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Abstract— In this paper, we consider a privacy signaling
game problem for binary alphabets and single-bit transmission
where a transmitter has a pair of messages, one of which is a
casual message that needs to be conveyed, whereas the other
message contains sensitive data and needs to be protected.
The receiver wishes to estimate both messages to acquire as
much information as possible. For this setup, we study the
interactions between the transmitter and the receiver with non-
aligned information-theoretic objectives (modeled by mutual
information and hamming distance) due to the privacy concerns
of the transmitter. We derive conditions under which Nash
and/or Stackelberg equilibria exist and identify the optimal
responses of the encoder and decoders strategies for each type of
game. One particularly surprising result is that when both types
of equilibria exist, they admit the same encoding and decoding
strategies. We corroborate our analysis with simulation studies.

I. INTRODUCTION

Decision-making is pivotal for a wide range of real-
world applications such as social networks, networked con-
trol systems, smart grids, and recommendation systems. In
these applications, usually, several customers (users) in a
network may share extensive amounts of information with
some service provider (i.e., utility company) because the
latter wishes to know as much as possible about the service
offered at the customer to improve the quality of service.
However, this may come with a price as sometimes the
users in the network may be prone to network-based attacks
from malicious elements aiming to steal some sensitive in-
formation. Therefore, the users, in addition to the continuous
improvement of the quality of service offered by a provider,
wish to maintain a certain level of privacy. A type of privacy
objective can be assumed when the information transmitted
by some user to the service provider may be correlated
with certain private information they want to protect. For
example, in smart grids, the smart meter provides real-time
information on energy supplies from the energy provider on
the demands of the consumer (user), which can be utilized for
unauthorized purposes, e.g., to infer the private information
of the consumer, such as their habits and behaviors, see,
e.g., [1], [2]. Identifying privacy-preserving mechanisms or
approaches under various contexts related to information
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theory and control applications can be found in an anthology
of papers, for instance, in [3]–[8].

A. Motivational Example

Consider the scenario illustrated in Fig.1. In that scenario,
a smart house is illustrated in which a smart meter records
the energy consumption and exchanges consumption data
with energy suppliers, which can be used for monitoring
and billing. Evidently, the existence of home residents and
the electricity usage recorded by the smart meter at home
are, in practice, correlated. Nevertheless, the presence of the
house residents at home should be kept secret to possible
outsiders (burglars, adversaries, etc.) whereas, at the same
time, the energy consumption should be available to the
electricity service providers. Therefore, the smart meter
should be designed so that the service providers can access
the electricity usage data, whereas the outsiders should not be
able to deduce if the residents are home or not by checking
the information from the smart meter.

Fig. 1: Motivational example.

B. Literature review

The studies on cheap talk and signaling games were
initiated by Crawford and Sobel in their seminal work [9],
and found applications in various topics, e.g., in networked
systems [10], [11], recommendation systems [12], [13], and
economics [14], [15]. Starting with [16], there are many
studies that consider the Stackelberg equilibrium of signaling
games; an incomplete list includes [17]–[26] (see also the
references therein). Many of these works assume that the
non-alignment between the objective functions of the encoder
and the decoder is a function of a Gaussian random variable
(RV) correlated with the Gaussian source and hidden from
the decoder (unlike the original case where it is fixed and
commonly known by the encoder and the decoder [9], which
is also studied in [17], [21], [24]). Nash and Stackelberg
equilibria of signaling games are investigated in [25] when
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there is a mismatch in priors of players. We refer to [15],
[17], [21] for more discussion on the literature and some
extensions (including Nash equilibrium analyses and multi-
stage extensions) on cheap talk and signaling games.

In the context of strategic information transmission, sev-
eral works consider the scenario where the sender takes the
privacy of certain information into account by deploying a
suitable privacy measure under either the Nash or Stackel-
berg criteria. For instance, in [27], a communication scenario
between a sender and a receiver is investigated using the
Stackelberg equilibrium. A family of nontrivial equilibria,
in which the communicated messages carry information,
is constructed, and its properties are studied. In [28], the
authors study a Stackelberg game where the utility measure
for the public parameter is quadratic and the privacy measure
is entropy-based. Additional results therein include char-
acterizations of the equilibrium under noisy and noiseless
communication scenarios and analysis of the corresponding
coding policies. In [29], the effect of privacy via a Nash game
is studied between a sender and a receiver. As a measure of
merit, the authors use mutual information between the private
information and the communicated message to quantify
the amount of the leaked information. For discrete RVs,
they provide a numerical algorithm to find an equilibrium,
whereas for Gaussian RVs, a bound on the estimation error
is provided, and affine policies are shown to achieve this
bound. In [30], a privacy-signaling game problem for the
setup in Fig. 2 is considered in which a transmitter with
privacy concerns observes a pair of correlated random vectors
which are modeled as jointly Gaussian. Among other results,
it is shown that a payoff dominant Nash equilibrium among
all admissible policies is attained by a set of explicitly
characterized linear policies and coincides with a Stackelberg
equilibrium. Regarding the state of the art privacy metrics,
we refer to [31] for a selection of over eighty privacy metrics
and their categorization. Herein, we consider one of the
discussed metrics therein, namely, Hamming distance.

In this paper, we consider the scenario that was first
introduced in [30]. In this setup, a transmitter has a pair of
messages, one of which is a casual message that needs to be
conveyed, whereas the other message contains sensitive data
and needs to be protected. On the other hand, the receiver
wishes to estimate both messages with the aim of acquiring
as much information as possible. For this setup, we study the
interactions between the transmitter and the receiver whose
objectives are not-aligned due to the privacy concerns of
the transmitter in a game-theoretic framework. However, in
contrast to [30] that deals with jointly Gaussian random
vectors (of possibly different lengths) and linear policies,
here we deal with binary alphabets and consider different
objectives for our single-bit transmitter and receiver.

C. Contributions

The main contributions of this paper can be summarized
as follows:
(i) We model a binary privacy signaling game, assuming

a single-bit transmission, between an encoder and a

decoder in which the encoder aims to hide one of
two correlated binary RVs (i.e., private message) and
to transmit the other (i.e., public message) while the
decoder’s goal is to learn about both of the RVs as much
as possible. We use mutual information as a metric to
measure the information exchange, a Hamming distor-
tion to measure the level of privacy, and a weighting
coefficient that determines the importance of privacy
from the perspective of the encoder.

(ii) We characterize the objective functions of the encoder
and the decoder in terms of priors and strategies (see
Lemma 1), derive the best response of the encoder
(resp. decoder) for a given decoder (resp. encoder) (see
Lemmas 2 and 3). Then, using these best response maps,
we characterize the Stackelberg and Nash equilibria (see
Theorems 1 and 2, respectively).

(iii) We show that under certain conditions on the source
prior probabilities, Nash and Stackelberg equilibria exist
and coincide. Otherwise, there does not exist a Nash
equilibrium, and the privacy coefficient only affects
the Stackelberg equilibrium. In particular, for large
privacy coefficients, the encoder may even prefer to hide
information about the public message.

Due to space constraints, here we provide only the state-
ments for lemmas and theorems; the proofs are available in
[32].

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider the scenario illustrated in
Fig. 2 that was first introduced in [30]. We assume that the

e ( , )g x y( , )x y z

( )dg y z

( )dg x z x̂

ŷ

Fig. 2: Our setup.

transmitter encodes a pair of correlated random variables
(x,y) ∈ X × Y, X = Y = {0, 1} into z ∈ Z =
{0, 1} using an encoding function denoted by z = γe(x, y)
and the receiver wants to decode both messages based on
the observation z = z. Note that the transmitter desires
to transmit information about y and sees x as a private
parameter that needs to be hidden from the receiver. In
contrast, the receiver wants to accurately estimate both public
and private messages given the observation z = z. We denote
the decoding functions for estimating x and y by x̂ = γdx(z)
and ŷ = γdy(z), respectively.

Since the transmitter needs to encode two messages gener-
ated by the joint distribution of (x, y), i.e., P(x, y), it means
that hiding x or transmitting y are somehow inter-dependent
actions. Since our scenario is for binary alphabets, in the
sequel, we will denote the joint distribution or probability
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mass function of (x,y) to be given by the following column
stochastic matrix:

P(x, y) =


P(x = 0, y = 0)
P(x = 0, y = 1)
P(x = 1, y = 0)
P(x = 1, y = 1)

 =


a
b
c
d

 , (1)

where d , 1− (a+ b+ c) with (a, b, c, d) ∈ [0, 1] ×
[0, 1] × [0, 1] × [0, 1] (also denoted for simplicity [0, 1]4).
The objective of the transmitter is to maximize the public
information y for the receiver and at the same time to hide
as much as possible the sensitive information x. These can
be cast by the following objective function

Je(γe, γdx , γdy) = I(y; ŷ) + ρE{dH(x, x̂)}, (2)

which is to be maximized by the encoder, where I(y; ŷ)
is the mutual information between y and ŷ [33], ρ > 0 is
a weighting coefficient that determines the level of desired
privacy of x, E{dH(x, x̂)} is some loss function which for
this paper is assumed to be modeled by Hamming distortion,
i.e.,

dH(x, x̂) =

{
1 x 6= x̂

0 x = x̂
, (3)

responsible to capture the privacy term x. The objective of
the receiver is to maximize the information of both public
information y and sensitive information x. This can be cast
by the following objective function

Jd(γe, γdx , γdy) = I(y; ŷ)−E{dH(x, x̂)} , (4)

which is to be maximized by the decoder. Since the costs of
the encoder and the decoder are not aligned, the problem
is studied under a game theoretic framework, and Stack-
elberg and Nash equilibria are investigated. In the Nash
(simultaneous-move) game, the encoder and the decoder
announce their strategies at the same time. More precisely,
suppose that the set of possible strategies at the encoder is
denoted by Γe and those at the decoders by Γdy and Γdx ,
respectively, such that γe ∈ Γe, γdy ∈ Γdy , γdx ∈ Γdx .
Then, a triplet of policies (γe,∗, γdy,∗, γdx,∗) is said to be a
Nash equilibrium [34] if

Je(γe,∗, γdy,∗, γdx,∗) ≥ Je(γe, γdy,∗, γdx,∗), ∀γe ∈ Γe ,

Jd(γe,∗, γdy,∗, γdx,∗)

≥ Jd(γe,∗, γdy , γdx) ∀γdy ∈ Γdy , γdx ∈ Γdx .
(5)

As observed in (5), none of the players prefer to change
their optimal strategies at the equilibrium, i.e., there is no
profitable unilateral deviation from any of the players. In
the Stackelberg game, the leader (encoder) commits to a
particular policy and announces it to the follower (decoder).
The decoder takes its optimal action upon observing the
encoder’s committed strategy. More precisely, a triplet of

strategies (γe,∗, γdy,∗, γdx,∗) is said to be a Stackelberg
equilibrium [34] if

Je(γe,∗, γdy,∗(γe,∗), γdx,∗(γe,∗))

≥ Je(γe, γdy,∗(γe), γdx,∗(γe)), ∀γe ∈ Γe ,

where(γdy,∗(γe), γdx,∗(γe)) satisfy

Jd(γe, γdy,∗(γe), γdx,∗(γe))

≥ Jd(γe, γdy(γe), γdx(γe)) ∀γdy ∈ Γdy , γdx ∈ Γdx .

Note that the follower (decoder) takes its action after observ-
ing the strategy γe of the leader (encoder), thus the strategies
(γdy(γe), γdx(γe)) of the decoder are a function of γe.

III. MAIN RESULTS

Before we start with our main results, we first introduce
the general structure of the “stochastic” encoder and decoder
policies for our setup. In particular, the encoder is given by
the transition matrix

Pe(z|x, y) =

[
κ1 κ2 κ3 κ4

1− κ1 1− κ2 1− κ3 1− κ4

]
, (6)

where (κ1, κ2, κ3, κ4) ∈ [0, 1]4, whereas the transition ma-
trices at the decoder are given by the column stochastic
matrices

Pdy(ŷ|z) =

[
δ1 δ2

1− δ1 1− δ2

]
, (7)

Pdx(x̂|z) =

[
ε1 ε2

1− ε1 1− ε2

]
, (8)

where (δ1, δ2, ε1, ε2) ∈ [0, 1]4. To derive our main results,
we make use of the following assumption.

Assumption 1. (Structural assumption on (6)) Restrict the
information structure in (6) to one that κ3 = 1 − κ2 and
κ4 = 1− κ1.

Remark 1. (Comments on Assumption 1) By putting such
a restriction on κ3 and κ4 (i.e., a “symmetric” en-
coder assumption), we prevent infinitely many quadruples
(κ1, κ2, κ3, κ4) resulting in essentially equivalent encoders
with respect to performance. Furthermore, after eliminating
redundant quadruples by Assumption 1, it is possible to
obtain the (joint) convexity of I(y; ŷ) with respect to κ1
and κ2. Otherwise, i.e., without Assumption 1, there is no
conclusion on the (joint) convexity/concavity of I(y; ŷ) with
respect to the quadruple (κ1, κ2, κ3, κ4).

Next, we prove a lemma that reformulates the objective
functions of (2), (4). We note that this lemma holds even if
Assumption 1 does not hold.

Lemma 1. (Characterization) For the information structure
of the stochastic encoder and decoder in (6)-(8), the objective
functions in (2), (4) can be characterized as follows

Je(γe, γdx , γdy) = I(y; ŷ) + ρE{dH(x, x̂)}, (9)

Jd(γe, γdx , γdy) = I(y; ŷ)−E{dH(x, x̂)}, (10)
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where1

I(y; ŷ) =

Hb(q1) +Hb(P1 + P2) + P1 log(P1) + P2 log(P2)+

(q1 − P1) log(q1 − P1) + (1− q1 − P2) log(1− q1 − P2) ,
(11)

E{dH(x, x̂)} = a(1− n1) + b(1− n2) + cn3 + dn4, (12)

with Hb(p) denoting the binary entropy function, i.e.,
Hb(p) , −p log p − (1 − p) log(1 − p), q1 , a + c,
P1 , at1 + ct3, P2 , bt2 + dt4, ti , δ1κi + δ2(1 − κi)
and ni , ε1κi + ε2(1− κi) for i = 1, 2, 3, 4.

After formulating the objectives of the encoder and the
decoder, next, we characterize their optimal strategies, in
particular, their best responses for any other given strategy.

Lemma 2. (Best Response: Encoder) Suppose that Assump-
tion 1 holds. Then, for given decoder strategies γdx and γdy ,
the objective function of the encoder in (9) is a jointly convex
function of the pair (κ1, κ2), and the maximum is achieved
at one of the extreme points, i.e., κ1κ2 = {00, 01, 10, 11}.

Lemma 3. (Best Response: Decoder) Suppose that Assump-
tion 1 holds. Then the following hold.
(i) For a given encoder strategy γe, I(y; ŷ) in (11) is

a jointly convex function of the pair (δ1, δ2), and the
maximum is achieved either when δ1δ2 = 01 or δ1δ2 =
10.

(ii) For a given encoder strategy γe, the average distortion
E{dH(x, x̂)} in (12) is minimized using the decoder
strategy characterized in Table I, where θ , κ1(a +
d) + κ2(b+ c).

TABLE I: Optimal decoder strategy to minimize the average
distortion.

Condition ε1 ε2 E{dH(x, x̂)}
a+ b ≤ θ ≤ c+ d 0 0 a+ b
θ ≤ a+ b , θ ≤ c+ d 0 1 θ
θ ≥ a+ b , θ ≥ c+ d 1 0 1− θ
a+ b ≥ θ ≥ c+ d 1 1 c+ d

Next, we proceed to derive conditions for which Nash
and/or Stackelberg equilibria exist together with their corre-
sponding optimal strategies.

Theorem 1. (Stackelberg) Suppose that Assumption 1 holds
and min{a+ b, c+ d, a+ d, b+ c} is a+ b or c+ d. Then,
the following strategies form a Stackelberg equilibrium:

κ1κ2 = 01 or κ1κ2 = 10 (Encoder)

δ1δ2 = 01 or δ1δ2 = 10 (Decoder-ŷ)

ε1ε2 =

{
00 if a+ b ≤ c+ d

11 if a+ b ≥ c+ d
. (Decoder-x̂)

(13)

Otherwise, if min{a + b, c + d, a + d, b + c} is a + d or
b+c, then, for sufficiently small ρ, the equilibrium strategies

1The logarithms are taken with base two throughout the paper.

of (13) are still valid. In contrast, for sufficiently large ρ, the
decoder strategies in (13) are still the same and the optimum
encoder strategy lies at the boundary of the κ1κ2 region
which satisfy either a+ b ≤ θ ≤ c+ d or a+ b ≥ θ ≥ c+ d,
where θ , κ1(a+ d) + κ2(b+ c) (defined as before).

Theorem 2. (Nash) Suppose that Assumption 1 holds and
min{a+b, c+d, a+d, b+c} is a+b or c+d. Then, the same
strategies as in (13) form a Nash equilibrium. Otherwise,
there does not exist a Nash equilibrium.2

Next we give some technical comments related to our
results in Theorems 1, 2.

Remark 2. (Technical comments) (TC1) When in Theorems
1, 2, min{a + b, c + d, a + d, b + c} is a + b or c + d, the
optimal encoder selects either κ1κ2 = 01 or κ1κ2 = 10,
which correspond to sending information only about y (e.g.,
κ1κ2 = 01 implies Pe(z|x, y) = Pe(z|y)). In this case,
since the received message z does not contain any direct
information about x, the decoder-x̂ uses only priors of
P(x) and achieves the average distortion E{dH(x, x̂)} =
min{a+b, c+d}. (TC2) If min{a+b, c+d, a+d, b+c} is a+d
or b+ c and the encoder still uses κ1κ2 = 01 or κ1κ2 = 10,
then, the decoder makes use of the conditional probability
P(x|y) (since z is directly related to y), which further means
that the average distortion E{dH(x, x̂)} = min{a+d, b+c}.
Hence in order to increase the privacy level (i.e., increase
the average distortion to min{a + b, c + d}), the encoder
uses different strategies that result in smaller value of mutual
information (see Fig. 5). To make this point clear, we note
that the strategies in (13) result in I(y; ŷ) = Hb(q1) and
E{dH(x, x̂)} = min{a+b, c+d}. However, for large privacy
weighting coefficient ρ, as shown in Theorem 1, the average
distortion does not change, and the mutual information, as a
function of the pair (κ1, κ2), can be characterized as in (11)
with P1 = aκ1 + c(1 − κ2) and P2 = bκ2 + d(1 − κ1).
The resulting mutual information value will be less than
Hb(q1), which means that the encoder ventures to send less
information about the public message to be able to hide
information about the private message.

Remark 3. (Connection to similar work) In [30], a similar
setup is considered in which the random sources are jointly
Gaussian, and the squared error is utilized as a privacy
and information exchange metric. Similar to our result, it is
shown that Stackelberg and payoff dominant Nash equilibria
coincide. However, due to the difference between our source
assumption (i.e., binary), information exchange metric (i.e.,
mutual information), and privacy metric (i.e., Hamming
distortion), we have some cases under which Stackelberg
equilibria exist, but there is no Nash equilibrium.

IV. NUMERICAL RESULTS

In this section, we validate our theoretical results via
simulations. For all simulations, we let a = 0.3, b = 0.1,

2We exclude the trivial case of equal priors a = b = c = d = 0.25 in
which any strategy pair ends up an equilibrium.
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c = 0.2, and d = 1− a− b− c = 0.4. We start by validating
the best responses of the players as follows:

(i) First we let ρ = 1. Then, for given decoder strategies
(δ1, δ2) ∈ [0, 1]2 and (ε1, ε2) ∈ [0, 1]2, we calculate
corresponding encoder costs by (9) for every possible
symmetric encoder actions γe = (κ1, κ2), to find the
optimal one, i.e., the maximizer. We repeat this process
for every δ1, δ2, ε1, and ε2, which can take one of the
20 evenly spaced values between 0 and 1. As illustrated
in Fig. 3a, for 16 × 104 different combinations, κ1κ2
takes only four different values, which are δ1δ2 = 00,
δ1δ2 = 01, δ1δ2 = 10, or δ1δ2 = 11. Thus, the best
response of the encoder stated in Lemma 2 is proved
numerically, too. Note that, in our simulations, when
there are multiple optima, the encoder selects any of
them randomly.

(ii) For a given encoder strategy (κ1, κ2) ∈ [0, 1]2, we
calculate corresponding decoder costs by (10) (indeed,
only the mutual information I(y; ŷ) part) for every
possible decoder actions γdy = (δ1, δ2), to find the
optimal one, i.e., the maximizer. We repeat this process
for every κ1 and κ2, which can take one of the 100
evenly spaced values between 0 and 1. As illustrated
in Fig. 3b, for 104 different κ1κ2 values, δ1δ2 takes
only two different values, which are δ1δ2 = 01 or
δ1δ2 = 10. Thus, the best response of the decoder stated
in Lemma 3.(i) is proved numerically, too. Note that, in
our simulations, when there are multiple optima, the
decoder selects any of them randomly. Thus, always
optimal actions δ1δ2 = 01 or δ1δ2 = 10 are selected
approximately equal number of times.

(iii) Similar to the previous analysis, for a given encoder
strategy (κ1, κ2) ∈ [0, 1]2, now we calculate cor-
responding decoder costs by (10) (indeed, only the
average distortion E{dH(x, x̂)} part) for every possible
decoder actions γdx = (ε1, ε2), to find the optimal one,
i.e., the minimizer. We repeat this process for every
κ1 and κ2, and obtain Fig. 4. The optimal actions are
ε1ε2 = 00, ε1ε2 = 01 or ε1ε2 = 10. Thus, the best
response of the decoder stated in Lemma 3.(ii) is proved
numerically, too. Note that, by Table I, ε1ε2 cannot be
11 since a+ b ≥ c+ d is not satisfied for our selection.

After getting the best response maps of the players, we can
utilize these results to obtain the Stackelberg equilibrium. In
Fig. 5, we plot I(y; ŷ) and E{dH(x, x̂)} as a function of
the encoder strategy (κ1, κ2) for given decoder strategies.
In particular, Fig. 5a illustrates the best response of the
decoder-ŷ due to a Stackelberg assumption, i.e., δ1δ2 = 01
or δ1δ2 = 10 (via Lemma 3), and the maximum I(y; ŷ) is
achieved when κ1κ2 = 01 or κ1κ2 = 10 (see Theorem 1).
In Fig. 5b, via Lemma 3, the best response of the decoder-
x̂ is considered due to a Stackelberg assumption. Since
min{a + b, c + d, a + d, b + c} = b + c, κ1κ2 = 01
or κ1κ2 = 10 is not in the optimal region to maximize
E{dH(x, x̂)} (see Theorem 1 and Remark 2). The effect on
this confusion can be observed for large value of ρ. Indeed,

(a) The distribution of the best
response of the encoder γe =
(κ1, κ2) for given decoder ac-
tions. As it can be seen, κ1κ2

can only be any of 00, 01, 10,
and 11.

(b) The distribution of the best
response of the decoder γdy =
(δ1, δ2) for given encoder ac-
tions. As it can be seen, δ1δ2
is either 01 or 10.

Fig. 3: Simulation results on the best responses of the
players.

(a) (b)

Fig. 4: The best response of the decoder γdx = (ε1, ε2) for
given encoder actions. As it can be seen, ε1ε2 can only be
any of 00, 01, and 10.

for small enough privacy weighting coefficient ρ, as it can
be seen in Fig. 6a, the maximizers of I(y; ŷ) are still the
maximizers of Je(γe, γdx , γdy) in (9). On the other hand, for
large enough privacy weighting coefficient ρ, E{dH(x, x̂)}
gets more dominant in Je(γe, γdx , γdy) in (9). This case is
illustrated in Fig. 6b.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we studied Nash and Stackelberg equilib-
ria of privacy signaling games with binary alphabets with
single-bit transmission between an encoder and a decoder
with misaligned objectives. We derived the conditions under

(a) (b)

Fig. 5: I(y; ŷ) and E{dH(x, x̂)} as a function of the encoder
strategy (κ1, κ2) to analyze the Stackelberg equilibrium.
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(a) ρ = 2. (b) ρ = 20.

Fig. 6: Je(γe, γdx , γdy) as a function of the encoder strategy
(κ1, κ2) to analyze the Stackelberg equilibrium. As it can be
seen, for small ρ, κ1κ2 = 01 and κ1κ2 = 10 are still optimal,
whereas, the encoder selects intermediate κ1 and κ2 values
as ρ gets larger.

which Nash and/or Stackelberg equilibria exist.
Our model has several possible interesting extensions.

The most important question that needs to be answered
is the extension of the framework beyond the single-bit
transmission, that is to say, the transmitted messages are
random vectors. Another interesting extension would be to
consider scenarios with alternative objective functions and
privacy criteria (e.g., log-loss function).
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