
Automatic speaker verification spoofing and deepfake detection
using wav2vec 2.0 and data augmentation

Hemlata Tak1, Massimiliano Todisco1, Xin Wang2, Jee-weon Jung3

Junichi Yamagishi2 and Nicholas Evans1

1EURECOM, France, 2 National Institute of Informatics, Japan
3Naver Corporation, South Korea

{tak,todisco,evans}@eurecom.fr, {wangxin,jyamagis}@nii.ac.jp, jeeweon.jung@navercorp.com

Abstract
The performance of spoofing countermeasure systems de-

pends fundamentally upon the use of sufficiently representa-
tive training data. With this usually being limited, current so-
lutions typically lack generalisation to attacks encountered in
the wild. Strategies to improve reliability in the face of uncon-
trolled, unpredictable attacks are hence needed. We report in
this paper our efforts to use self-supervised learning in the form
of a wav2vec 2.0 front-end with fine tuning. Despite initial base
representations being learned using only bona fide data and no
spoofed data, we obtain the lowest equal error rates reported in
the literature for both the ASVspoof 2021 Logical Access and
Deepfake databases. When combined with data augmentation,
these results correspond to an improvement of almost 90% rel-
ative to our baseline system.

1. Introduction
A persisting challenge in the design of spoofing countermea-
sures (CMs) for automatic speaker verification (ASV) is relia-
bility in the face of diverse, unpredictable attacks [1]. ASV sys-
tems can be compromised by attacks belonging to a broad vari-
ety of different classes, e.g., converted voice, synthetic speech
and replayed recordings. Even within each attack class, there
is considerable potential variation, e.g., different algorithms or
recording and replay device characteristics. An ideal spoofing
detection solution should be robust to all such variation even if,
in the wild, it is unpredictable. The acquisition of training data
that is representative of spoofing attacks with near-boundless
variability is obviously impracticable.

The ASVspoof initiative and challenge series have col-
lected large databases of spoofed and bona fide utterances that
are suitable for the training of spoofing countermeasures. To
promote the development of generalisable countermeasures,
namely detection solutions that cope well in the face of spoof-
ing attacks not previously encountered, assessment is performed
with experimental protocols and evaluation data that comprise
spoofed utterances generated with a broad variety of different
algorithms or techniques. The differences between training,
development and evaluation data can lead to substantial differ-
ences in detection performance. For the most recent ASVspoof
2021 Logical Access (LA) evaluation [2], the equal error rate
(EER) of the best performing baseline solution increased from
0.55% for the development set to 9.26% for the evaluation
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set [2]. Submission results show better performance [3–9], but
the fundamental gap between performance for development and
evaluation data remains, indicating a persisting lack of general-
isation.

Given that the training data used for ASVspoof challenges
comprises spoofed utterances generated with a modest number
of different attack algorithms (six in the case of the ASVspoof
2019 LA database), the lack of generalisation may be difficult to
improve upon unless challenge rules are relaxed to allow train-
ing using external data. A relaxed training data policy would
complicate comparisons between different systems and tech-
nology trained using different data – the playing field would
no longer be level – though potential improvements to general-
isation may make it worthwhile.

The question then is what external training data to use and
how to use it? With the drive toward reproducible research,
a number of speech synthesis and voice conversion algorithms
are now openly available as open source. Additional training
data, generated with different attack algorithms, can hence be
produced readily. The number of algorithms remains limited,
however, and can fundamentally never be fully representative
of what can reasonably be expected in the wild. We have hence
explored a different approach.

Motivated by (i) its proven application to the learning of
general neural representations for a range of different tasks [11–
19], (ii) evidence that fine-tuning with modest quantities of la-
belled data leads to state-of-the-art results, (iii) encouraging,
previously reported results for anti-spoofing [20,21] and (iv) the
appeal of one-class classification approaches [22], we have ex-
plored the use of self-supervised learning to improve generali-
sation. Our hypothesis is that better representations trained on
diverse speech data, even those learned for other tasks and ini-
tially using only bona fide data (hence one-class), may help to
reduce over-fitting and hence improve reliability and domain-
robustness, particularly in the face of previously unseen spoof-
ing attacks. Additionally, we hope that better trained repre-
sentations are complementary to data augmentations techniques
which are already known to improve generalisation [7, 23–27].

The principal contributions of this work are: (i) improved
generalisation and domain robustness using a pre-trained, self-
supervised speech model with fine-tuning; (ii) additional im-
provements using data augmentation showing complementary
benefits to self-supervised learning; (iii) a new self-attention
based aggregation layer which brings complementary improve-
ments.
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Figure 1: AASIST baseline framework reproduced from [10].
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Figure 2: Front-end systems: (a) the baseline sinc-layer front-
end; (b) the wav2vec 2.0 front-end.

2. Related work
Self-supervised learning (SSL) has attracted considerable atten-
tion in recent times. Existing works show that pre-trained mod-
els derived using SSL generalise well across a multitude of dif-
ferent tasks when a relatively simple classifier is learned from
the resulting representations using only a modest quantity of la-
belled data [28]. A growing number of self-supervised speech
models have been proposed. Examples include contrastive pre-
dictive coding (CPC) [16, 29], auto-regressive predictive cod-
ing [30], wav2vec [31], HuBERT [32,33], wav2vec 2.0 [12,34]
and Wavlm [35], with all showing promising results for a vari-
ety of different speech processing tasks.

Two particularly popular approaches, HuBERT and
wav2vec 2.0, have been applied to automatic speech recog-
nition [12, 13], mispronunciation detection [36, 37], speaker
recognition [38, 39] and emotion recognition [40]. The same
techniques have been explored in the context of spoofing detec-
tion [20, 21]. Xie et al. [20] showed the benefit of using SSL
with a Siamese network for spoofing detection. With learned
representations coming from their combination, and without
comparative assessments using representations derived via al-
ternative means, the specific benefits of SSL are difficult to
judge.

Wang et al. [21] compared different SSL based front-ends
and back-end architectures and showed the importance of fine-
tuning SSL models for spoofing detection. By replacing a
linear frequency cepstral coefficient front-end with a wav2vec
2.0 front-end and by fine-tuning, they achieved relative reduc-
tions in the equal error rate (EER) of 68% and 79% for the
ASVspoof 2021 LA and DF databases respectively. Nonethe-
less, the EERs remain at 5% and the additional or complemen-
tary benefit of data augmentation, which is known to be benefi-
cial in both cases [3,4,7], was not explored. Results showed that
the wav2vec 2.0 [12] front-end gives better generalised spoofing
detection performance than a HuBERT model.

We have hence explored the wav2vec 2.0 XLS-R (0.3B)
model1 [13] in our work. wav2vec 2.0 XLS-R is a large-scale
cross-lingually pre-trained model trained on diverse corpora in-
cluding VoxPopuli data (VP-400K) [41], the multilingual Lib-
rispeech corpus (MLS) [42], CommonVoice (CV) [43], VoxLin-
gua107 (VL) [44], and BABEL (BBL) [45] datasets. Together,
they include speech data in 128 different languages from many
different regions of the world. We explored the wav2vec 2.0
front-end with an integrated spectro-temporal graph attention
network (AASIST) as a back-end [10]. The latter is described
in the next section. Its coupling with a wav2vec 2.0 front-end is
described in Section 4.

3. AASIST baseline system
The baseline system is an end-to-end, integrated spectro-
temporal graph attention network named AASIST [10], illus-
trated in Fig. 1. It extracts representations directly from raw
waveform inputs. As illustrated in Fig. 2-(a), AASIST uses a
sinc convolutional layer based front-end [46]. It is initialised
with 70 mel-scaled filters, each with a kernel size of 129 [47].
Through the addition of a channel dimension, the sinc layer
output is fed to a post-processing layer and transformed to a
spectro-temporal representation. These are fed to a RawNet2-
based residual encoder, to learn a higher-level feature map
S ∈ RC×F×T where C, F and T refer to the number of chan-
nels, spectral bins and time frames respectively.

Separate spectral and temporal representations are learned
from S using a max-pooling operation which is applied to the
absolute values across either temporal or spectral dimensions in
order to construct either a spectral input graph (Gs ∈ RNs×ds )
or a temporal input graph (Gt ∈ RNt×dt ). Ns and Nt are the
set of graph nodes in spectral and temporal graphs respectively
whereas d is the feature dimensionality of each node. Spec-

1https://github.com/pytorch/fairseq/tree/
main/examples/wav2vec/xlsr
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Figure 3: An overview of the pre-training and fine-tuning of the wav2vec 2.0 model, adapted from [13].

tral and temporal graphs Gs and Gt are modelled using a pair
of parallel graph modules (grey boxes in Fig. 1), each compris-
ing a graph attention network (GAT) [48] and a graph-pooling
layer [49]:

Gt = graph module(maxF (abs(S))) (1)

Gs = graph module(maxT (abs(S))) (2)

A heterogeneous spectro-temporal graph (Gst) is then
formed by combining temporal (Gt) and spectral (Gs) graphs
using a heterogeneous stacking graph attention layer (HS-
GAL). Graph combination enables the concurrent modelling
of heterogeneous graph representations with different node
dimensions. An HS-GAL contains an attention mechanism
modified in order to accommodate graph heterogeneity [50]
and an additional stack node [28]. The latter acts to capture
the relationships between artefacts spanning temporal and
spectral domains. First, Gt and Gs are projected using an
affine-transformation to another latent space with common
dimensionality dst before being fed into the HS-GAL which
then constructs a combined heterogeneous graph Gst.

HS-GALs are applied with a max graph operation (MGO)
where two branches, each consisting of two HS-GALs, learn to
detect different spoofing artefacts in parallel. Each HS-GAL is
followed by a graph pooling layer and an element-wise maxi-
mum operation is applied to the branch outputs to produce an-
other heterogeneous graph GST . HS-GALs in each branch share
a common stack node. The stack node of each preceding HS-
GAL is fed to the following HS-GAL so that information in
both temporal and spectral graphs is preserved.

The readout scheme (penultimate block in Fig. 1) uses
node-wise maximum and average operations. The output of the
readout layer is formed from the concatenation of five nodes.
The first four nodes are derived by applying a maximum and
average to spectral nodes (orange) and temporal nodes (blue) in
GST . The fifth is the copied stack node. A two-class predic-
tion output (bona fide and spoofed) is finally generated using a
hidden fully connected layer.

4. Self-supervised front-end
In this section we describe the replacement of the sinc-layer
front-end with a wav2vec 2.0 model as illustrated in Fig. 2-(b).
We describe both pre-training and fine-tuning to support down-
stream spoofing detection, both illustrated in Fig. 3.

4.1. Wav2vec 2.0 model

The wav2vec 2.0 pre-trained model is used to extract a sequence
of feature representations o1:N from the raw input waveform
x1:L, where L is the number of samples. As shown in Fig. 3, the
wav2vec 2.0 model consists of a convolutional neural network
(CNN) and a transformer [28, 51] network. The former con-
verts the input x1:L to a hidden feature sequence z1:N whereas
the latter transforms z1:N to output sequence o1:N . The ratio
between L and N is dictated by the CNN stride of 20 ms (the
default setting).

4.2. Pre-training

An illustration of the pre-training procedure following [12] is
illustrated to the left in Fig. 3. Latent representations z1:N are
quantised to representations q1:N . Some portion of the latent
representation z1:N is then masked and fed to the transformer
which builds new context representations c1:N . A contrastive
loss for each masked time step n is then computed to measure
how well the target qn can be identified from among a set of
distractors (i.e., qn′ sampled from the other masked time steps
where n′ ̸= n) given the corresponding context vector cn. All
work reported in this paper was performed with the wav2vec
2.0 XLS-R (0.3B) model [13]. We followed the example in
the Fairseq project toolkit [52] to extract feature representations
from self-supervised wav2vec 2.0 pre-trained model.2

4.3. Fine-tuning

Since pre-training is performed with only bona fide data (with
no spoofed data), as per [21], spoofing detection performance
is expected to improve with fine tuning using in-domain bona
fide and spoofed training data. Our hypothesis is that fine tun-

2https://github.com/pytorch/fairseq/tree/
main/examples/wav2vec
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ing will protect against over-fitting and hence promote better
generalisation. For all experiments reported in this paper, in-
cluding those related to the ASVspoof 2021 LA dataset and the
ASVspoof 2021 DF dataset, fine-tuning is performed using the
ASVspoof 2019 LA training partition only. Whereas the 2021
LA data contains codec and transmission variation and the 2021
DF data contains compression variation, the 2019 LA data used
for fine-tuning contains neither. During fine-tuning, the pre-
trained wav2vec 2.0 XLS-R model is optimsied jointly with the
AASIST CM via back-propagation using the ASVspoof 2019
LA training set. This process is described in section 6.3 whereas
the fine-tuning procedure is illustrated to the right in Fig. 3. It
is performed using a weighted cross entropy objective function
to minimize the training loss. In contrast to pre-training, in-
put masking is not applied to hidden features z1:N during fine-
tuning. Additionally, we add a fully connected layer on top of
the wav2vec 2.0 transformer encoder output o1:N in order to
reduce the representation dimension (top-right of Fig. 3).

4.4. Use with AASIST CM

The sinc layer shown in Fig. 2-(a) is replaced with the wav2vec
2.0 front-end shown in Fig. 2-(b). As before, the output o1:N is
fed to a RawNet2-based residual encoder which is used to learn
higher-level feature representations S ∈ RC×F×T . Whereas
the baseline system extracts temporal and spectral representa-
tions t and f from S using a max-pooling operation, a self-
attentive aggregation layer (described in Section 5) was found
to improve performance of both front-ends. As shown in Fig. 1,
temporal and spectral representations are then fed to the AA-
SIST CM model to obtain a two-class prediction (bona fide and
spoofed) in the same manner as described in Section 3. A sum-
mary of the wav2vec 2.0 front-end and downstream AASIST
model configurations is presented in Table 1.

5. Self-attention based aggregation layer
Attention based pooling layers such as self-attentive pooling
(SAP) and attentive statistical pooling (ASP) [53] has shown to
be beneficial to the aggregation of frame-level features and the
extraction of embeddings [54–58] for speaker recognition and
verification tasks. We have also found that the introduction of a
2D self-attention based aggregation layer between the front-end
and back-end helps to improve spoofing detection performance.

The new self-attentive aggregation layer is used to extract
more attentive/relevant spectral and temporal representations. It
helps to aggregate and assign higher attention weights through
weighted summation to the most discriminative temporal and
spectral features. We generate 2-D attention maps (an attention
weight matrix) using a 2-D convolutional (conv2d) layer with
one kernel-size rather than conventional conv1d based attention
applied to a single domain. Weights are derived from represen-
tations S processed by a conv2d layer followed by an activation
& batch normalization (BN) layer, a 2-D convolutional layer
and a softmax function to normalized the weights:

W = Softmax(conv2d(BN(SeLU(conv2d(S))))), (3)

where conv2d(·) denotes the 2-D convolution operation with
an scaled exponential linear unit SeLU(·) as the activation
function [59], and BN is batch normalisation [60]. Temporal
and spectral representations are then extracted from the self-
attentive aggregation layer according to:

t =
∑

F

S ⊙W, (4)

Table 1: The wav2vec 2.0 and AASIST model architecture and
configuration. Dimensions refer to (channels, frequency, time).
Batch normalisation (BN) and scaled exponential linear unit
(SeLU), beneath the dotted line, are applied to residual block
outputs.

Layer Input:64600 samples Output shape

Data-aug RawBoost (64600)

SSL wav2vec 2.0 (201,1024) (T,F)

front-end FC (fine-tuning) (201,128)

transpose o=(128,201) (F,T)

post- add channel (1,128,201)

processing Maxpool-2D(3) (1,42,67)

BN & SeLU

Res-block 2×





Conv-2D((2,3),1,32)

BN & SeLU

Conv-2D((2,3),1,32)





(32,42,67)

Res-block 4×





Conv-2D((2,3),1,64)

BN & SeLU

Conv-2D((2,3),1,64)





(64,42,67)

BN & SeLU

Spectral-attention Temporal-attention

self att. agg. layer (f)=(64, 42) self att. agg. layer (t)=(64, 67)
Gs = (21(Ns), 64(ds)) Gt = (33(Nt), 64(dt))

hetero. graph (Gst) HS-GAL (54(Nst),64(dst))

HS-GAL→HS-GAL, HS-GAL→HS-GAL,

stack node stack node

(32,26), (32,) (32,26),(32,)

MGO (GST ) element-wise max. (32,26), (32,)

readout node-wise max. and avg. (160,)

& concatenation

Output FC(2) 2

f =
∑

T

S ⊙W, (5)

where ⊙ denotes element-wise multiplication. W ∈ RF×T is
the 2-D attention normalised learnable weight matrix used in the
self-attentive aggregation layer to calculate the weighted sum of
the representation S across time and frequency.

6. Experimental setup
Described in the following are the databases and metrics used
in all reported experimental work, our use of data augmentation
and specific, reproducible implementation details.

6.1. Databases and metrics

We used the training and development partitions of the
ASVspoof 2019 LA database [61, 62] for training and valida-
tion. Evaluation was performed using the ASVspoof 2021 LA
and domain mis-matched DF databases [2]. While both are gen-
erated from the same VCTK source database3, the LA database

3http://dx.doi.org/10.7488/ds/1994
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contains codec and transmission variability whereas the DF
database contains compression variability in addition to data
stemming from sources other than the VCTK database [63].
The 2019 data used for training and validation contains nei-
ther. We use two evaluation metrics: the Equal Error Rate
(EER) [64] and the Minimum Tandem Detection Cost Function
(min t-DCF) [65]. We focus on the first for ease of interpre-
tation and include the second since it is the default metric for
ASVspoof challenges.

6.2. Data augmentation

Data augmentation (DA) is already known to reduce overfitting
and hence to improve generalisation [3, 4, 6, 7, 27] and is par-
ticularly effective in the case of LA scenarios in which there is
substantial variability stemming from, e.g., encoding, transmis-
sion and acquisition devices [2]. We are interested to determine
whether self-supervised learning is complementary to DA. Un-
like traditional DA techniques which enlarge the training dataset
using additional, artificially generated utterances, and using the
RawBoost4 DA tool [27], we add nuisance variability on-the-
fly to the existing training data. RawBoost adds variation in
the form of: i) linear and non-linear convolutive noise; ii) im-
pulsive signal-dependent additive noise; iii) stationary signal-
independent additive noise. Full details are available in [27].

DA is applied using exactly the same configuration and
parameters reported in the original work [27]. It shows that
a combination of linear and non-linear convolutive noise and
impulsive signal-dependent additive noise strategies work best
for the LA database. These augmentation strategies suit the
convolutive and device related noise sources that characterise
telephony applications. In contrast, for the DF database, DA
works best using stationary signal-independent additive, ran-
domly coloured noise, which match better the effects of com-
pression [66] applied in generating the DF database. DA exper-
iments and configuration are discussed further in Section 7.3.

6.3. Implementation details

Audio data are cropped or concatenated giving segments of ap-
proximately 4 seconds duration (64,600 samples). Graph pool-
ing is applied with an empirically chosen pooling ratio of k
= 0.5 for spectral and temporal graphs. We used the standard
Adam optimiser [67] with a fixed learning rate of 0.0001 for ex-
periments without the wav2vec 2.0 front-end. Since fine-tuning
demands high GPU computation, experiments with wav2vec
2.0 were performed with a smaller batch size of 14 and a lower
learning rate of 10−6 to avoid model over-fitting. As illus-
trated to right in Fig. 3, the fully connected layer after the
wav2vec 2.0 SSL front end used 128 output dimensions. All
other hyperparameters are the same for both front-ends which
are both jointly optimised with the back-end classifier using
back-propagation [68]. As is now common in the related liter-
ature [69, 70], we performed each experiments with three runs
using different random seeds to initialize the network weights
and report the results of the best performing seed and average
results. All models were trained for 100 epochs on a single
GeForce RTX 3090 GPU and all results are reproducible using
open source code5 and with the same random seed and GPU
environment.

4https://github.com/TakHemlata/
RawBoost-antispoofing

5https://github.com/TakHemlata/SSL_
Anti-spoofing

Table 2: Pooled EER and pooled min t-DCF results for the
ASVspoof 2021 LA database evaluation set, for the sinc-layer
and wav2vec 2.0 front-ends. SA refers to the self-attentive ag-
gregation layer whereas DA refers to data augmentation. Re-
sults are the best (average) obtained from three runs of each
experiment with different random seeds.

front-end SA DA Pooled EER Pooled min t-DCF

sinc-layer × × 11.47 (11.95) 0.5081 (0.5139)
wav2vec 2.0 × × 6.15 (6.46) 0.3577 (0.3587)

sinc-layer ✓ × 8.73 (11.61) 0.4285 (0.5203)
wav2vec 2.0 ✓ × 4.48 (6.15) 0.3094 (0.3482)

sinc-layer ✓ ✓ 7.65 (7.87) 0.3894 (0.3960)
wav2vec 2.0 ✓ ✓ 0.82 (1.00) 0.2066 (0.2120)

7. Results
We present five sets of experiments. The first is a comparison of
each front-end in terms of performance for the ASVspoof 2021
LA database. The second and third assess the complementary
benefits coming from the new self-attention based aggregation
layer and data augmentation. The fourth is an assessment per-
formed on the ASVspoof 2021 DF database whereas the last is
an assessment using a simplified CM solution.

7.1. Front-end comparison

Results for the AASIST baseline with the sinc-layer front-end
(Section 3) and the same system with the wav2vec 2.0 front-end
(Section 4) are presented in the first two rows of Table 2. These
systems use neither the self-attentive aggregation layer nor data
augmentation. The baseline EER of 11.47% is high and shows
that the system is not robust to the codec and transmission vari-
ability which characterises the ASVspoof 2021 LA dataset. The
same system using the wav2vec 2.0 front-end delivers an EER
of 6.15%. While the relative reduction is almost 46%, the EER
is still unacceptably high.

7.2. Self-attentive aggregation layer

Results for the same two front-end variants but using the self-
attentive aggregation layer (SA) introduced in Section 5 are pre-
sented in rows 3 and 4 of Table 2. In both cases the EER drops
substantially, to 8.73% for the sinc-layer front-end and to 4.48%
for the wav2vec 2.0 frontend. In this case the wav2vec 2.0 fron-
tend is responsible for a relative improvement of almost 50%.

7.3. Data augmentation

Results for the same two systems, both with the self-attentive
aggregation layer (SA), and now also with data augmentation
(DA), are shown in rows 5 and 6 of Table 2. DA reduces the
EER only marginally from 8.73% to 7.65% in case of the sinc-
layer front-end. To verify that this improvement is not due to
random factors in neural network training (e.g., different, ran-
dom initial network weights), we conducted a statistical analy-
sis of the results following [69]. The results6 suggest that the
improvement is statistically significant and is hence unlikely
to be caused by factors other than DA. Its effect is more pro-
nounced when using the wav2vec 2.0 front-end for which the

6Available in the form of an appendix available from arXiv
at https://arxiv.org/abs/2202.12233

116



Table 3: As for Table 2 except for the ASVspoof DF database,
evaluation set. Since there is no ASV in the DF scenario, there
are no min t-DCF results. The last two lines show results for an
LA-optimised DA configuration.

front-end SA DA Pooled EER

sinc-layer × × 21.06 (22.11)
wav2vec 2.0 × × 7.69 (9.48)

sinc-layer ✓ × 23.22 (25.08)
wav2vec 2.0 ✓ × 4.57 (7.70)

sinc-layer ✓ ✓ 24.42 (25.38)
wav2vec 2.0 ✓ ✓ 2.85 (3.69)
sinc-layer ✓ ✓* 20.04 (20.50)

wav2vec 2.0 ✓ ✓* 6.64 (7.32)

EER decreases from 4.48% to 0.82%. This result is also sta-
tistically significant. This result corresponds to a relative im-
provement of almost 90% when compared to the baseline EER
of 7.65%. To the best of our knowledge, this is the lowest EER
reported for the ASVspoof 2021 LA database.

7.4. DeepFake results

Results for exactly the same experiments, but for the ASVspoof
2021 DeepFake (DF) database, are shown in Table 3. While
neither SA, nor DA improve upon the baseline EER of 21.06%,
consistency improvements are obtained for the wav2vec 2.0
front-end for which the EER drops from 7.69% to 2.85% us-
ing both SA and DA. This result is also statistically significant.
To the best of our knowledge, this is the lowest EER reported
for the ASVspoof 2021 DF database.

These results, while determined with the same wav2vec 2.0
front-end used for LA experiments, relate to a DA strategy op-
timised for the DF database (stationary signal-independent ad-
ditive randomly coloured noise – see Section 6.2). Results for
exactly the same setup, using the DA strategy optimised for LA
(linear and non-linear convolutive noise and impulsive signal-
dependent additive noise) are shown in the last two rows of
Table 3. While the EER increases to 6.64%, this is still a
competitive result and is 67% lower relative to the result of
20.04% for the sinc-layer front-end. Whereas a component
of the DF database originates from the same VCTK database
as the entire LA database, other components are sourced from
multiple different corpora (Voice Conversion Challenge 2018
and 2020 databases) [2] including spoofed utterances generated
with more than 100 different algorithms. With the ASVspoof
2019 LA training data containing neither codec or transmission
variability (LA evaluation data), nor compression variability
(DF evaluation), results show that the use of better pre-trained
models leads to consistent improvements in generalisation, here
being previously unseen spoofing attacks. Results for the DF
database show that the benefit extends also to the case of do-
main mismatch.

7.5. Simplified CM solution

The last set of experiments were performed in order to gauge the
relative importance of the AASIST and whether the improve-
ments in generalisation are obtained for a simpler CM solu-

*Results using the DA strategy optimised for LA (linear and non-
linear convolutive noise and impulsive signal-dependent additive noise).

Table 4: Pooled EER and pooled min t-DCF (LA only) results
for the ASVspoof 2021 LA and DF databases (DBs), evaluation
sets, using DB-optimised DA and the simplified back-end.

front-end DA DB Pooled EER Pooled min t-DCF

wav2vec 2.0 ✓† LA 1.19 0.2175
wav2vec 2.0 ✓† DF 4.38 -

tion. We removed the RawNet2-based encoder and replaced
AASIST with a simple back-end comprising a max-pooling
layer, a single graph module layer and a linear layer. Results
for both ASVspoof 2021 LA and DF databases using optimised
DA strategies for each are shown in Table 4. LA and DF results
of 1.19% and 4.38% show that competitive EERs can obtained
using the fine-tuned wav2vec 2.0 front-end even with relatively
less complex networks and that the benefits to generalisation are
still complementary to those of DA.

8. Conclusions and discussion
We report in this paper our attempts to harness the power of
self-supervised learning in the form of the popular wav2vec
2.0 front-end to learn more reliable representations to improve
spoofing detection performance. We show that a well-trained,
fine-tuned front-end, even when learned initially using massive
quantities of only bona fide utterances, can improve generalisa-
tion substantially. Compared to a sinc-layer front-end, when
coupled with a new self-attentive aggregation layer and data
augmentation, the wav2vec 2.0 front-end delivers up to a 90%
relative reduction in the equal error rate for the logical access
spoofing detection task and up to an 88% relative reduction
for a domain mis-matched Deepfake detection task in which
spoofed utterances are generated with more than 100 different
attack algorithms. Improvements stemming from the use of the
self-supervised wav2vec 2.0 front-end are consistent for every
experimental comparison and, to the best of the authors’ knowl-
edge, results are the lowest reported EERs for both LA and DF
databases to date.

We must nonetheless acknowledge that almost all results
reported in the literature are derived using fixed training data,
whereas those reported in this paper are derived from a model
pre-trained using additional external data. Given that our results
are obtained with different systems trained using different data,
comparisons to the majority of results reported in the literature
are obviously not fair. The scale of the improvements, however,
up to a 90% relative reduction in EER, indicate the potential
gain in performance that can be obtained with the use of addi-
tional, external training data and might suggest that the training
data restrictions for ASVspoof evaluations might be relaxed.
Nonetheless, the wav2vec 2.0 model is massively more com-
plex when compared to the previous state-of-the-art solutions.
Whether or not solutions with such footprints can be adapted to
support practical applications remains to seen.

Future work should investigate which particular character-
istics of the self-supervised front-end are most beneficial. One
objective of such work is to use the results of such analysis as
a starting point to scale down the model size and complexity so
that it might be more easily adopted for practical scenarios with
modest computational resources.

†We used their respective optimised DA strategies for LA and DF
as described in Section 6.2
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