
Memory Forensics

Andrea Oliveri
andrea.oliveri@eurecom.fr

speaker@localhost:~$ whoami

Andrea Oliveri (a.k.a. Iridium)

###

-> PhD student at Eurecom in S3 research group, under the
supervision of Prof. Davide Balzarotti.

Research interests:

-> Zero-knowledge memory forensics

-> Reversing engineering

-> CPUs/machines architectures

-> Network security

###

● International University
(Grande École) and research
center in digital sciences in
Sophia-Antipolis (France)

● 9 universities and 7 industry
partners

● 3 principal research themes:
○ Telecommunication
○ Data science
○ Cybersecurity

● 4 ERC grants

Software and system security group (S3)
● 3 faculty members:

○ Prof. Davide Balzarotti
○ Prof. Aurelien Francillon
○ Prof. Daniele Antonioli

● 1 Post-Doc
● 13 PhD students

● Research areas:
○ Android Security
○ Malware Collection, Detection and Analysis
○ Memory Forensics
○ Security in Embedded Systems
○ System Security
○ Web Security

What is digital forensics?

Digital forensics is the application of investigation and
analysis techniques to gather and preserve evidence
from a particular computing device

Why digital forensics?

● Police investigation

● Incident response

● Malware analysis

Where are the evidence?

• Packets and connections
• Services
• Transferred data
• Firewall logs

• Volumes and partitions
• File systems
• Data in empty regions
• OS & apps artifacts

Where are the evidence?

• Packets and connections
• Services
• Transferred data
• Firewall logs

• Volumes and partitions
• File systems
• Data in empty regions
• OS & apps artifacts

•Volatile memory
(RAM)

Memory Forensics

The process of capturing a copy of the system memory
(RAM) and extracting a number of artifacts that are useful

for an investigation

● Essentially, it consists in:

○ Acquiring a snapshot of the system memory

○ Locating known data structures in the raw image to extract OS and
process information

○ Carving de-allocated data structures, strings, encryption keys, credit
card numbers…

● Relatively new field (~2005), and still a very active research area

Available Information
● Running, terminated, and hidden processes

○ Code, data, open files, buffers, …

● Kernel modules, drivers and privileged services

● Hardware devices connected at dump time

● Open sockets and active connections

● Memory-mapped files

○ Executables, shared libraries, …

● Clipboard's content

● Browsers data

○ History, cached pages, passwords, …

● Cached data

○ Open documents, emails and IM messages, …

Memory Forensics - Pro

● Memory is relatively small compared to hard disks

● Attackers often overlook their memory footprint

● Many of the kernel artifacts can be used for forensics

● Even rootkits designed to hide data in a running system need to be
located somewhere in memory

● Certain information (loaded kernel modules, open sockets, …) may be
difficult to extract otherwise

● Some malware samples only reside in memory

Memory Forensics - Cons

● On physical machines the content of the memory keeps changing
○ Data collection requires an efficient approach with a small footprint
○ Consecutive imaging acquisitions give different results
○ Forget about comparing hashes

⇒ It is impossible to verify the authenticity of the acquired data

● Data structures change among different OSs and OS versions

● Semantic Gap: going from a raw sequence of bytes to high-level artifacts

Memory Acquisition

Memory Acquisition Internals

● Physical address space is not continuous!

○ It contains physical RAM regions and other stuff…

○ # cat /proc/iomem <- show the physical memory
layout of the system

○ Hardware peripherals map registers or parts of
their integrated memory into the physical address
space via Memory Mapped I/O

○ Any attempt to read the memory mapped to a
device would probably crash the system

● Some parts of the RAM contain encrypted
data or fundamental code needed for the
system (e.g, Intel SGX, UEFI code, SMRAM...)

Memory Acquisition

● Software Acquisition
○ Relies on a program running inside the system to read and store a copy of the

memory
○ The software is altering the system, so its footprint is very important

● Hardware Acquisition
○ Relies on hardware devices to read the memory, often bypassing the CPU
○ It does not introduce any new artifact in the system

● Most of the existing approaches don't freeze the system during the
acquisition, potentially (often!) leading to inconsistencies

● Special case: Virtual machines
○ If the analyst has access to the hypervisor it is possible to perform an atomic dump
○ New technologies like AMD Secure Encrypted Virtualization can block any type of

memory dump from the hypervisor

Software Acquisition

● Pseudo-device files
○ A file-like device that can be copied using dd
○ /dev/mem and /dev/kmem in Linux

■ Access to user- and kernel-memory
■ Not available on recent systems

○ \\.\PhysicalMemory in Windows
■ Not accessible from user space since Windows 2003 SP1

● Kernel-mode drivers
○ exist to overcome the previous limitations
○ on modern systems with Secure Boot enabled a signed driver is required

● Special tools
○ acquire memory from special CPU modes/special code regions (e.g., SMM mode,

IPMI controllers, Intel ME, UEFI code,...)

Crash Dumps
● Windows can be configured to

create a full memory dump in
response to a Blue Screen of
Death (BSoD)
○ Dumps are created in the swap

area and then copied to regular
files at the next boot

○ Memory dumps can be forced by
pressing CTRL + Scroll Lock (x2)

● Very accurate
○ the system is frozen while the

dump is taken, allowing to take an
atomic snapshot

● Impact on disk analysis
○ several GB are written to the disk,

possibly overwriting other evidence

● Hard to deploy:
○ several configuration options that

need to be set in advance in the
registry or a system reboot

Hibernation Files

● When the OS is hibernated (suspended to disk) a copy of the RAM is
stored in a file (hiberfil.sys in Windows, swap partition in Linux)

● If hibernation is supported, this is a good method to obtain a memory
dump, with few limitations (e.g., it works in 64-bit architecture with
more than 4GB or RAM)

Tools

● winpmem

○ Supports Windows XP SP2 to Windows 10
○ Outputs raw dumps or AFF4 dumps

 (an archive that can contain multiple streams and additional information)

○ A version for Mac OS is also available (OSXPmem) and for Linux (linpmem)

● LiME
○ Linux kernel module
○ Outputs raw dumps or LiME dumps
○ Permits to save dumps on external disk or send it through the network

Hardware Acquisition

● Based on DMA transfer on an external
bus
○ requires to have that bus on the motherboard,

have access to it, and some security features not
enabled (e.g, IOMMU)

○ Not forensically sound

● Firewire
○ Directly access the main memory from a

FireWire device
○ Not common, no more used

● PCI-Express
○ PCILeech, FPGA
○ Internal acquisition cards which need to be

connected to the bus before the incident

● Thunderbolt / USB 4

● Intel DCI (on Intel CPUs only) / JTAG

Cold Boot Attack
● Main memory is normally stored in DRAM chips

○ Information is stored in a capacitor, whose charge needs to be refreshed every
few milliseconds (or the charge would decay to the ground state)

○ If not refreshed, the content of DRAM is completely lost after several seconds
 (the actual time depends on the machine)

○ RAM is not zeroed at reboot!

● Acquisition:

○ Cut the power of the target machine

○ Boot from network or from a USB drive

○ Copy the RAM – the process is relatively fast
 (~30 sec per GB over the network to 4 min over USB)

○ On modern systems with UEFI this technique is no more a viable option (due to
MOR bit protection)

○ But what if the computer is not configured to boot from network or USB?

Memory Degradation at Room Temperature

After: 5 seconds 30 seconds 60 seconds 5 minutes

Mona Lisa on the Rocks

● A multi-purpose “canned air” duster spray
canister, held upside-down, discharges
very cold liquid refrigerant instead of gas

● It can be used as a fast and cheap
refrigerant for memory chips :)

● 1% of bits decayed after 10 minutes

● Drop it in a liquid nitrogen can,
and information is preserved
unchanged for hours

0.17% bits decayed in 60 min

On the Practicability of Cold Boot
Attacks

● The attack was originally designed for DDR1 and DDR2

● On DDR3, the memory controller scrambles the data before writing
it to memory to reduce electromagnetic interference

○ Intel uses a Linear-feedback shift registers that can be reverted if a
small plaintext is known

○ See “Lest we forget: Cold-boot attacks on scrambled DDR3
memory” (DFRWS EU 2016) for more information

Memory Acquisition: RESUME

● Software Acquisition
○ Easy method but… software alters the system

● Hardware Acquisition
○ Does not introduce new artifacts but.. relies on hardware devices

● Best case: Virtual machines (without AMD SEV!)
○ Fast, easy atomic dump

Memory Analysis

Address Translation
● Each process lives in a (quasi) separated Virtual Address Space

● The virtual memory system stores the mapping between virtual and
physical addresses inside Page Tables

● The actual address translation depends on the CPU architecture and
on certain CPU registers

Memory Dump

Strings

● A freshly booted machine roughly generates ~100MB of strings per GB
of RAM*

○ ~580.000 strings of length 5

○ ~66.000 Unicode strings of length 5

● Starting notepad and IDA adds another ~7.000 new Unicode strings !!

⇒Much better to focus on something in particular
(IP addresses, email headers, …)

*Post-Mortem RAM Forensics – Tim Vidas 2007

Locating Structures
● Fixed offsets

○ Useful to find the kernel base image

● Data structure traversal (list walking,
tree climbing, …)

○ Extract allocated data structures

○ Requires knowledge of the kernel internals

● Linear scanning

○ Search the memory for known patterns

○ It can detects de-allocated structures

○ Requires knowledge of the kernel internals

○ Fields validation to reduce false positives

■ Permitted values

■ Pointers target

Problems

● The modeling and extraction tools need a very precise definition of
the kernel structures

● But kernel structures change quite rapidly and they are often
unknown

○ In Windows, source code are not always available for documentation

○ In Linux, users can install different kernel, apply patches, or recompile the kernel
from scratch

○ In general a deep knowledge of the kernel internals is required

● ⇒ We need a profile: for each operating system, and each version
of it we need a description and location of all the kernel data
structures necessary to perform the analysis!

Interesting Structures
(from now on, we are talking about Windows)

● Each process is identified by an
Executive Process Block (EPROCESS)

● All the EPROCESS are connected in a
double linked list
(EPROCESS→ActiveProcessLinks→flink/blink)

○ Processes are removed from the list when
they exit

○ Rootkits often hide processes by taking
them out of the linked list

● The EPROCESS structure contains a
link to the Process Environment Block
(PEB) located in the process address
space

Interesting Info
● Eprocess

○ Creation and Exit time

○ Process ID and parent Process ID (who started the process)

○ Pointer to the handle table

○ Virtual Address Space descriptors (VAD)

● PEB

○ Pointer to the image base address
 (where you can find the executable image)

○ Pointer to the process parameters structure
 (full path of binary, DLLs, and command line used to start the executable)

○ Pointer to the DLLs loaded by the process
 (three lists, ordered by loading time, initialization time, and memory address)

○ Heap size information
 (the pointer to the heap is located just after the PEB structure)

Kernel Global Variables

● A number of hidden kernel variables are extremely helpful
to examine the state of the running system

○ PsActiveProcessHead points to the start of the kernel's list of
EPROCESS structures

○ PsLoadedModuleList points to the list of currently loaded kernel
modules

○ HandleTableListHead points to the head of list of handle tables
(resources used by each process)

○ MmPfnDatabase is an array of structures describing each physical
page in the system

Locating Kernel Variables
● The variables are always at a fixed location in memory

○ But unfortunately the location changes between Windows versions, patch
levels, and even single hotfixes

● Windows keep a structure (_KDDEBUGGER_DATA64) for debugging
purposes, that contains the memory address of dozens of global kernel
variables

○ In Windows {XP, 2003, Vista} this structure can be found through
a KPCR structure that is located at a fixed address in memory

○ In Windows 2000, the structure has to be located by scanning the memory

○ Windows 8 encodes the KDBG block making memory analysis more
difficult

Volatility

● Open source memory analysis
 framework written in Python

● Supports:

○ 32-bit and 64-bit Windows OSs

○ Linux 32 and 64-bit

○ macOS

○ FreeBSD

○ Android

● Volatility supports raw dumps, crash dump, virtual machine
snapshots, and hibernation files

Volatility Plugins
● Collection of tools implemented as plugins

● Plugins are just Python scripts and can be easily installed by copying
them into the plugin directory

○ The current version contains ~50 profiles and ~265 plugins

○ A few plugins have been developed specifically to find signs of malware
infections

○ Additional (more research-oriented) plugins implemented by Brendan
Dolan-Gavitt

■ http://www.cc.gatech.edu/~brendan/volatility/

○ Volatility plugins developed and maintained by the community:

■ https://github.com/volatilityfoundation/community

● $ vol.py --info → list the available plugins

http://www.cc.gatech.edu/~brendan/volatility/

Catching the bad Guys

Starting the memory analysis
● Suppose you have received a memory dump of a machine which

performs suspected activity… How to perform a memory analysis?

○ The analysis often starts by listing and investigating the

processes that were running in the system

■ Open files, loaded DLLs, or network sockets can help identifying
suspicious cases

■ The starting point for the analysis may come from another source
 (e.g., a network sensor detected a suspicious connection)

○ The analysis also includes the inspection of the kernel, to locate
malicious kernel modules

○ The analysis may end when you locate a known malicious file, or
dump an unknown suspicious file that require some further
binary analysis

Image Identification

Detecting Malicious Processes

Hidden through DKOM (Direct Kernel Object Manipulation),
by removing the process from the EProcess linked list or
disguised by renaming the process to match a system
or innocuous one

● Compare the output of the plist and pscan plugins

● Psxview outputs the list of process extracted in six different
ways

○

List of Processes

List of Processes

LSASS a.k.a. Local Security Authentication
Subsystem Service

● Responsible for authenticating users

● Only one per system 🔥
● Associated with Local System Account

● Parent process: winlogon.exe

● Executable in %SystemRoot%\System32\lsass.exe

● Starts within seconds of boot times

Process SIDs

LSASS a.k.a. Local Security Authentication
Subsystem Service

● Responsible for authenticating users

● Only one per system 🔥
● Associated with Local System Account ✅
● Parent process: winlogon.exe

● Executable in %SystemRoot%\System32\lsass.exe

● Starts within seconds of boot times

Process parents

LSASS a.k.a. Local Security Authentication
Subsystem Service

● Responsible for authenticating users

● Only one per system 🔥
● Associated with Local System Account ✅
● Parent process: winlogon.exe 🔥
● Executable in %SystemRoot%\System32\lsass.exe

● Starts within seconds of boot times

Start Time

LSASS a.k.a. Local Security Authentication
Subsystem Service

● Responsible for authenticating users

● Only one per system 🔥
● Associated with Local System Account ✅
● Parent process: winlogon.exe 🔥
● Executable in %SystemRoot%\System32\lsass.exe

● Starts within seconds of boot times 🔥

Detecting Injected DLLs

Injecting a DLL inside another process is a very common
way for malware to hide their presence by not showing up
in the process list

● Examine the VAD for areas associated to DLLs

○ Even more suspicious if the page permissions are RWE

○ The malfind plugin is automatically searching for these cases

● Use ldrmodules to detect unlinked DLLs that are not listed

The missing DLL…

Something in the clipboard

Hidden services/kernel drivers…

And it was…

 Full analysis here:
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html

And now…

DEMO!
(on a toy Linux ransomware)

IOMMU

● The Input/output memory management unit (IOMMU) introduces
virtual memory for external devices

● If properly configured, it can be used to prevent certain devices to
access some range of memory

○ This is typically the case when a hypervisor is running

○ In this case, it is very hard to get a
physical image of the entire memory

● Malware can configure IOMMU to crash
the system or returns false data when
read from external devices

○ “Beyond The CPU: Defeating Hardware
Based RAM Acquisition”

(Very) Short Introduction to
Address Translation

● Memory analysis requires the ability to translate Virtual Addresses
used by programs into the true memory locations in the memory
image

● Memory is divided into pages of 4KB each (in Intel architecture)

● The OS presents to each program a large private virtual address
space

● Each time a program references a virtual address, the MMU translates
that virtual address into a physical location and accesses the
requested data

● MMU uses data-structure managed by the kernel (page tables) to
perform automatic address translations

