels out once it converges to its peak per-
formance at approximately 200k steps. Rsub

π∗ (Hπ1) however
levels out quite soon, closely corresponding to π1 reaching
its peak performance. Though it is still changing due to the
changing state distribution in π∗’s memory buffer, this is
hardly seen on the plotted values compared to the random
oscillations.

Fig. 5 shows the effect that modifying the parameter α has
on the resulting policy learned by the pseudo-agent π1. As
mentioned in section IV, the pseudo-reward must be scaled
in such a way to fulfill both conditions (5) and (7). Learning
with pseudo-agents can fail if it is not scaled properly. We
see that there is a critical value for α , after which the pseudo-
agent switches to a sufficiently different behaviour, according
to condition (5). In this case, we can deduce that any value
for d in the approximate interval [0.8,1.4] is suitable. Values
< 0.8 will not steer the pseudo-agent towards a trajectory
different to the optimal agent, whereas values > 1.4 would
falsely rule out policies which we can consider as being
heuristically different.

Figs. 6a and 6b show the ground truth for Qπ∗ and Qπ1

respectively, in the ego trajectory feature space, represented
as a 2D-tuple of ego vehicle speed, along with the corre-
sponding time step of the episode (t, ẋego). In our use-case,
this representation is sufficient to see the difference between
varying ego behaviours. We can see in Fig. 6a that with the
unmodified reward, the optimal agent π∗ prefers trajectories
having higher speeds, as they correspond to a shorter episode
duration which is optimal in the sense of the original reward
structure. In Fig. 6b, adding an extra pseudo-reward changes
the optimization landscape, and tends to steer the pseudo-
agent towards areas of lower ego speeds. In all figures, we
sampled 10 trajectories from different instances of both π∗

and π1, and plotted the mean Q-value for each (t, ẋego) pair.
Fig. 6c shows the change in the expected returns in the

case where there is an increase in uncertainty around the first
target vehicle’s position. In our experiments, we modelled
a local increase in sensor uncertainty by increasing the
effective collision radius of the first target vehicle by 50%.
This modification leads to a sharp drop in the performance of
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Fig. 6: Q-functions evaluated at different areas of feature space: (a) Qπ∗ unaffected by the pseudo-reward, favors higher-speed
trajectories. (b) Qπ1 using pseudo-rewards (α = 1) favors lower-speed trajectories. (c) Qπ∗ with increased uncertainty on
target position, higher-speed trajectories result in a collision with first target vehicle.

π∗, whereas the state-subspace exploited by π1 remains safe
and unaffected. We can see that the new optimal policy in the
case of Fig. 6c, is also reflected in Fig. 6b after adding the
pseudo-reward term. This will allow us to use π1 as a valid
fallback strategy during execution, if ever there is a change
in the environment that would not have been accounted for
during the initial training phase.

VII. CONCLUSION

In this paper, we have introduced a new objective in an
RL learning pipeline: keeping track of, and learning, sub-
optimal policies encountered during the initial training phase.
We have shown that through an intuitive modification of the
reward model, that we are able to consistently learn these
sub-optimal policies in the case of a driving scenario.

The context of this work is intended for methods to be
applied to model-free problem statements. In the case where
the model, even a partial model, or estimation thereof is
available to the agent, we gain access to more powerful and
data-efficient methods for dealing with introduction of local
uncertainties to the MDP.

It is our goal to later combine this work with a hierarchical
controller, to be able to quickly switch from optimal to
fallback policies in the case of unexpected environment
change during the execution phase. This will allow an au-
tonomous vehicle agent to make use of its fallback strategies
learned during training, according to its perception of the
environment, much like a human would.
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